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Abstract 
The biggest stumbling block to make formal verification widely acceptable is the state space 

explosion problem. Abstraction is used to simplify a design so that the number of reachable 
states is reduced. In this paper, we first introduce a concurrency model, called integer combi- 
national/sequontial (ICS), capable of describing hardware systems at high and low levels of 
abslractions. ICS uses finite relations, interpreted and uninterpreted integer functions and pred- 
icates, interpreted memory functions, and supports non-detexminism and fairness constraints. 
As a subset, it includes finite-state systems with general fairness constraints. Verification in 
this framework is performed using language containment as follows. 

1. For a subclass of "control-intensive" ICS models, we prove that t-mite small instantiations 
can be used to decide the properties without sacrificing accuracy. A linear time algorithm for 
recognizing these subsets is given. These results also hold for the standard finite-state systems 
and thus also provide some generic methods for automatic data abslraction for such systems. 
Using these results, we are able to verify a memory model by reducing integer data values to 
binary, and unbounded memory addresses to a small number. 

2. For verifying properties of circuits with complex datapaths, the model can be executed 
symbolically to find the reachable states. In some cases, the set of reachable states is finite, 

and the verification can be completed exactly. In other cases, given n ,  the verifier checks that 

no errors of length less than n exist. 

1 Introduction 

Formal design verification (or verification) is the process of validating a design by proving 
properties of it. Validation of a design is currently done using simulation, which is the 
bottleneck in many designs. Verification has the promise of reducing the simulation time, as 
well as increasing the level of confidence in the design. 

A hardware system can be divided into three major components: control, datapath, and 

memory (see Figure 1). The control part consists of a set of interacting FSM's which, 
depending on data values and their internal states, produce a set of control signals for the 
datapath. The datapath consists of functions, predicates, and registers, which based on control 
signals, operate on data. The data often consists of integers. The memory acts as a container 
for values, and communicates with the datapath. 

~locat ion ~ A hardware system consists of I ~ ~  control I three major components: 
memory datapa control, datapath, and memory. Figure 1 

Properties can be classified as control, data, and data/control. Control properties are those 
which involve only the control signals. An example is that no two control signals of a bus are 
asserted at the same time. Most existing automatic verification techniques are suitable only for 
verifying such properties. Therefore, a verification expert needs to manually abstract the 
datapath. This process is time-consuming and often involves a third-party's understanding of 
the design. 

Data properties are those which the datapath must satisfy. For example, for a pipelined 
datapath, one verifies that values appear on time where they are needed. The most successful 
technique to attack such properties has been theorem-proving. The data properties, addressed 
so far, fall into those for which automatic or almost automatic theorem-proving is possible. 
The theorem-prover PVS ([PVS93]) has been used to prove such properties almost 
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automatically (the proofs involve a few routine proof commands). 
DatalControlproperties involve both control signals and datapath variables. An example is 

'qf  an add command is issued, and no exceptions occur, then in 3 time steps, location c 

contains a + b ." In general, such properties are the most difficult to verify, and only ad hoc 

techniques have been used to verify them. 
Abstraction is the process of reducing the proof of a property on an infinite or large state 

space (concrete mode/) to a proof on a smaller state space (abstract model). Based on how 
well the abstract model approximates the concrete one, abstractions can be divided into three 
categories. Exact abstractions are those, where the property holds in the concrete model iff it 
holds in the abstract one. [MPS92] provides an example of exact abstractions is provided, 

where n -state counters whose data values are not used by other FSMs are reduced to 3-state 

machines. Conservative abstractions are those where if  the property holds in the abstract 
model it holds in the concrete model. The homomorphism theory of [Kur92] is an example of 
(manual) conservative approximations. Aggressive abstractions are those where if the 
property does not hold in the abstract model then it does not hold in the concrete model. If  a 
conservative abstraction fails, an aggressive abstraction may confirm the property does not 
hold. Similarly, if an aggressive abstraction holds, conservative abstractions may be used to 
possibly confirm the property holds. 

Abslraction of hardware systems can be classified by their level of granularity. Datapath 
abstractions are those which eliminate portions of the datapath or reduce the number of bits in 
the datapath. Control abstractions are those which reduce the number of output values or 
states of a state machine based on equivalence with respect to a property. For example, some 
property may only be sensitive to two values of a multi-valued variable. In such cases, other 
values may be collapsed together. Control properties may not be behavior-preserving. For 
example, [HKB94] presents a technique for reducing the states of a FSM which does not 

preserve the behavior: if the original machine can produce an output in n steps, then the 

reduced machine can also produce it in n steps. 

In this paper, we are concerned with datapath abstractions. We first introduce the integer 
combinational/sequentlal (ICS) concurrency model, which can describe hardware systems in a 
high-level of abstraction. This concurrecny model is based on the combinational/sequential ((2/ 
S) semantics ([HB95]), and extends it by 1) introducing integer variables, 2) interpreted and 
uninterpreted predicates and functions on integers, and 3) interpreted memory functions. ICS 
easily supports non-determinism and fairness constraints, and if the extensions are not used, it 
reduces to C/S. One can extend the general theory of verification using language containment 
([Kur92]) to ICS models. Again if the ICS extensions are not used, the theory reduces to the 
theory of language containment on C/S models. 

Verification using ICS models is performed in two ways. When verifying properties of 
control-intensive systems, i.e. those with simple datapaths, small instantiations can be used. 
In cases where the property cannot be decided using finite instantiations, the finite sized 
models can be used to either find an error, or give strong indications that the property holds. 
Using these results, we were able to verify a memory model by reducing integer data values to 
binary, and integer memory addresses to a small number ([HMLB95]). 

The first kind of circuits we consider are data insensitive controllers. Intuitively, these only 
move data around, and are not sensitive to the value of the data. It appears that many 
communication protocols fall into this category. We prove that for verifying certain types of 
safety properties, a single bit of data for each variable is sufficient. Data sensitive controllers, 
on the other hand, interrogate data values, i.e. apply predicates to them, as well as move them 
around. A typical memory controller with respect to operations on memory addresses is an 
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example. We show that, depending on the predicates applied (we allow comparisons, equality, 
sign, and mod), a few bits can suffice to check the property. We prove a negative result which 
states when finite instantiations cannot be used. Since we use ICS models and the language 
containment paradigm, all our results unless otherwise stated, apply to liveness as well as 
safety properties. Algorithms for automatically recognizing data sensitive and insensitive 
controllers are given. 

We also use ICS models and language containment to verify data and control/data 
properties. Fairness constraints are added to the ICS model, the property is specified, and its 
complement is computed. The set of reachable states of the composition of the model and the 
complement of the property is then computed, and it is verified that no fair path (a path 
satisfying all fairness constraints) exists. ICS is designed so that checking the equivalence of 
two states is decidable. However, the set of reachable slates may be infinite, in which case 
language containment is undecidable. Language containment can then be approximated in the 

sense that it can be checked that no errors of a given length n exist. If all reachable states are 

computed within n steps, this verification is exact. We present a BDD-based algorithm for 

symbolic verification of ICS models. 
Two previous works are most relevant to our results regarding finite instantiations. [Wo186] 

introduced the notion of data independent protocols, which are basically the same as data- 
insensitive controllers, and showed how finite instantiations can be used to decide properties 
expressed in a variant of linear temporal logic. [ID93] proved a result, called data saturation, 

which is similar to our Lemma 4.1, but does not handle liveness. Regarding symbolic 
execution of ICS models, [CN94] introduced a temporal logic, augmented with uninterpreted 
functions and predicates to express properties of pipeline circuits. [BD94] devised a decision 
procedure for deciding whether two terms built from uninterpreted functions and memory 
operations are equal. These formulas arise in the context of verifying pipelined circuits. We 
will give a more thorough comparison of our work with the previous ones in the later sections. 

The flow of the paper is as follows. Section 2 presents the syntax of ICS, its operational 
semantics, its derivation from descriptions in hardware description languages (HDL's), how 
fairness constraints are specified, and how language containment is done. Data insensitive and 
sensitive controllers, theorems about their exact abstractions, and algorithms for recognizing 

them are described in sections 3 and 4 .  Section 5 gives a BDD-based algorithm for the 
symbolic execution of ICS models. Section 6 concludes the paper. Due to lack of space, most 
proofs have been eliminated. 

2 Integer Combinatorial/Sequential (ICS) Concurrency Model 
In this section, the integer combinational/sequential concurrency model is described. ICS is 

designed to represent systems composed of control, datapath, and memory. Some machinery 
is given to reason about integers, and how they affect the state spaces. 

2.1 Syntax 
The primitives are: Variables, tables, interpreted functions and predicates, uninterpreted 

functions and predicates, constant creators, latches, and memory functions. 
Variables. Variables are of two types: finite (or enumerated) and integer. Enumerated 

variables take values from some finite domain, whereas integer variables take integer values 

( 0 , 1 , 2  . . . .  ). 

Tables. A table is a relation defined over a set of finite variables, divided into inputs and 
outputs. A table is a funcaon if  for every possible input tuple there is at most one output 
tuple. Otherwise it is a re/at/on. If a table has only one binary output, and is a function, then it 
is a predicate. 

Interpreted Functions and Predicates. A set of functions and relations over integers has 
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been pre-defined. The interpreted func t ions  are: z := x + y ,  y := x ,  y := x + c ,  

y := i f ( b , x )  , z := m u x ( b , x ,  y) , where x ,  y ,  and z are integer variables, b a binary 

variable, and c an integer. The interpreted predicates are y = x (equality), y < x ,  x = c ,  

( x m o d m )  = r , a n d  ( x m o d m )  < r  . 

Uninterpreted Func t ion  and Predicates. These are a set of function and predicate symbols 

with their arities and domain variables given. For example, if x 1 and x 2 are variables, 

f ( x l ,  x2) may be the specification of an uninterpreted binary function defined over binary 

variables x 1 and x 2 . 

Constant  Creators. A constant creator is a special element with no input, and an integer 
output. Intuitively, it is a higher-order function, which creates a new constant each time called, 
i.e. a fresh 0-ary uninterpreted function. 

Latches. A latch is defined on two variables over the same domain: input (or next  state) and 
output (or present  state) of the latch. Present and next state variables may overlap, e.g. when 
an output of a latch is an input to another. Every latch has a set of initial values, which are a 
subset of the domain of its variables. If the latch is integer-valued, then the initial value set can 
either be a finite set of integers, a given constant, or the output of a constant creator. 

Predicates can be used to create infinite initial values. For example, the predicate x > 5 can be 

used to only allow integers greater than 5. 
Memory  Funct ions .  Two functions read and write are provided with their usual 

interpretation; r e a d  is a unary function whose argument is a location; wr i t e  is a binary 

function, whose arguments are a location and a value. Location and value are variables in the 

model. It is implied that read  and wr i te  have an extra argument which is the memory 

itself 1. Reading a location which has not been written, returns a new constant (like a constant 
creator). 

Defini t ion A generalized gate is a table, an interpreted or uninterpreted function or 
predicate, or a constant creator. 

Every model has only a finite number of variables, latches, and generalized gates. Every 
variable is the output of exactly one generalized gate or latch. Hence, every input to a 
generalized gate or latch is the output of some other generalized gate or latch, i.e. our systems 
are closed. A variable can be input to many generalized gates or latches. 

Definition An ICS  term is built recursively from constants, interpreted and uninterpreted 

functions. Therefore, constants are ICS terms, and i f f  is an n -ary function and t 1 . . . .  , t n are 

ICS terms, then f ( t  1 . . . . .  in) is also an ICS term. Note that ICS terms do not involve any 

variables or predicates. 

Definition A state is a triple ( latch,  memory ,  p r ed i ca t e s )  , where, 

a. la t ch  is an assignment of values to the latches. For finite valued latches, the value comes 

from the domain. For integer valued latches, the value is an ICS term. 

b. m e m o r y  is a set of pairs of ICS terms, the first denoting a location and the second a value. 

c. p r e d i c a t e s  is a set of atomic formulas (i.e. interpreted and uninterpreted predicates 

applied to ICS terms). 

l. One can easily extend ICS models to allow for more than one memory, in which case r e a d  

and wr i t e  take an extra argument, which specifies which memory the operation is on. 



102 

Definition Given two ICS terms t 1 and t 2 , and two sets of atomic formulas 

P = {PI . . . . .  Pn} and Q = {Q1, . . . , Q m } ,  tl i sequat to  t 2 subjectto P and Q,  denoted 

as tllp = t2lQ iff the formula t 1 A P1 ^ " "  ^ P n = t2 ^ Q1 ^ ' "  ^ Qm is valid. For example, 

if t 1 = x ,  P = { x > 7 ,  x < 8 } ,  t 2 = 8,  and Q = O ,  then tl = t 2 subject to P and Q 

s i n c e x ^ { x > 7 , x < 8 }  = 8 isvalid. 

Definition Let states s 1 = (L1, M1, P1) a n d s  2 = (L2, M2, P2) begiven,  sl = s 2 if the 

following both hold. 
i i 

a) Let 11 and l 2 denote the values of the i -th latch in L 1 and L 2 , respectively. If the i -th 

i i . i [  = li I = l , otherv~se,l 2 must hold. latch is finite, then 11 2" I P1 /'2 

b)  Let mik = a k, v t denote the i- th address/value pair in M k . Then, for each m�94 there 

exists ~ such that ai.I = a/21 and v!] = ~1 Similarly, for each ~ 6  there must exist 
llPt P2 llPl P2" 

= and v i = 
m 1 such that a 1 P~ P2 1 p1 P2" 

Definition An initial state is a state (latchinit, 0 ,  0 )  , where latchinit is an assignment of 

an initial value to each latch. The constants assigned to those latches whose initial value is 
constant must be distinct. 

Lemma 2.1 It is decidable whether two states are equal. 
Proof (sketch) The problem reduces to deciding whether two ICS terms are equal subject 

to predicate constraints. ICS terms are combinations of ground Presburger arithmetic and 
uninterpreted functions and predicates. [Sho79] shows how such formulas can be decided 
(QED). 

2.2 Operational Semantics of ICS 
The operational semantics of ICS describes how a transition between two states of an ICS 

model occurs. Since the development here parallels the one in [HB95], most proofs are 
omitted. 

Definition A gate graph G is a directed graph where every node is a generalized gate. 

(u, v) ~ G if some output variable of generalized gate u is an input to generalized gate v .  A 

cyclic gate graph is said to contain a combinational loop (or cycle). 
Remark For an acyclic gate graph G a root node either has no inputs or each input is a latch 

output. 
Our operational semantics is restricted to acyclic graphs and is defined in terms of a 

configuration (or state) graph and its transition relation. Every node in the configuration 

graph is a pair (s, n) , where s is a state of the model, and n represents the number of 

constants created so far. An initial state of the configuration graph is of the form (Sinie k) , 

where ~init is an initial state of the model, and k the number of constants in $init" 

We present an algorithm which, given a state u = ((L, M, P) ,  n) in the configuration 
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graph, assigns a new value to all next state variables (creating L' ), and creates a new memory 

Ar a set of predicates P ' ,  and a counter n ' .  In this case, we say there is an edge (u, v) in 

the configuration graph, where v = ( (L', Air, P ' ) ,  n') . We show the configuration graph is 

well-defined by proving our algorithm is well-defined. 

Notation I f  P = {PI '  " ' "  Pn} is a set of predicates, we will use P in atomic formulas to 

denote P1 ^ "'" ^ Pn" For example, P ---> (b = 1) is the atomic formula 

(PI  ^ "'" ^ Pn ) -'> (b = 1) . 

O. L e t P '  = P , n '  = n .  

1. Choose a topological sort o f  the gate graph. 

2. Assign to the outputs o f  the latches the values given by L . 

3. Assign values to the outputs o f  each generalized gate consistent with its inputs, process- 
ing the generalized gates in the topological order. More precisely, let a generalized gate 

g (i, o) be given, where i represents the inputs to the gate and o its output. 

a. I f  g is a table representing the relation R ( i, o) , then ( i, o) ~ R . 

b. 1]" g is an interpreted or uninterpreted function, then o = g ( i) , where o and i 

are ICS terms. 

c. I f  g is an interpreted or uninterpreted predicate, i f  l m ---> (g = O) is valid, let 

g = O; i f  P'----> ( g = l )  is valid, let g = 1;  otherwise let o = 0 or o = 1, and 

P'  = P ' u  { g = o }  . 

d. I f  g is a constant creator, then o = cn,, where c n, is a fresh constant, and 

n' = n ' + l .  
Step 3 is referred to as value propagation. Note that the configuration graph is finite- 

branching, i.e. for every state, there are a finite number of next states. We prove the algorithm 
is weU-defined by proving it is not sensitive to the topological sort chosen. It is possible that a 
table is not complete, i.e. there am inputs for which there am no outputs. Then, the set of 
values assigned to an output of a table may be empty. The empty values propagate, i.e. if  one 
of the inputs to a table is empty, then the output is empty as well. 

Lemma 2.2 When a generalized gate is processed in step 3 each of its inputs has been 
assigned a value. 

Lemma 2.3 The above procedure assigns values to all next state variables (inputs of the 
latches). 

Lemma 2.4 Let  L be an assignment of values to all latch outputs. Let L' and n' be 

obtained by value propagation given topological sort O 1 and value n .  Then, given 

topological sort 0 2 , L' and n' can be obtained by value propagation from L and n .  

2.3 Creating ICS Models From the HDL Verilog 
In the HSIS environment, Verilog descriptions are compiled into BLIF-MV, an intermediate 

format which implements combinational/sequential concurrency model. BLIF-MV has a 
library of pre-defined functions and predicates on finite-sized integers. For example, 

add4  (x, y, z) may mean that two 4-bit integers x and y am added to get the 5-bit integer z .  

We can easily extend this to compile a Verilog description into an ICS model. 
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2.4 Fairness Constraints and Language Containment 
In this section, we describe how to construct an automaton from an ICS description, how to 

define fairness constraints on this automaton, what its language is, how to specify properties, 
and how language containment is performed by checking language emptiness. 

2.4 .1  F a i r n e s s  C o n s t r a i n t s  in  I C S  M o d e l s  

Def ini t ion Let an acyclic ICS model M be given. The symbol ic  a u t o m a t o n  of M,  A M , is 

the configuration graph defined by the operational semantics of ICS. The a lphabe t  of A M is 

the Cartesian product of the alphabets of the non-state variable, and is denoted by E M . The 

alphabet of the integer variables is the set of the ICS terms of M (a countable set), whereas the 

alphabet of the finite variables is their domains. Let an to-string x over the alphabet Y~M be 

given, r is a run of x in A M i f  r 0 is an initial state of A M ,  and for all i ,  there is a transition 

from r i to r i + I assigning x i to non-state variables. 

If the model has inputs, we close it by allowing the finite inputs to take any value in their 
domains, while the integer inputs are driven by constant creators. Hence, the notion of 
symbolic automaton carries to models with inputs. We allow edge-Streett ([HB95]) fairness 

constraints 1 to be placed only on finite valued latches. For example, one can restrict the 

acceptable runs to be such that a finite-valued latch I takes some value a in its domain 

infinitely often. Fairness constraints are generally placed on the control part. Since control 
circuits are finite state, the restriction of fairness constraints to finite latches is expected not to 
be severe in practice. 

Defini t ion A run r is fair if all fairness constraints are satisfied. More specifically, for each 

finite latch l ,  the set of infinitely occurring values which l takes in the run r satisfies all 

fairness constraints placed on l .  The symbol ic  language  (or just language)  of symbolic 

automaton M ,  L s (M)  , is the set of all strings which have a fair run in A M . 

Def ini t ion The concrete  language  of a symbolic language L with respect to an 

interpretation I (an interpretation of all uninterpreted functions and predicates), denoted by 

L C (L, 1) , is obtained by allowing the constants to take any possible integer value for all 

x e L .  The concrete language of M with respect to interpretation I is L C (L  s ( M ) ,  1) . 

Def ini t ion Let symbolic languages L and L' be given. L is con ta ined  in L ' ,  denoted as 

L c L ' ,  if for every interpretation I ,  L C (L, I)  c_ L C (L', I) . 

Def ini t ion Let symbolic languages L ,  L ' ,  L" be given. L" is the in tersect ion of L and L ' ,  

denoted as L" = L n L ' ,  if for every interpretation I ,  L C (L", 1) = L C (L, 1) c~ L C (L', I)  . 

Similarly u n i o n  and complemen ta t ion  of symbolic languages are defined. 

Defini t ion Let models M and N be given. The compos i t ion  M �9 N is defined as follows. 

If M and N have no variables in common, or the common variables are not outputs in both 

1. One can allow other typos of fairness constraints as well. The language emptiness check for 
edge-Streett fairness constraints is polynomial, while their next natural extension has an NP- 
complete languages containment check. 
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models, the composition of the two models is their syntactic composition. For each common 

variable which is an output in both M and N ,  rename one of them, and add a one state 

automaton which checks that the two outputs are equal. 

Lemma 2.5 Let models M and N be given. Then, L (M �9 N) = L (M) c~ L (N) , i.e. 

composition of models corresponds to taking the intersection of their languages. 

2.4.2 Property Checking 

Lemma 2.5 implies that the classical results of verification using language containment are 
valid. For example, to do property checking, the complement automaton of the property can 
be composed with the system, and the language of the composed system can be checked for 
emptiness. For hierarchical verification, if  the language of the refined model is contained in 
the language of the abstract model, the properties proved on the abstract model are guaranteed 
to hold for the refined model. 

Definition A property automaton is a complete (i.e. for every symbol there is a transition) 
edge-Rabin ([HB95]) automaton with no outputs. Note that property automata can have 
integer inputs. All latches of a property automaton are finite valued (i.e. a property automaton 
has a finite number of states), and the only allowed integer operation are integer predicates 
which are applied to integer inputs, but the alphabet of a property automaton can take an 
infinite number due to integer inputs. 

Definition Let A be aproperty automaton. The finite encapsulation of A,  A F , is obtained 

by replacing each integer predicate (applied to integer inputs) with a binary input variable. 

Note that A F is a regular edge-Rabin automaton with finite alphabet and finite number of 

states. 
Lemrna 2.6 Property automata can be complemented. 

2.4.3 Hierarchical Verification 

Besides property checking, language containment appears in hierarchical verification. 
Hierarchical verification is the process of checking that the language of an abstract model 
contains the language of a detailed model. Since we don't  know how to complement general 
symbolic automata, we restrict hierarchical verification to a subset of symbolic automata, 
called control automata. Control automata are where non-determinism (and hence refinement) 
occurs; hence, this may not be too restrictive in practice. 

Definition A control automaton is a property automaton which is allowed to have only 
finite outputs. The finite encapsulation of a control automaton can be defined similar to the 
case of property automaton. 

Lemma 2.7 Control automata can be complemented. 
2.4.4 Checking Emptiness o f  lCS Models 

Verification using language containment involves complementing the property automaton, 
and checking whether there is a fair path in the composition of the system and the complement 
of the property. In order to do this, we need to compute the set of reachable states, and check 
whether there are any fair paths. However, the set of reachable states may be infinite 
(checking language emptiness of ICS models with fairness constraints is undecidable). Hence, 

we compute the set of states reachable in at most n steps, for some given n .  We then check 

that no fair path in this subset of the reachable states exists. In practice, since many error 
traces are short (if they exist), this technique should be quite effective. 

Lemma 2.8 The language emptiness check of ICS model is undecidable. 

3 Data Insensitive Controllers 
In this section, we formalize the notion of data insensitive controllers (DICs). We then prove 
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a theorem which can be used to verify the property that DICs correctly move data around on a 
system where the integer variables are replaced by single bit binary variables. A practical 
application of this result is then described, and an algorithm for automatically recognizing 
DICs is given. 

3.1 0-1 Theorem for Data Insensitive Controllers 
Definition Le t  the data movement  operations be x := y ,  z := m u x  (b, x, y)  , and 

y := i f ( b ,  x)  , where x, y, z are integer variables, and b is binary. 

Definition Let an ICS model M be given. M is a data insensitive controller (DIC)  wi th  

respect to a set of variables X,  called data insensitive variables (DIV) ,  if  the following holds. 

1. The only operations allowed on the variables in X are data movement operations and 

x := constant-creator where all variables involved in these operations belong to X .  

2. If l ~ X is a state variable, then the initial value of l is a fresh constant. 

3. If some constant creator C is input to some x ~ X,  then C is not input to any other vari- 

able z q~ X .  

The (generalized) gates in a DIC are naturally divided into two disjoint parts. The first, 
called the data sensitive part, contains the gates which drive the variables not in DIVs, 
whereas the second called the data insensitive part,  contains those gates which drive the 
DIVs. The binary variables which appear in the data insensitive part are driven by gates in the 
data sensitive part. No gate in the data sensitive part has a DIV as an input. 

. Data Sensitive Part [ 

~ ~ ~The.hipary contr~ 
T vanaoles 

[ Data Insensitive Part I 

The data sensitive part generates the control signals for the 
data insensitive part. Changing the values of variables in 
the data insensitive part does not affect the values of the 
data sensitive part. 

Figure 2 

Definition Le t  M be a DIC with respect to X.  The binary instantiation of M,  M 2, is 

formed by replacing all variables in X by binary ones, replacing each constant creator driving 

a DIV by a gate which produces 0 or 1 non-deterministically, and replacing the initial values of 

alllatches in X bythe  set {0, 1 } .  

0-1 Theorera forData- lnsens i t i ve  Controllers Let an ICS model M be data insensitive with 

respect to a set of variables X.  Let property P specify that when binary variable b becomes 

1, then x = y ,  where {x, y} ~ X .  Then, P holds for M iff P holds for M 2 . 

Historical Remark  [Wo186] introduced the notion of data-independent controllers for simple 
reactive programs, which are conceptually very similar to our data-insensitive controllers. 
However, the results of [Wo186], specifically theorem 5.4, are essentially different than our 0-1 
theorem. [Wo186]'s theorem 5.4 basically applies to properties which can be written as "for all 

tuples i 1 . . . . .  i n with distinct values, P (i 1 . . . . .  in) should hold", where P is a linear temporal 

logic formula over the variables i 1 . . . . .  i n . Such a property can also be expressed as an infinite 

conjunction of linear temporal logic formulas of the form P (v 1 . . . . .  Vn) , where v 1 . . . . .  v n are 

value assignments to i I . . . . .  i n . However, our 0-1 theorem is equivalent to an infinite 

disjunction, i.e. "when b occurs either x = y = 0 ,  or x = y = 1, or x = y = 2 ,  etc." 

One in general may be interested in proving the property "repeatedly whenever binary 

variable b becomes 1, then x = y ." To do so, create M' from M by adding a two-state 
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FSM, which outputs a variable b ' .  This FSM stays in its first state for an arbitrary amount of 

time, outputting b' = 0 .  It can non-deterministically make a transition to its second state, 

outputting b' = i .  It then stays in its second state forever outputting b' = 0 .  Let P' be the 

property "when binary variable b' becomes 1, then x = y ." It is easy to see that P holds of 

M iff P '  holds of M' .  However, the 0-1 theorem applies to the latter case. 

We also emphasize that this theorem also applies to finite state Systems and can be used to 
abstract datapaths from a large number of bits to a single bit. 

3.2 An Application of the 0-1 Theorem 
Omitted due to lack of space. See [HMLB95]. 

3.3 Recognizing Data Insensitive Controllers 
DICs can be automatically recognized with a linear time algorithm (in the size of the integer 

operations) which finds the largest set of variables according to which a model is DIC. 

Lemma 3.1 If  an ICS model M is a DIC with respect to X and a DIC with respect to Y, 

then it is a DIC with respect to X u Y. Hence, there is a largest set of variables D I V  (M) 

according to which M is a DIC. 

The foUowingalgorithmfinds D I V ( M ) .  The algorithm proceeds by marking off any 

variable which cannot be a DIV. The remaining variables are in D I V  (M) . 

1. Mark  each integer variable involved in any operations other than data movement, i.e. 
violating condition 1 o f  DICs. 
2. Mark  any variable whose input is a constant creator with more than one fanout, i.e. vio- 
lating condition 3 o f  DlCs. 

3. Le t  X be the o f  marked variables in steps I and 2. For each x e X ,  mark o f f  any other 

variable which is involved in some integer operation (including data movement) with x .  
Continue the process with the set o f  newly marked variables. 

4. Return all non-marked integer variables as D I V  (M) . 

4 Data Semi-Sensitive Controllers 
In this section, we present results about a class of circuits, called data semi-sensitive circuits 

(DSSC), which disallow function application to integer variables. We identify subclasses of 
these circuits, where properties can be proved by replacing the ranges of integer variables by a 
small finite range. Recognizing DSSCs and any of the subsets we present in this section is 

straight-forward. In what follows, checking a property on a system M is done by checking for 

the language emptiness of the composition of the complement of the property and M.  

Definition The predicates x < c ,  x = c,  x < y , x = y ,  ( x m o d m )  = d ,  and 

(x mod m ) <  d are called integer predicates. Note that the predicates Even (x) and 

O d d  (x) are special cases of (x rood m) = d .  

Definition An ICS model M is a data semi-sensitive controller (DSSC) i f  the only 

operations on integer variables are data movement, x:=constant-creator,  and integer 

predicates. The initial value of all integer latches is a fresh constant. 

A DSSC can be pictured as shown in Figure 3, where the model is divided into two parts: 
integer and finite. The integer part contains the gates which drive the integer variables, 
whereas the finite part contains those which drive the finite variables. The communication 
between the two parts is restricted to a set of binary control variables. The control variables 
produced in the integer part are the outputs of the integer predicates. The gates in the finite 
part take only finite variables as inputs. 
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I I The communication between the two 
Integer Part I parts is restricted to a set of  binary 

~ 1 1 1 A  AThebinarycontr ~ control variables, where the binary 
T T "r~" variables, variables output from the integer parts 

I 

I Finite Part I are the output of  the integer predicates. Figure 3 

Defini t ion Let M be a DSSC. The n -ary instant iat ion of M denoted by M n , is formed by 

replacing all integers variables by finite variables taking values from 0, 1 . . . . .  n -  1. The 

initial value of an integer is the set 0, 1, ..., n - 1. 

4.1 Data Comparison Controllers 
Data comparison controllers are a subclass of DSSCs which move data around, and compare 

them. We prove finite instantiations can be used to verify language emptiness for these 
circuits. A practical example of where data comparison controllers come up is given. 

Defini t ion A DSSC which only involves data movement operations, the predicate x = y,  
and constant creators is called a data compar i son  controller.  

Lemma 4.1 Let M be a data comparison controller with n integer variables, and M n its n - 

ary instantiation. Then, L (M) = O iff L (Mn) = 0 .  

A result similar to Lemma 4.1 appeared in [ID93]. The main difference is that Lemma 4.1 
applies to both liveness and safety properties. Also our bound is a bit better (the bound in 

[ID93] for safety properties was n + 2).  The fact that Lemma 4.1 applies to liveness 

properties comes basically for free as a consequence of dealing with ICS models. As an 

example, the property "if  request and x = y ,  then eventually acknowledge and z = w "  can 

be proved in our framework, hut is not dealt with in [ID93]. 

L e m m a  4.2 There is a data comparison controller M having n integer variables such that 

L (M) r O and L (Mi)  = O for i < n - 2,  i.e. the bound given by Lemma 4.1 is not off a 

tight bound by more than 2. 
One application of data comparison controllers is in memory systems of multi-processors. 

These memory controllers have a buffer for each processor where the memory instructions 
(load and store) are stored. To perform verification, we assume the sizes of the buffers and the 
number of processors are finite ([HMLB95]). However, it is assumed that the number of 
memory locations is infinite. If the memory controller only compares memory addresses to 
each other, which is what one might expect, then it is a data comparison controller with respect 
to the addresses. Hence, a small number of addresses suffice to prove the properties. This 
number is proportional to the sizes of the buffers. Combining this result with the 0-1 theorem 
for data insensitive controllers, we get that once the sizes of the instruction buffers are fixed, 
then a memory controller can be verified using binary data bits, and a finite (and small) 
number of memory locations without losing any accuracy in verification. 

4.2 Other Types of Data Semi-Sensitive Controllers 
We present results on circuits which use more sophisticated integer predicates (such as 

x < c ,  (x mod m) = r ,  and x < y).  Our results show that the only situation where finite 

instantiations cannot be used is when both data movement and the predicate x < y are used. 

L e m m a  4.3 There exists a DSSC controller M involving data movement operations and 

predicate x < y such that L (M) ~ O but L ( M  n) = 0 for all n .  

L e m m a  4.4 Let M be a DSSC with n integer variables, p predicates of the form x = c i 
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for 0 <_ i < p - 1 ,  and using only data movement operations, and the predicate x = y .  Then, 

L ( M )  = ~ i f f  L l ,~4n+p)  = 0 ,  where l~n+t,  is Mn+ p with  the predicates of the form 

x = c i changed to x = i .  

R e m a r k  In Lemma 4.4, if there are no predicates of the form x = y ,  then p + 1 values 

suffice. This is the core of [Wo186]'s techniques, where the predicates x = c i represent the 

atomic formulas of the temporal logic formula. Note that as [Wo186] argues, for such a circuit 

M (involving data movement and x = c i 's), if emptiness holds for a set of distinct constants 

c I . . . . .  cp,  then it holds for any circuit obtained from M by replacing c t . . . . .  cp by another set 

of distinct constants cl ,  ..., cp.  

Lemma 4.5 Let  M be a DSSC with n integer variables, p predicates of the form x = c i , 

and using only data movement  operations, and the predicates x = y ,  x = c i , and x < c~. Le t  

 oo, C = M A X  ( M A X  ( c i ) , M A X  ( ~ )  ) . 

= C + n + l .  

R e m a r k  One can get a bound for Lemma 4.5 which is independent of the values of the 

constants. Let p and q predicates of the forms x < dy and x = c i respectively be given. 

Further assume dy < dj§ 1 . Let  hj be the number of c i ' s  which occur between dy and 

Intuitively, between d) and dj § 1, n + hj values are needed. By re-assigning value to x < d j ' s  

and x = c i ' s  as in the proof of/ . ,emma 4.4, the emptiness check can be done on a system 

where the integer variables take on (p + 1) (n + 1) + q values (there are p + 1 intervals 

between d j ' s  each requiring n + hj values, and ~ h j  = q ). 

L e m m a  4.6  Let M be a DSSC with n integer variables, using only data movement  

operations, and the predicates x = y ,  x = c i , x < d j ,  ( x  mod m/c ) = r k, 

[ x m o d  me '  ) < r e ' .  L e t  C = M A X  ( M A X  ( c i) , M A X  ( d ) ) ,  and N be the common multiple 

o f a l l t h e m k ' s a n d m  ~ ' s . T h e n , L ( M )  = ~ i f fL  = ~ , w h e r e f i  = C + N n + l .  

The following lemma states that although the predicate x <  y cannot be used with data 

movement  operations, but it can be used with all other predicates so long as there are no data 
movement  operations. 

L e m m a  4 .7  Let M be a DSSC with n integer variables using no data movement  

opera t ions .  Let m be, 

a. n , i f M  involves only the predicates x = y and x < y .  

b. C + n + l ,  if M involves the predicates x = y ,  x < y ,  x = c i ,  and x < d j ,  where 

C = M A X  ( M A X  (c l ) ,  M A X  ( d j ) )  . 

c. C + N n + I ,  if  M involves the predicates x = y ,  x < y ,  x = c i ,  x < c ~ ,  
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I ) (xmodmk)  = r k, x m o d m  e <rld ' ,where C = MAX ( M A X ( c i ) , M A X ( ~ ) ) , a n d N  is 

the least common multiple of all the m/: 's and mid"s. 

Then, L(M)  = O i f fL(Mm) = 0 .  

5 Verifying Properties Involving Data 
We now describe techniques which can be used when finite instantiations cannot. An 

example is proving data or data/control properties of a system whose datapath is complex, e.g. 
it contains interpreted and uninterpreted functions. First, we describe a BDD-based algorithm 
for verifying I t S  models. We then compare our work with the previous ones. Finally, we 
describe how a mixed verification/simulation strategy can be employed to find bugs quickly. 

5.1 S y m b o l i c  E x e c u t i o n  of I C S  Mode l s  
The idea for symbolic execution of ICS models (which can be infinite) is to compute the set 

of states reachable in n steps, and check whether some infinite accepting path exists in this 

subset. An overview of a symbolic algorithm using BDDs for an acyclic ICS model M is 

given below. 

1. Compute the set of  reachable states, or a subset of  it reachable in n steps. Let this set be 

S ,  and represent it using BDDs 

2. Let T s be the tramition relation of  model M restricted to S . Represent T S using BDDs. 

3. Using techniques of  [HB951, check whether there are any accepting runs in T$ . 

Step 3 of the above algorithm is well-defined; we explain steps 1 and 2 in detail. 

Let a model M with finite latches IF = l/1 . . . . .  l f t ) , i n t e g e r l a t c h e s l l = l l l  . . . . .  l i , ) , and  

integer predicates P1 . . . . .  P~ be given. Let fF and l t represent the set of next state variables 

corresponding to 1F and l I . M can be partitioned into two sets, finite and integer. Let 

b = (b 1 . . . . .  be) be the binary variables corresponding to the outputs of P1 . . . . .  Pp.  Let 

w = (w 1 . . . . .  Wq) be the set of finite variables which are inputs to the integer parts. Usually 

w I . . . . .  Wq are also binary. 

! Fimte I An ICS model can be divided into two 
~ V '  parts." finite and integer. Finite valued 

variables, in general binary, are used to Figure 4 
I Integer I communicate between the two parts. 

To compute the set of reachable states, three auxiliary tables are used. The ICS table H ! is a 

table of all ICS terms which have been stored in latches in states visited so far. The predicate 
table Hp is a table of all integer predicates enumerated so far. The memory table H M is a 

table of memories, where a memory is a table from ICS terms to ICS terms. One can encode a 
variable ranging over a finite domain, using a set of binary variables. We call all binary 

variables corresponding to a finite-valued variable a BDD variable. Let S i be the set of states 

reachable in i steps, represented by a BDD, where there are BDD variables for all finite 

latches, BDD variables for integer latches ranging over all ICS formulas in H I, one BDD 

variable for each predicate in Hp,  and one BDD variable m ranging over all memories in 
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H M . Note that the number of BDD variables as well as their ranges are finite. 

Let p denote the set of binary variables corresponding to the predicates in H/, .  Let T i 

represent the transition relation of M restricted to Si,  represented as a BDD. Let T F be the 

BDD of the transition relation of the finite part, which is obtained by taking the intersection of 

the BDDs of all finite tables. The following algorithm describes how S i + 1 and T i + 1 are 

computed. The algorithm maintains the invariance that in every state (ltr , il, P, m) the set of 

predicates in p imply that the addresses of the memory m are distinct. 

1. Let  G ( b, w, Ii, p, m) = 3x (T F ^ Si) , where x is the set of  all variables T g depends on 

except for b and w .  

2. Foreach (b ,w,  lt, P , m  ) e G ( b , w ,  li, P , m  ) , 

2a. Given (w, l l, p, m) , propagate values through the integer partition, choosing the val- 

ues given by b to integer predicates i f  possible. I f  not, stop the value propagation. 

2b. Add the new ICS terms assigned to next state variables to H I , and extend the range of  

integer latches to accommodate this. 
2c. Add the new integer predicates to Hp ,  and introduce new binary variables for them. 

Set these variables to 0 for the states in S i . 

2d. Let ~ ' i+l (b ,w,  ll, P,m,  il, t , , [ n ) =  ~ { b A w ^ ( ( l l ,  P , m , , ( ' l l ,  p , [ n ) ) } ,  where 

171, [,, ;n) are the new values assigned to integer latches, predicates and memory as the 

result o f  propagating ( w, It, p, m) . As explained below there may be several such choices 

due to memory operations. 

3. Let Ti+ 1 = T i v 3z I T F A S  i ^ ~/+1 ) ,  where z are all variables except for  the state 

variables. Let  S i + 1 = 3ns ( T i + 1) ' where ns are the set of  next state variables. 

The details of step 2 of the above algorithm are as follows. 

1. In step 2a, given a predicate Q and an assignment to it hi2, the validity of 

--4 ( Q = Q / , )  and Ol ^ " " ^ Q k ' - ' > [ Q  = Z )  , e  first checked, where Q1 ^ . . .  AQ k 

(QI . . . . .  Qk) are all the predicates in Hp.  If the former is valid, value propagation is 

continued. If the latter is valid, value propagation is stopped. If neither is valid, then Q is 

added to H p ,  and a new binary variable is created for it which is set to Qb " 

2. If during value propagation, the memory operation read (x) is encountered, find an 

address y in MH,  such that Q1 ^ "" ^ Q/~-+ (x = y) is valid, and return the value pointed to 

by y .  If no such address is found, for each address y in MH, check whether 

Q1 ^ "'" ^ Q/: --~ ( x ~ y )  is valid. If this is not valid, introduce a new predicate x = y ,  and a 

new binary variable for this predicate. If this binary variable is true, then return the value 

pointed to by y .  If all such binary variables are set to false, return a fresh new constant. This 

situation corresponds to reading a location which has not been wrilaen before. 



112 

3. If during value propagation, the memory operation write (x, d) (write the value d to 

address x )  is encountered, check for any address y such that Q1A ... A Qk ~ (x = y) is 

valid. If such a y is found, change the value of y to d .  If not, check the validity of 

Q1A ... AQk---~ ( x~y )  for each address y .  If none is valid, for each address y ,  create a 

new predicate x = y ,  and a new binary variable corresponding to this variable. If this binary 

variable is set to true, change the value of y to d .  If all such binary variables are false, add a 

new entry (x, d) in m .  This situation corresponds to writing to a new address. 

4. After value propagation, it is checked whether the created memory has been encountered 

before. If not, the range of m is extended. 

The complexity of the algorithm is based on the complexity of the finite partition, the 
number of predicates in the datapath, the amount of communication from the t'mite parlition 

into integer partition (the set w ), and the number of distinct pairs of (ll, m) at every point in 

time. If the datapath is not very complex, we expect the algorithm to be dominated by the 
complexity of the finite partition, which in general is efficiently represented using BDDs. 

Remark If only integer functions and predicates are used, there are no constant creators, and 
the integer latches are initialized to a finite set of values, then the ICS terms obtained during 
value propagation are integers, and can be evaluated using the computer's arithmetic 
functions. This situation might for instance come up when handling a complete micro- 
processor. In this case, the above algorithm can be used to generate all states reachable within 

n steps. If there is no non-determinism, then the algorithm reduces to a simulation algorithm, 

which uses BDDs to represent the control part, and uses the computer's arithmetic functions to 
compute the values encountered in the datapath. 

5.2 Comparison With Previous Work 
Two previous works are most relevant. 
1. Functional Equality. [BD94] introduced techniques for checking whether two functions 

corresponding to two implementation of a datapath, one pipelined and the other not, are 
equivalent. This kind of verification can be done using ICS models, and its verification is 
decidable, since the pipeline is executed only for a finite number of steps. Compared to the 
ICS approach, [BD94] is very specialized. It appears that any verification which cannot be 
posed as a function equality check cannot be performed in this framework; hence, general 
property checking cannot be done. Also, non-determinism and fairness constraints are not 
supported. As for efficiency, it is hard to know a priori, which method would be better for 
those problems where both are applicable. 

2. Extended Temporal Logic. [CN94] introduced an extended temporal logic, called ground 
temporal logic, with pretty much the same expressiveness as ICS models. They suggested that 
transition diagrams be translated into this logic, and the validity of the formulas be checked. 
This approach has the same drawbacks as when validity of linear temporal logics is used as the 
computational means for verification; there are no known efficient procedures for model 
checking a linear temporal formula by checking the validity of an LTL formula expressing 
both the transition structure and the property. In particular, one can expect that systems with 
large control circuitry cannot be efficiently model checked using this approach. 

$.3 Mixed Simulation/Verification Strategy 
As a mixed simulation/verification strategy, one can give a finite instantiation to integer 

variables, and arbitrary interpretations to uninterpreted functions and predicates. This is what 
is done today in an ad hoc manner. It appears that this method is very useful in finding bugs. 
To get good coverage, a sufficiently large finite instantiation must be used. The results of 
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sections 3 and 4 can be applied to get a heuristically good bound on the size of the finite 
instantiation to be used. 

6 Conclusions 
A concurrency model was presented which extends the regular synchronous concurrency 

models naturally, and can be obtained easily from user 's  descriptions with little effort. An 
extension of the language containment paradigm to this concurrency model was described. 

Results were also presented which allow verification on finite instantiations of some subset 
of models whose state spaces are infinite. This was used to verify a memory model with a 

f in i t e  number of processors and buffers, integer data, and unbounded memory space 
([HMLB95]). Only binary data and a few memory locations were used without losing any 
accuracy in verification. For cases, where finite instantiations cannot be used, we gave an 
algorithm for symbolic enumeration of the state space using BDDs. 
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