
Model checking for infinite state systems using
data abstraction, assumption-commitment style

reasoning and theorem proving

Jiirgen Dingel I and Thomas Filkorn ~

1CarnegieMe~on University, School of Computer Science, Pittsburgh, USA,
jurgend@cs.cmu.edu

2 Siemens AG, Corporate Research and Development, Mfinchen, Germany,
filkorn@zfe.siemens.de

Abst rac t . A method combining data abstraction, model checking and
theorem proving is presented. It provides a semi-automatic, formal fra-
mework for proving arbitrary linear time temporal logic properties of in-
finite state reactive systems. The paper contains a complete case study to

prove safety and liveness of an implementation of a scheduler for the rea-
ders/writers problem which uses unbounded queues and sets. We argue
that the proposed framework could be automated to a very large extent
making this approach feasible in an industrial environment.

1 I n t r o d u c t i o n

The applicability of model checking ICE81, QS81, CES86, BCM+92] is limited
by the necessity to model the behaviour of the system as a finite state ma-
chine. Hard- and software systems very often contain possibly infinite data values
(e.g., integer values or recursive data structures like lists) or data which are much
too large to be represented efficiently by a finite set of values (e.g., messages in
protocols containing more than 100 bytes). Consequently, the first step in the
application of model checking techniques to practical examples is to model the
original system as a finite state system, which typically involves some kind of
abstraction. Recently, [CGL92, Lon93, GL93, Gra94] have proposed formal ab-
stractions to be used to model check very large state spaces. Here, given abstrac-
tion mappings for each of the domains of the state space, an (approximation of
the) corresponding abstract system is computed such that each path (behaviour)
in the concrete system has at least one "corresponding" path in the abstract sy-
stem. Properties are expressed as formulae over a logic in which the existence
of a certain path cannot be expressed. For instance, the linear t ime logic LTL
and the branching time logic ACTL only allow for formulae which state that
a property holds for all paths of the system. Soundness then is ensured by the
fact that whenever a formula holds in the abstract system, it also holds in the
concrete system.

1 The first author would like to thank Siemens AG for making this research possible
with a summer internship.

55

One advantage of this approach is that it is fully automatic. Given the ab-
straction mappings no further user interaction is required. One disadvantage is
tha t in case a property does not hold in the abstract system the user can only
change the abstraction mapping and try again. Furthermore, although the pro-
perty holds in the concrete system there might not be an abstraction such that
the property also holds in the abstract system or the user may not find it. When
moving to infinite state systems, this disadvantage is even more dramatic: Bec-
ause an infinite state space has to be mapped onto a finite one, all abstractions
are bound to add a relatively large amount of behaviour, which has no counter-
part in the concrete system. Consequently, especially many interesting liveness
properties, which do hold in the concrete system, will fail in the abstract system
and will not be provable at all using the above method.

Our method trades automation for an increased flexibility in finding the right
abstraction. More specifically, in contrast to previous approaches, the user may
be able to prove some or maybe all properties he/she is interested in using a
very simple and natural abstraction. However, the proof may require some user
interaction and expertise. In our framework the linear time logic LTL was used as
a specification logic, but the approach would work similarly with the branching
t ime logic ACTL. Given an description of an infinite state reactive system, e.g.,
the description of a protocol, and data abstractions for each of the domains of
the state space (e.g., integers, sets, queues) the abstract, finite state system is
computed automatically. A data abstraction consists of a mapping from concrete
to abstract values and abstract versions for the operations on the values. In
the description of the original system we replace all datatype declarations and
operations by their abstract counterparts to obtain a description of the abstract
system, from which a transition system can be generated automatically. Then,
having initialized the current set of assumptions with the empty set, we use
a model checker which supports assumption-commitment style reasoning and
generates counterexamples for the following iterative process: If the abstract
system satisfies the commitment under the current assumptions we are done
and we can proceed to discharge the assumptions in the concrete system. If the
commitment is not met, we analyze the generated counterexample to determine
whether it corresponds to a real program error in the concrete system or to
an unrealistic sequence impossible in the original program. In the first case,
we debug the concrete system and start again. In the last case, we find an
assumption excluding this counterexample and others of the same kind, add
it to the current set of assumptions and check if the system now satisfies the
commitment under these augmented assumptions. During this process one might,
of course, also decide that the data abstraction needs to be changed and start
all over again. Each of the assumptions will restrict the behaviour of either the
environment or the system itself. To ensure that the system assumptions only
exclude behaviour of the abstract system added by the abstraction, they have
to be discharged in the concrete system. The environment assumptions have to
be discharged in the environment the concrete system is running in. Since the
concrete system has infinitely many states, a theorem prover has to be used

56

to show that it satisfies the system assumptions. Moreover, the theorem prover
is also employed to establish a correspondence (homomorphism) between the
concrete and the abstract system. Theorem provers typically require substantial
user interaction and expertise, which is the main reason why they are not widely
used in industrial environments. However, we expect the proof obligations for
the theorem prover to be relatively easy, making our approach feasible in an
industrial environment. This is for three reasons:

1. In reactive systems like industrial control tasks or protocols the control
aspects are dominant and safety critical, whereas data processing is often less
important. Thus, most specified properties will be mostly control-oriented
and data aspects will only play a minor role. Given this assumption, the
verification problem can be split into a finite state control problem, which
is solved automatically by model checking, and the verification of properties
about the data part for which theorem proving must be used. Since the spe-
cified properties will be mostly control-oriented we expect that most of the
work (verification and uncovering of errors) will be done by model checking,
whereas the remaining assumptions should be so simple, that they can be
handled easily using a theorem prover.

2. Since a data abstraction is given as a surjective function mapping from con-
crete data values to abstract ones, the task of proving homomorphy between
the concrete and the abstract system reduces to proving that this abstrac-
tion mapping is homomorphic with respect to both the concrete functions
manipulating these data and their abstract counterparts. In other words,
the obligation to prove the homomorphism can be localized to these func-
tions, because they constitute the only difference between the concrete and
abstract system.

3. While working with the proposed method, we found that some basic induc-
tion rules suffice to break the problem of proving the temporal logic assump-
tions in the concrete system down to simple Hoare-triples, i.e., to proving
implications of the kind "if a precondition holds and one step of the reac-
tive program is executed then a certMn postcondition is guaranteed". These
ttoare-triples can readily be verified using a first order theorem prover.

We used our method to prove safety and liveness of a scheduler for the rea-
ders/writers problem which uses unbounded sets and queues. The implementa-
tion was described in an VHDL-like imperative language, and for the verification
we used the SVE [FSS+94] model checker and the first order theorem prover SE-
DUCT [SBN94]. In our example the theorem proving part required substantial
user interaction. However, we believe that mayor improvements could be made
here resulting in a much higher degree of automation. Our results suggest that
the proposed method can help to make formal verification more feasible in an
industrial environment.

The paper is organized as follows. Section 2 introduces the necessary theo-
retical background. A description of the readers/writers system and the used
data abstraction is given in Sections 3 and 4. Section 5 demonstrates the usage
of our method for the verification of essential safety and liveness properties. The

57

discharge of the assumptions is carried out in Section 6. [DF94] is the full version
of this paper containing complete program and proof listings.

2 B a c k g r o u n d

D e f i n i t i o n l . A transition system M is a tuple (•M,---rM,IM, PM,VM) where
~M is the set of states, ---~M the transition relation with -+M _C z~ M x ~'M,
1M C_ ~ M the set of initial states, PM the set of propositions and VM a labeling
function with V M : ~ M --+ 2 PM �9 []

A path ~r in M is an infinite sequence so, sl, �9 �9 such that 8i---rMSi+l for all i > 0.
If 7r is the path so, Sl , . . . , then 7ri denotes the state si and 7r i denotes the suffix

Def in i t lon2. Given some set P of atomic propositions and assuming p E P,
the set of LTL formulas is inductively defined as:

r ::= p l -,r r162 x(r I Cx u

Other formulas can be introduced as abbreviations in the usual way: r162
abbreviates -,(~r162 r162 abbreviates -,r162 true abbreviates pV-~p
and false abbreviates -,true. The temporal operator F(r abbreviates true O r
and G(r abbreviates -~F(-~r The satisfaction relation ~ of a LTL formula
with respect to a path 7r in the transition system M is inductively defined over
the structure of the formula:

(M, r) ~ p ifp E VM(rO)
(M, r) ~ -1r if not (M, 7r) ~ r
(M,Tr) ~r162 i f (M , r) ~ r a n d (M , r) ~ r
(M, r) ~ X(r if (M, r 1) ~ r
(M, Tr) ~ r U r i f 3 k : (M, rr k) ~ r i) ~ r for a l l 0 < i < k

If (M, r) ~ r then we say that M satisfies r along rr. If for all paths r in M with
7to E IM we have (M, 7r) ~ r then we say that M satisfies r written M ~ r []

The soundness of verification methods involving abstractions typically hinges
on the following property: Whenever the abstract system satisfies a formula, then
the concrete system Mso satisfies this formula. Since LTL (ACTL) formulas are
interpreted over all possible behaviours, it suffices to show that every behaviour
of the concrete system has a corresponding behaviour in the abstract system. Be-
cause checking language containment is hard (especially if one transition system
is infinite), we use the stronger notion of homomorphy instead.

Def ini t ion3. Let M, M' be two transition systems. A surjective function h :
2SM ---* SM, is homomorphic with respect to M and M', if

1. Vs E ZM : VM(S) = VM,(h(s)) and
2. ~/S, t e ~M : S-"+Mt implies h(s)--+M,h(t) and
3. Vs E IM : h(s) E IM, []

58

Note that homomorhpy implies a simulation relation, which is just "one half"
of Milner's bisimulation [MilS9].

T h e o r e m 4 . Let h be a homomorphic function with respect to two transition
systems M and M' and r an arbitrary LTL formula. Then

M' ~ r implies M ~ r

[3

The theorem can be proved by structural induction over the formula and is based
on the fact that homomorphy induces a simulation relation and thus ensures tha t
for every path in M a "corresponding" path in M ~ can be found.

Using our method the user defines an abstraction mapping h and constructs
an abstract system M ~. Verification of a property C under environment assump-
tions As for the concrete system M is based on the following theorem, which is
a direct consequence of Theorem 4.

T h e o r e m 5 . Let M and M j be two transition systems and let the environment
assumptions As , the assumptions on the abstract system AA, and the commit-
ment C be given as LTL formulas. If

1. M' ~ (AAAAE) --* C and
2. M ~ AA and
3. h is homomorphic with respect to M and M ~

then M ~ As---~C. []

Informally, if the abstract system satisfies the commitment assuming Aa and
AE, and the assumptions AA can be discharged in the concrete system, and the
abstract system simulates the concrete, then the concrete system also satisfies
the commitment assuming As. If the abstract system is finite state, the first
condition can be verified using model checking. Since the concrete system in
general is not finite state, the last two conditions have to be checked by means
of a theorem prover.

3 A r e a d e r / w r i t e r s y s t e m

We demonstrate our method with a scheduler, which is to synchronize read and
write access to a shared resource. The example was chosen for various reasons:
Firstly, it is small enough to enable us to easily evaluate the proposed method.
Secondly, queues are a common datatype, which are often used in communi-
cation protocols for buffering communication between processes. Although in
most practical cases the maximal number of the messages waiting in the queue
is bounded, this bound is often too large to Mlow for the application of mo-
del checking directly, especially when the number of different messages is large.
Thirdly, the scheduler problem is typical for the applications we have in mind,
because the interesting properties are mostly control-oriented.

The scheduler SCHED receives read and write requests from other processes
and grants the resource subject to the following conditions:

59

1. at most one process is writing.
2. reading and writing to the resource must be mutually exclusive.
3. every request will eventually be granted.

Conditions 1 and 2 are typical instances of safety properties whereas the last
condition is a liveness property.

The syntax and semantics of our imperative implementation language is very
close to VHDL. Note that we could have chosen any other imperative language.
The programs were translated automatically into symbolic representations of
transition systems [FPW92]. During our experiments we extended this translator
to support additional features (e.g., in-line definition of properties) which are not
s tandard in VHDL. All computation is assumed to be instantaneous except the
wa i t statement. Execution of a wai t makes changes in the input and output
variables visible. So, a VHDL program can be thought of as a transition system
in which a transition is given by the computation between two wa i t statements.

In the following the implementation is sketched. A complete listing can be
found in the appendix. The scheduler has two input (cmdIn, p roc In) and two
output (cmd0ut, p roc0u t) variables, cmdIn is the incoming command, p r o c I n
carries the id of the process issuing the current command. After the input has
been processed cmd0ut and p roc0u t are output, cmd0ut describes the response
of the system. If cmd0ut is an acknowledgement, p ro c0 u t is the id of the process
receiving the acknowledgement. Internally, the system has one process p with 5
local variables, wr and ww range over queues and contain the ids of processes cur-
rently waiting for read or write access respectively, aw and a r are sets containing
the ids of the processes currently reading or writing. The heart of the program is
an infinite loop which first processes the inputs and then computes the output .
More precisely, first, requests are enqueued and processes deactivated and then
one of the pending requests is chosen for acknowledgement.

A feature of our implementation language worth mentioning is the ability
to define the so-called property variables. These are program annotations for
verification purposes and sometimes also called probes or history, virtual, or
auxiliary variables. They can be thought of as boolean variables, which are set
to false at the beginning of each cycle and are only assigned to at certain, user-
determined points. For instance, the execution of the statement

property(aw~otEmptyAfterRemove := (aw ~ emptySet))
causes aw ~ emptySet to be evaluated. The result is assigned to the property
variable awNotEmptyAfterRemove. Property variables turned out to be necessary
for formulating assumptions on the abstract system. The VHDL implementation
corresponds to a transition system in the obvious way where a state is a the tuple
of the values of all variables and properties: [wr, ww, at, aw, PI, ..., Pn] where
the Pi denote the property variables used.

4 A b s t r a c t i o n s

Given the implementation of the scheduler we would like to prove its correctness
with respect to the afore mentioned safety and liveness conditions. We first have

60

to define da ta abstractions for each of the domains in the state space (here: set,
queue, pid). We star t by considering abstraction mappings for queues.

We cannot just map the empty queue to some abstract value emptyQueue and
a queue with at least one element to a different abstract value nonEmptyQueue,
because we lose control over whose requests are being acknowledged. Thus, this
abstract ion would not allow us to express the liveness property correctly. The
correct formulation of liveness requires us to focus on one particular process
with, say, id z and to stipulate that a request of a z-process is always eventually
acknowledged. This is expressed by the following formula r

G(startRead(x)--~ F(ackRead(x)))
This formula still allows for a x-process to starve other z-processes, but when
we assume that process ids are unique this situation cannot arise. To verify the
above specification, we could define a data abstraction on process ids, which
maps all ids different from z to some abstract id notz and is the identity on z,
and then check the formula in the resulting abstract system. Following this idea,
we introduce a symbolic constant c as a generic process id and define an abstrac-
tion which maps all ids different from c to the abstract id notc and maps c to c. It
remains to be shown that the corresponding abstract system SCHED'hc satisfies
the formula r This technique is called symbolic abstraction in [CGL92].
The behaviour of the scheduler obviously does not depend on the process ids.
The transit ion relation of the abstract system therefore is not parametr ic in c
and all the abstract systems SCHED'hx are isomorphic. Thus, if the scheduler
works correctly on x-processes, we can generalize and conclude tha t it hand-
les all processes correctly. We note that, similar to symbolic abstractions, the
applicability of our method does not rely on this special case.

To define the da ta abstractions, surjective mappings from concrete to ab-
stract domains and the abstract counterparts of the operations have to be given.
We star t with the mappings.

D e f i n i t i o n 6 . The abstraction mapping hc is defined by individual abstract ion
mappings for the components of the state space, which are also denoted by he.
For the da ta type queue the mapping is as follows: Let Q ' = {emptyQueue, onlyc,
fullnoc, fnllandc} be the set of the values for the abstracted queue and let Q
denote the domain of the data type queue. The abstraction mapping he : Q --* Q~
for the da ta type queue is defined as:

emptyQueue if q is the empty queue
onlyc if q is non-empty and contains only c-processes

he(q) = fullnoc if q is non-empty and contains no c-processes
fuIlandc if q is non-empty and contains c- and notc-processes

The abstract ion mapping on s e t is defined analogously. The da ta type p r o c I n I d T
is dealt with as follows: Let PID be the set of process ids. The set PID' =
{c, notc} is the set of abstract values. The abstraction mapping for the process
ids is given by:

c if pid = c
h~(pid) := notc otherwise r3

61

We want hc as defined above to be an homomorphism with respect to the
concrete operations insertQueue and removeQueue and the abstract operations
insertQueue t and removeQueue t. One way to ensure this, is to define the ab-
stract operations such that homomorphy of hc is guaranteed. Nondeterminism
introduced by the abstraction is modeled by nondeterministic operations, i.e.,
set-valued functions. More precisely, given an operation f , the abstraction hr
induces a homomorphic abstract operation f ' given by: f ' (x ') = {y~]3x, y :
he(z) = x' and f (x) = y and he(y) = Y~}. Note that we assume behaviours to
be infinite. Thus, all operations have to be total.

D e f i n i t i o n 7. Let Q' be the abstracted values of the queue. The abstract ope-

rator removeQueue' : Q' 2Q' is defined as:

removeQueue' (emptyQueue) = { emptyQueue, onlyc, fullnoc, fullandc }
removeQueue'(onlye) =- {onlyc, emptyQueue}
removeQueue' (fullnoc) = {fulinoc, emptyQueue }
removeQueue'(fullandc) = {fuUandc, fultnoc, onlyc}

The abstract operator insertQueue ~ and the abstract operations on sets, insertSet ~
and removeSet t, are defined analogously. []

In the above definition, the application of an abstract operation (remove Queue ~)
to some bogus input (emptyQueue) may return any value. Erroneous input could
also be dealt with more explicitly by introducing an error state. Unfortuna-
tely, such a formulation makes the theorem proving work much harder because,
roughly speaking, domains with explicit error states are not inductively genera-
ted anymore.

The two definitions above constitute the data abstractions and define the
abstract scheduler SCHED'hc.

P r o p o s i t i o n 8 . he is a homomorphic mapping from SCHED to SCHED'hr

The data abstractions for the abstract datatypes s e t and queue define two
"abstracted" abstract datatypes seV and queue ~. We obtain the implementation
of the abstract scheduler SCHED'ho by just importing s e t ~ and queue ~ instead
of s e t and queue. In other words, due to modularity and data abstraction (in
the program design sense) the change in the implementation can be localized
to the abstract datatypes. Thus, given the abstracted version of the abstract
datatypes we can easily generate a description of the abstract system and also
automatically generate transition systems to be used for model checking.

5 P r o o f o f S a f e t y a n d L i v e n e s s

It is described how safety and liveness of the abstract system SCHED'ho were
proven. Not surprisingly, liveness will turn out a lot harder to prove than safety.
Throughout this section the finite state machine input to the model checker is
the abstract scheduler SCHED'ho of Section 4.

62

5.1 Safety

The right formulation of the safety condition (condition 2 on page 6) is
Commitment: G(aw : emptySet V ar = emptySet)
When running the model checker with no assumptions and the above commit-
ment, a counterexample is output in which the environment issues an endWrit e (e)
without a previous write acknowledge. Such behaviours exhibiting meaningless
input are excluded by the following environment assumption.
Assumpt ion A1:

G((endReadCc) ~ (ar = onlyc) V (ar = fullandc)) A
(endWrite(c) --* (aw -- onlyc) V (aw -- fullandc)) A
(endRead(notc) --* (a r : fullnoc) V (ar : fullandc)) A
(endWrite(notc) (aw= f-tlnor V (aw= f-Ila.dc)))

This formula ensures that only currently active processes are able to release the
resource. Under this assumption SCHED'h~ satisfies the commitment.

5.2 Liveness for reading c-processes

Let the formula presented in Section 4 be the commitment for this subsection.
Commitment: G(startRead(c)---* F(ackRead(c)))
Running the model checker with assumption A1 and the above commitment we
find that SCHED'ho can perform counterexample C2 below. A counterexample
will be represented by an infinite sequence of pairs where the two components
denote the input and the corresponding output respectively, and the loop is
indicated using the Kleene star.

Counterexample C2: Assumption A2:
star tWrite(c) , ackWrite(c) G(ackWrite --+ X(F(endWrite)))
startRead(c), idle (none)
(i d l e (c) ,idle(none))*

Having sent a write acknowledgement, the system idles forever waiting for the
writing process to release the resource by issuing an endWrite command. Thus,
the resource is never released, preventing the read request from eventually being
acknowledged. We have to make sure that whenever the resource is granted for
writing that it is eventuMly released by the environment. This is a very typical
situation, where the liveness of one system component depends on the liveness
of its communication partners. Running the model checker with the conjunction
of Assumption A1 and A2 yields the following counterexample.

C o u n t e r e x a m p l e C3: Assumption A3:
startWrit e(c), ackWrit e(c) G(-~awNot Em ptyAfterRemove)
startRead(c), idle(none)
(endWrite(c),idle(none))*

In this sequence the command endWrite does not empty the set aw due to
the non-determinism in the removeSet' operation modeling the fact that aw
may have more than one element. However, the scheduler should only allow at
most one active writer in the first place. Thus, assuming that the scheduler
really does ensure this and that we only perform remove operations on non-
empty sets it is safe to assume that the set aw is always empty after a remove.

63

We use the property variable awNotEmptyAfterRemove to express this. This
property variable is true if and only if after a remove operation on the set aw the
resulting set is not empty. A3 is an assumption about the system itself and will
be discharged later with the theorem prover. Assuming that SCHED'ho satisfies

3 Ai=1 Ai the following trace disproves the commitment.
C o u n t e r e x a m p l e C4:
s t a r tNr i t e (c) , a ckNr i t e (c)
startRead(c),idle(none)
(startRead(notc),idle(none)
endNrite(c),ackRead(notc)
startWrite(c),idle(none)
endRead(notc),ackWrite(c))*

A s s u m p t i o n A4:
G(inserted(c,wr) A G(F(removed(wr)))

-~ F(removed(c,wr))
)

Here, the problem is that when wr = on lyc we can keep on inserting and re-
moving a note-process forever. In other words, the c-process waiting in wr is
always "overtaken" by a note-process. To remedy this we have to resort to a
simple fact which for a concrete queue could easily be proved by induction over
the number of its elements: Whenever there is a c-process waiting in queue , r
and we remove processes from that queue infinitely often, then the c-process will
eventually also be removed. The atomic propositions inserted(c,wr) and so on are
implemented as property variables indicating that an insert is performed. Under

t . 4

the assumption that SCHEDho sahsfies Ai=I Ai the model-checker outputs the
following counterexample.

C o u n t e r e x a m p l e Cs: A s s u m p t i o n As:
s ta r tWri te (c) ,ackWrite(c) G(ar # ernptySet --* F(endRead))
startRead(c), idle(none)
startRead(notc), idle(none)
endWrs ackRead(notc)
startWrite(c), idle(none)
(idle(c),idle(none))*

In this case it is again the environment which "misbehaves": A note-process is
granted the resource for reading, but never releases it, thus starving the wait ing
c-process. This can be ruled out by requiring that whenever there are active
readers, the environment will eventually issue an endRead. However, even under
the assumption ALl Ai SCHED'hr still does not satisfy lifeness:

C o u n t e r e x a m p l e C6:
s tar tWri te(c) ,ackWri te(c)
s ta r tRead(c) , id le (none)
s ta r tRead(notc) , id le (none)
endWrite(c),ackRead(notc)
s t a r tWr i t e (c) , id l e (none)
(endRead(notc) , id le(none))*

A s s u m p t i o n A6:
G(G('~inserted(ar)) A G(F(rernoved(ar)))

--* F(ar= ernptySet)
)

Counterexample C6 differs from C3 only in that a e-process is now being starved
in the queue for waiting readers. Again, the statement endRead(notc) in the
loop does not remove all note-processes the set a r due to the nondeterminism in
removeQueue'. In contrast to C3 more than one process can be reading. However,
we can resort to another simple fact about sets: If we perform an infinite number

64

of remove operations and no insert, then the set will eventually become empty.
6 SCHED'h~ finally does satisfy liveness and Now, under the assumption Ai=l Ai

the model checker terminates with "yes".

5.3 P r o o f of liveness for wr i t ing c-processes

We also have to prove that a write request of a c-process is eventually acknow-
ledged.
C o m m i t m e n t : G(startWrite(c) --~ F(ackWrite(c)))

6 This commitment fails under assumption Ai=l Ai because, analogous to coun-
terexample C4, a c-process can always be overtaken by a notc-process in ww.
It suffices to stipulate that whenever there is at least one c-process waiting for
writing and we keep activating then the waiting c-process will eventually also be
activated.
Assumpt lonAT: G(inserted(c,ww) A G(F(rernoved(ww))) --, F(removed(c,ww)))

Assuming that SCHED'h~ satisfies A~7=I A~ it also satisfies lifeness for writing
processes.

R esume

Using the above method, a simple and natural data abstraction was sufficient
to prove safety and liveness. Note that using the standard approach as proposed
in [CGL92, Lon93, GL93, Gra94] the above abstraction would not have allowed
for a successful proof. In an iterative process the counterexamples generated by
the model checker directly lead to the assumptions necessary for completion of
the proof. Without the debugging capabilities of the model checker it would have
been very difficult for a user to come up with the necessary assumptions and most
likely they would have been too strong. During this verification process we also
got a much deeper understanding of the program and the implicit assumptions
made about the environment which in itself can be a valuable result in industrial
applications.

6 D i s c h a r g i n g t h e a s s u m p t i o n s

Obviously, it is only the system assumptions (A3,A4,A6,AT) we can discharge
in the concrete system. The environment assumptions (A1,A2,As) would have
to be discharged with an environment using the scheduler. To discharge A1, for
example, we could show that the environment only releases the resource if it has
previously acquired it. Similarly for assumption A2 and As.

We start by proving that SCHED satisfies assumption A4. We will be able to
reuse the proof for assumptions A6 and AT to a very large extend.
Assumption A4: G(inserted(c,wr) A G(F(removecl(wr))) --, F(rernoved(c,wr)))

65

Proof. Let 7r = so, s z , . . , be a path in SCHED. Assume that in state si we have:

inserted(c,wr) A G(F(removed(wr))) (1)

We need to show that 7r i also satisfies F(removed(c,wr)). The idea is to introduce
a measure m~ denoting the number of processes in front of a process c currently
in the queue Q. From (1) we will conclude that m~ will be never incremented,
but infinitely often decremented, and so it must become zero after a finite number
of steps. To make this formal, we need some lemmas.

L e m m a 9. The following Hoare-triple is valid:
{m~ q ---0) removeQueue(Q) {removed(c,Q)}

This states that if no process is in front of a c-process and a removeQueue
operation is performed, the c-process is removed. The next l emma states tha t a
reraoveQueue operation decreases the number of processes in front of a c-process.

L e m m a 10. For all m, n >_ 1 the following Hoare-triple is valid:

We also need a l emma saying that m Q is preserved by all transitions not involving
removeQueue (q).

L e m m a 11. For all operations S except removeQueue(Q):
(m ~ = , } s (,n ~=n}

All of these lemmas were proven in a straightforward fashion using the first order
theorem prover SEDUCT [SBN94]. Using Lemma 10 and 11 we get the following
corollary.

C o r o l l a r y 12. mQc canot be increased, i.e., for all n >_ 1, there is no transition
S such that

{m~ = , } S (m~ > n}.

To complete the proof we introduce the following induction schema which is
provable by induction over m:

m e N A G(notup(rn)) A G(F(down(m)))
F(m = 0) (2)

where

notup(m) de f = (m > 1 A m = n) -~ X(m < n)

down(m) ~~ (m > 1 ^ m = n) -~ X(m < ~)

We apply the rule with the following instantiations:
d e f w r

1. m = m c
for 2. inserted(c,wr) ~-* me 6 N (immediate)

3. removed(wr) ~ down(mT) (Lemma 10)
4. G(notup(mT)) (Corollary 12)

66

The Hoare-triples proved above for single statements are combined to derive
the corresponding Hoare-triples for the whole part of the program between the
two wait statements. Using assumption (1), we can conclude that r i satisfies

~ 0 in [:(mWr = 0). In other words, there is a state sj on ~r i such that m c --
sj. Let sk be the first state after sj satisfying removed(wr) (which must exist
due to (1)). Using Lemma 11, sk must also satisfy m wr - 0. Thus, sk satisfies
removed(wr) A m~ r = 0. But then, using Lemma 9, removed(c.wr) also holds. �9

For assumption A7 we can employ the same reasoning except that the queue wr
in the above argument is replaced by the queue ww. For assumption As we have
to modify the above argument slightly for sets, where we use the cardinality as
a measure and lemmas analogous to Lemma 10 and 11.
AssumptionA6: G(G(~inserted(ar)) AG(F(rernoved(ar)))---.F(ar = ernptyQueue))

Proof. We apply rule (2) with the following instantiations:
de]

1. m = I ar I, i.e., the number of elements ofar.
2. l ar [E N (by definition)
3. removed(ar) ~ down(I ar I) (equivalent of Lemma 10)
4. -~inserted(ar) ~ notup(I ar [) (equivalent of Lemma 11)

and conclude that F(m = 0) and thus also F(ar = emptyQueue) hold along the
current path. �9

Assumption A3 unfortunately cannot be proved in the above fashion.
Assumption A3: G(-~awNotEm ptyAfterRemove)
This assumption is a statement about the entire program and how it affects the
set of active writers, aw, and not just about the implementation of the abstract
datatypes. This assumption follows directly from a prove of safety condition 1 (at
most one process is writing, i.e. lawl <_ 1). This invariant was proved by proving
the Hoare-triple {]aw I < 1} P {lawl < 1}. This invariant could have also be
proved using model checking with an abstraction which maps the elements of aw
to three values, empty, oneElement, manyElements.

7 C o n c l u s i o n a n d F u r t h e r W o r k

We have proposed a method which combines data abstraction with the use of
model checking and theorem proving to provide a formal framework for proving
arbitrary linear time temporal logic properties of infinite state reactive systems.
One of its essential features is that the mere possibility of proving a property
about an infinite state system does not depend on the "granularity of the abstrac-
tion", because the behaviour added by the abstraction can successively be ruled
out. This gives the user more freedom when choosing the abstraction: In contrast
to [CGL92] almost any abstraction can be used and the same abstraction can be
employed for different properties. However, with a very coarse abstraction the
necessary assumptions might be so strong that discharging them is just as hard
as proving the original property. Moreover, the method is also applicable when

6?

the property fails in the abstract system. In contrast to [CGL92] we do not have
to look for a different abstraction which does not interfere with the property.

For a very restricted class of so called "data-independent" programs Wol-
per [Wo186] showed how to map these programs and special classes of LTL spe-
cifications to finite data domains. In his approach a specification is valid in the
finite data domain if and only if it is valid in the original data domain. Our
method does not only handle these kinds of data abstractions but also a much
broader class of programs and abstractions, because of the possibility to intro-
duce assumptions.

It would obviously be of great value to extend automatic verification to in-
finite state systems as much as possible. Some kind of combination of model
checking and theorem proving seems very promising in this respect [Hun93].
However, it is not clear how the overall task should be split among these two
components and how they should interact. For all of these approaches the degree
of automation possible is a useful criterion to determine its practical applicability
and to predict its success.

We have sketched the architecture of a verification system, which, we believe,
could be automated to a large extend without sacrificing too much generality.
More specifically, it should be possible to automate the following phases: com-
putation of the abstract versions of the abstract data types involved in the ab-
straction; separation of the environment and the system assumptions; discharge
of simple assumptions. However, the synthesis of temporal logic formulae from
counterexamples and discharge of complex system assumptions might be impos-
sible to automate without heavy restrictions.

We have demonstrated the feasibility of our ideas with the complete case
study of a simple yet common problem.

F u r t h e r work

The theorem prover and its interface with the model checker leave a lot of room
for improvement. Firstly, there seems to be an unnecessarily large gap between
the implementation (here, the VHDL-like program and its temporal logic specifi-
cations) on the one hand and its logic representation (here, first order logic with
equality) on the other hand. Logical frameworks like LF or ELF [Pfe94] may
allow for the development and implementation of a logic in which programs and
temporal properties could be represented more uniformly. This logic could have
rules like the one presented in Section 6 built into its deductive engine. Secondly,
the task of discharging the system assumptions would be greatly facilitated if for
each abstract data type the theorem prover had access to a library of lemmas,
induction rules etc. describing that data type. Moreover, it would be illumina-
ting to apply the method to a larger practical example (e.g., a communication
protocol with data).

68

References

[BCM + 92]

[CE81]

[CES86]

[CGL92]

[DF94]

[FPW92]

[FSS + 94]

[GL93]

[Gra94]

[Hun93]

[Lon93]

[Mf189]
[Pfe94]

[QSS1]

[SBN94]

[Wo186]

J.R. Butch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 102~ states and beyond. Information and Computa-
tion, 98(2):142-170, 1992.
E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In Logic of programs: Workshop, Yorktown
Heights, NY, May 1981, volume LNCS 131. Springer Verlag, 1981.
E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Programming Languages and Systems, 1(2):244-263, 1986.
E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstrac-
tion. In Proceedings o] the 19th ACM Symposium on Principles of Program-
ming Languages, pages 343-354, New York, 1992. ACM Press.
J. Dingel and T. Filkorn. Model checking for infinite state systems using
data abstraction, assumption-commitment style reasoning and theorem pro-
ving. Technical Report ZFE BT SE 1-?, Siemens AG, Corporate Research
and Development, Munich, 1994. Draft.
T. Filkorn, M. Payer, and P. Warkentin. Symbolic verification of sequential
circuits synthesized with CALLAS. In D. Gajski, editor, Proc. 6th Inter-
national Workshop on High-Level Synthesis, pages 344-353, Laguna Nigel,
CA, U.S.A., November 1992. ACM/IEEE.
Th. Filkorn, tt.A. Schneider, A. Scholz, A. Strasser, and P. Warkentin. SVE
User's Guide. Technical Report ZFE BT SE 1-SVE-1, Siemens AG, Corpo-
rate Research and Development, Munich, 1994.
S. Graf and C. Loiseaux. A tool for symbolic program verification and ab-
straction. In Computer Aided Verification, 5th International Conference,
volume LNCS 697, pages 71-84. Springer Verlag, 1993.
S. Gr~f. Verification of a distributed cache memory by using abstrac-
tions. In Computer Aided Verification, 6th International Conference, vo-
lume LNCS 818, pages 207-219. Springer Verlag, 1994.
Hardi Hungar. Combining model checking and theorem proving to verify
parallel processes. In Computer Aided Verification, 5th International Con-
ference, volume LNCS 697, pages 154-165. Springer Verlag, 1993.
David Long. Model Checking, Abstraction, and Compositional Verification.
PhD thesis, Carnegie Mellon University, July 1993.
Robin Milner. Communication and Concurrency. Prentise Hall, 1989.
Frank Pfenning. Elf: A meta-language for deductive systems. In Proceedings
of CADEo12, volume LNAI 814, pages 811-815. Springer Verlag, 1994.
J. Quielle and J. Sifakis. Synthesis of synchronization skeletons for bran-
ching time temporal logic. In Proceedings o] the 5th International Sympo-
sium in Programming, volume LNCS 137. Springer Verlag, 1981.
Karl Stroetmann and Claus Bendix Nielsen, editors. A Guide to SEDUCT.
Siemens AG, Munich, Germany, 1994.
Pierre Wolper. Expressing interesting properties of programs in propositio-
nal temporal logic. In Proceedings o] Principles of Programming Languages
1986, pages 184-193, 1986.

69

A Implementation of SCHED
This section lists the implementation of our concrete scheduler. We assume that the file
SchedTypes.vhdl implements the abstract datatypes set and queue and thus correctly
defines the functions removeSet, insertSet, removeQueue, insertQueue, the predicates
isEmptyS and isEmptyQ and the constants emptySet and emptyQueue. Moreover, we
assume that the types cmdlnT, cmdOutT , proclnldT, procOutldT, and preferT are
defined as indicated, prefer is a variable indicating whether a reader or a writer has
jus t released the resource and thus allows for readers and writers being acknowledged
alternately.
:#include "SchedTypes.vhdl"
ENTITY rw IS PORT

c lk : IN bit;
cmdln : IN cmdlnT;
cmdOut : OUT cmdOutT;
procln : IN proclnldT;
procOut : OUT procOutldT);

END rw;
ARCHITECTURE be OF rw IS
BEGIN p: PROCESS

VARIABLE aw,ar : set;
VARIABLE ww,wr : queue;
VARIABLE prefer : preferT;
BEGIN

/ * cmdlnT = {startRead,startWrite,endRead,endWrite,idle} * /
/ * cmdOutT = {ackRead,ackWrlte,idle) * /

/2 process ids * /
/2 process ids including "none" * /

/ * preferT = {none,readers,writers} * /

ar :---- emptySet; aw := emptySet; wr := emptyQueue; ww :-- emptyQueue;
main/oop: LOOP

wait;
prefer := none; procOut := none;
IF (cmdln = startRead) THEN insertQueue(wr,procln);

ELSIF (cmdln = endRead) THEN
prefer := writers; removeSet(ar,procln);
ELSIF (cmdln = startWrite) THEN insertQueue(ww,procln);
ELSIF (cmdln = endWrlte) THEN

prefer : - readers; removeSet(aw,procOut);
property(awNotEmptyAfterRemove := (aw \ = emptySet));

END IF;
cmdOut := idle;
IF (prefer = readers) THEN

IF (isEmptyS(aw) A ~'sEmptyQ(wr)) THEN
removeQueue(wr,procOut); insertSet(ar,procOut); cmdOut := ackRead;

END IF;
END IF;
/ * activate writers, but only if no output has been determined yet * /
IF (cmdOut = idle A isEmptyS(ar) A isEmptyS(aw) A ~'sEmptyQ(ww)) THEN

removeQueue(ww,procOut); insertSet(aw,procOut); cmdOut := ackWrite;
END IF;
/~ activate readers, but only if no output has been determined yet * /
IF (cmdOut = idle A isEmptyS(aw) A isEmptyQ(ww) A ~sEmptyQ(wr)) THEN

removeQueue(wr,procOut); insertSet(ar,procOut); cmdOut := ackRead;
END IF;

END LOOP mainJoop;
END PROCESS;

END be;

/ * clock tick * /
/ * default output * /

/ * assume(procln in ar) * /

/ * assume(procln in aw) * /

/ * default output * /
/ * activate readers * /

