
Object Oriented Semantics Directed Compiler Generation:
A Prototype

Luiz Carlos Castro Guedes 1 Edward Hennann Haeusler 2 Jos6 Lucas Rangel 2

The tool presented here is a prototype of a compiler .generator centered on the denotational
description of the source language. It is based on an object oriented translation model. This model
maps the denotational definition of a programming language into an Object Oriented Programming
Language with separated hierarchies for specifications (types) and .implementations (classes). The
central idea in the model is the mapping from syntactic and semantic domains into types, and from
semantic functions into methods of those types. Semantic equations are mapped to the
implementation of some of those methods. Its correctness has already been proved and a system
prototype implemented. The entire translation process may be summarized by the following table:

Description Components
Semantic Domains

Examples
~5:D

Syntactic Domains A:Dom type Dora;

Semantic Functions

Semantic Equations

Syntactic Rules

E: Dom--, D1--~ ... --~ D s
D

~[[Rule]](81, 82 8~) = B

Rule: A = A 1 A 2 ... A m

Resul t ing Code
type tD; class cD;

type Dora is
tD ~ (tD 1 (51 tD s (Ss);

end;
tD ,~ (tD 1 (31 tD s (3s) B n end;

class Rule of Dom
variables :

Dora 1 ,5t; ... Dom m Am;
methods:

tD ,~ (tD 1 ~51 tD s (Ss) B n end;
end;

Table 1 - Translation Process Summary

The compiler generator has two major components: the Tree-Building-Parser Generator (TBPG) and
the Denotational Compiler Generator (DCG), see figure 1.

The TBPG was based upon the syntactic analysis ascent method R*S [1], which ignores single
production rules in a efficient way, producing smaller derivation trees and, thus, smaller abstract
syntax trees (AST).

The DCG reads the standard semantics of the desired compiler input language, L, and produces four
files with the declaration of classes and definition of methods produced for either the Syntactic
Domains and Semantic ones. Declarations of classes are at the C-style header files L.HSY and
L.HSE and definition of their methods at the files L.CSY and L.CSE, respectively, where the suffix
SY stands for syntactic constructions and SE for semantic ones.

Thus, a compiler (generated for a language L) works in three passes:
1. reading a program written in a language L and building its AST representation.
2. traversing the AST and producing its denotational representation.
3. compiling the denotational representation and linking it with semantic classes, producing an

executable representation of the input program
It is interesting to observe that semantic classes are involved not only at run time, but also at compile
time, since the methods of the syntactical classes (classes that correspond to syntactical domains)
must know which classes they are generating code for.

1Universldade Federal Fluminense
2Pontiffcia Universidade Cat61ica do Rio de Janeiro
e-marl: { guedes, hermann, rangel } @inf.puc-rio.br
addr: Pontiffcia Universidade Cat61ica do Rio de Janeiro, Depto. de Inform~itica, R. Marqurs de S. Vieente 225, RDC,
40 andar, G~vea, Rio de Janeiro, RJ, BRAZIL, CEP 22453-900

808

The DCG prototype (written itself in C++) generates C++ code for classes which represent the
denotations of the parts of the source program. Although it does not support separate hierarchies for
types and classes, specifications can be written as abstract super-classes. A class that implements a
type turns into a sub-class of the abstract class corresponding to the type. C++ seemed the best
choice because it is the most powerful language available nowadays capable of simulating separate
hierarchies and those functional features required by translation. Its high portability is another
outstanding point.

L.GRM L DSE

Prog.L - -

L H
L TAB

L"

j

Compiler Generator

Generated Compiler

L.HSE, L.CSE

L.HSY, L.HSE
L CSY, L.CS I:

Cornp,ler > Prog.AST' l Comp,ler J > Prog.OOP ~ Pro9 EXE

Figure I - Compiler Generation Process

Performance tests have shown our system outperforms similar systems [2,3,4,5] and that its
produced compilers are just one order of magnitude slower than hand written ones. The great
efficiency of the model is a promising step towards the automatic generation of production quality
compilers. Thus, a natural and elegant model to translate programming language descriptions into
realistic compilers with its correctness guaranteed has been obtained.

with range checking
Bubble Sort Prime Number

Turbo Pascal V5.5 7.65 s 6.65 s
Produced Compiler
Slow-down

without range checking
Bubble Sort Prime Number

1.65 s 3.65 s
29 s 49 s 37 s 49 s

4.84 7.37 17.57 13.42

Table 2 - Execution time on the Cx80486 DLC

Table 1 shows execution times for a bubble sort algorithm on a 1000 integers array and for finding
the 1000 t~ prime number on a Cx80486 DLC computer with 40MHz of clock.

References

1. Schneider, S.M., "Gram~iticas e Reconhecedores R*S(k)", D.Sc. Thesis, Universidade Federal do Rio de Janeiro,
Brazil, 1987.

2. Mosses, P.D., "SIS - SemanUc Implementation System", Technical Report Daimi MD-30, Computer Science
Department, Aarhus Umversity, 1979.

3. Moura, H.; Watt, D.; "Action Transformations in the ACTRESS Compiler Generator"; Compiler Construction -
5th International Conference CC94; Lecture Notes rn Computer Science; vol. 786; Springer-Verlag; pp:16-30;
1994

4. Orbaek, P.; "OASIS: An Optimismg Action-Based Compaler Generator"; Proceed. of the First International
Workshop on ACTION SEMANTICS; Edinburgh, Scotland; 1994; BRICS Notes Series NS-94-1; pp: 99-114.

5. Palsberg, J., "Provably Correct Compiler Generation", Ph.D. Thesis, Aarhus University, Denmark, 1992.

