
Can you Trust your Data?

Peter Orbmk

poeOdaimi, aau. dk

BRICS*

Abstract. A new program analysis is presented, and two compile time methods for this
analysis are given. The analysis attempts to answer the question: "Given some trustworthy
and some untrustworthy input, can we trust the value of a given variable after execution
of some code". The analyses are based on an abstract interpretation framework and a
constraint generation framework respectively. The analyses are proved safe with respect
to an instrumented semantics. We explicitly deal with a language with pointers and
possible aliasing problems. The constraint based analysis is related directly to the abstract
interpretation and therefore indirectly to the instrumented semantics.

1 Introduction

This paper discusses a static program analysis that can be used to check that the validity
of data is only promoted to higher levels of trust in a conscious and controlled fashion.
It is important to stress that the purpose of the analyses is not to improve run-time
performance, but to give warnings to the programmer whenever untrustworthy data are
being unduly trusted.
In the rest of the paper we try to motivate the need for a trust analysis. We give an
instrumented semantics for a simple first order language with pointers, in effect keeping
track of the trustworthiness of data at mn-time. Then an abstract interpretation is pre-
sented, approximating the analysis statically. Finally, in order to gain separate analysis of
separate program modules as well as better time complexity, a constraint based analysis
is presented. The constraint based analysis is proved to be a safe approximation of the
abstract interpretation.

2 Motivation

Many computer systems handle information of various levels of trustworthiness. Whereas
the contents of the company database can usually be trusted, the input gathered via a
modem, or from a part-time secretary may not be trusted as much, and data validation and
authentication routines must ensure the validity of data before it is promoted to a higher
level of trust and entered into the database.
That there is a need for some method to control the propagation of trust in real-life
computer programs is witnessed for example by the security hole recently found in the
Unix sendmail program [I]. Sendmail is the maU forwarding program running on
the majority of Unix machines on the Intemet The security hole allowed one to give
the program a certain devious input (in an e-mail message) that would result in having

* Basic Research in Computer Science,Dept. of Comp. Sci., University of Aarhus, Denmark,
Centre of the Danish National Research Foundation.

576

arbitrary commands executed on the machine with superuser privileges. Had an analysis
like the one described in this paper been run on the s e n d m a i l sources it is likely that
such a breach in security could have been noticed in advance. See below.
As an example of the kind of analysis envisioned, Perl [8] implements "taint" checks at
run-time to help ensure that untrustworthy values are not put in places (such as a process'
user-id) where only trusted data should go. This "tainting" is very closely related to the
instrumented semantics given below.
We aim at finding a static program analysis, i.e. an analysis run only once when a
program is compiled, such that the programmer is warned if and when data is promoted
from untrustworthy to trustworthy in an uncontrolled fashion. Clearly there will be a
need to promote data from untrusted to trusted, but with the envisioned analysis we can
guarantee that the promotion takes place in an explicit and conscious way.
In [3, 4] Denning and Denning present a flow analysis for what they call "secure in-
formation flow". Their analysis in a sense solves the dual of the problem attacked in
this paper. Their aim is to prevent privileged information from leaking out of a trusted
computer system, whereas "trust analysis" aims at preventing untrustworthy information
from entering into a trusted computer system.

2.1 The Sendmail example

Inside the s e n d m a i l C code there is a routine, d e l i v e r () , that delivers an e-mall
message to an address:

void deliver(MSG m, ADR a,

setuid (a. uid) ;

}

. . .) {

For some addresses, the uid field makes no sense and is uninitialized. In current sources,
the ADR structure contains a bit that should be set just when the u i d field is valid, and
this bit is tested in several places at run-time before the u i d field is used. The security
hole existed because the programmer had forgotten to insert enough of these checks and
consequently, under certain circumstances one was able to circumvent the checks and
gain superuser privileges.
With a trust analysis, a reasonable choice is to make the s e t u i d () system-call accept
only trusted values, as it sets the user-id of the current process. This forces a . u i d to
be a trusted value for compilation of d e l i v e r () to succeed. One would then have just
one place, namely in a validation procedure, where the value of an address' u i d field is
promoted to trusted.

ADR validate_address(ADR a) {

ADR al;

... some validation, fill in appropriate parts of al.

... we may now trust the contents of a.uid.

al.uid = trust(a.uid);

return al;

577

The trust analyzer will now be able to ensure the programmer that only trusted values
are passed to s e t u i d () . And all the run-time checks on the validity bit are no longer
needed as the trust checks are wholly static.

3 The While language

Since a large part of security conscious programs today are written in C, a stripped down
imperative C-like language with pointers is explored. The abstract syntax for the language
is defined by the following BNF:

/" : := variable n a m e s

P ::= deref P I I

E ::= P 1 E + E I ... I cons t I addr I I t rust E I distrust E

S : : = w h i l e E d o S l S ; S l P := E

Informally, I denotes identifiers, P denotes pointer expressions, E denotes arithmetic and
boolean expressions and S denotes statements. Initially the language included first order
procedures, but due to lack of space and since they can be added on in a straightforward
way they have been left out. How to do this is briefly discussed in Section 7.
We assume programs are strongly typed (i.e. like in Pascal), but leave out type declarations
such as int or bool as the only thing that matters for our purpose is whether a variable
contains a pointer or a scalar (non-pointer) value.
Doter dereferences pointers. If-statements can be emulated by while loops. This saves a
syntactic construct.
Notation: The following conventions are used for recta-syntactic variables: i ranges over
identifiers I ; e, el and e2 range over expressions E; p range over pointer expressions P
and s, s~ and s2 range over statements S.

4 Instrumented Semantics

In order to keep track the trustworthiness of values at run-time, we give an instrumented
semantics that associate each value with a flag telling whether the value can be trusted or
not. This is to be taken as the definition of the desired analysis.
Below are the definitions of the semantic domains. Addr is the set of possible addresses
in memory. The set of possible program values, Val, includes at least integers, booleans
and addresses. Environments (Env) map identifiers to addresses, Note that environments
are assumed to be injective.

By strong typing we can assume that trust _ is applied to scalar values only. This will be
important for the constraint generation analysis. Notation: The memory M [v/a] is as M
except that the address a is mapped to the value v, and similarly for environments.

7} = {• T}

Valx = Val x T r

Mere1 = Addr--+ Valr

Ez : E -* E n v -+ M e m l ~ ValI

Sx : S -~ E n v -* M e m r -* T r -+ M e m r

578

addri : P --, Env --, Memr --* Addr

Mt E M e m i

We equip the set Tr with a total ordering (<) such that • _< -[- in order to make it a
lattice. The least upper bound operation on this lattice will be denoted by V, which will
also be used to denote the lub of environments by point-wise extension. The idea is that
• corresponds to trusted data, and T corresponds to untrusted data. Notation: (.,.) forms
Cartesian products and 7r,, is the n'th projection, t ranges over Tr and v over Val.

CI i A M, = MI(A(i))

Cz [addr i]]A Mz = (A(i), .]-)

Ez I[deref p]] A Mz = let (v, t) = s177 p A/1//I in

(rr,(Mt(v)), t V r2(Mt(v)))

Ct lie1 + e2] A Mt = (Cx el A MI)-T-(s e2 A Mr)

& [t rust e] A Mt = (gz e A Mx, _t_)

Ez [[distrust eli A Mt = (& e A Mr, T)

Cz const A Mz = (const, •

(v~,t ,)- f-(v~,t~) = (v, + ,,=,t, v t~)

The last parameter to t~I is used in connection with while loops, the reason being that if
the condition in the loop cannot be trusted, then all variables assigned in the loop can no
longer be trusted as they may depend on the number of iterations taken.

addri i A Mt = A(i)

addrI I[deref p]] A Mr = r , (Mz(addr l p A M•

Sz [while e do s]] A Mz t = let (v, t ') = s e A Mx in

if v then

Ss l[while e do s]] A (St s A M t (t v t ')) t

else Mt

, S t ~ := e]] A M t t = l e t (v , t ') = & e A M z i n

Mt[(v, t V t') / (addrr p A 11,/i)]

St I[sl;s2]] A Mt t = S t s2 A (St st A Mt t) t

5 Abstract Interpretation

The instrumented semantics has the drawback that it propagates the trust of variables only
at run-time. Below is presented an abstract interpretation [2] of the language computing
an approximation to the trust tags and not the aetual values.
Since the actual values are not known during the abstract interpretation neither am the
addresses, hence environments and memories are collapsed into abstract environments
mapping identifiers directly to "trust signatures". Notation: 2 z denotes the set of subsets.
of I .

579

ValA = T r u 2 z

EnvA = I --+ ValA

s : E--* EnvA--* ValA

SA : S --* EnvA --~ Tr --* EnvA

addrA : P ~ EnVA --* 2 I

asg : VaIA --* EnvA ~ ValA ~ EnvA

M A E Memx

v E ValA

AA E EnvA

We extend the total ordering on Tr to a partial ordering on Vala such that
V v E VaIA: _ L < v < T a n d a , b E 21 :V. (a<_b ~ a C b) .

This makes VaIA a complete lattice, and for any finite collection of programs, finite as
well. v is used for least upper bound on this lattice too.
The idea is that _L corresponds to trusted scalars. A set of identifiers corresponds to a
trusted pointer that may point to any of the variables mentioned in the set. T corresponds
to untrusted values of any kind. Letting abstract environments map identifiers to sets of
identifiers, instead of keeping both information about the pointer and the data pointed
to in the abstract environment, is done to handle pointer aliasing. Notation: For brevity,
defineAA(T) = -]-,andfora C I let AA(a) = U{AA(i) [i E a}.

s i AA = AA(i)

CA I[addr i] AA = {i}

CA I[deref p~ AA ---- V AA(CA p AA)

CA ~el + ez~ AA = (CA el AA) V (CA ez AA)

CA [[trust eli Aa = 2.

EA ~distrust 4 AA = T

CA consl AA = .L

The auxiliary asg function monotonically assigns a new trust value to a set of identifiers in
an abstract environment, addrA p AA yields the set of variables that might be assigned
to when p is the left hand side of an assignment. Notation: dom(M) denotes the domain
of the map M.

asg t AA T = {(i ~ T) [i E dom(AA)}

asg t AA s = {(i ~ AA(i) V t) I i E s}

U{(i ~-* AA(i))] i E dom(AA) \ s}

addrA i AA = {i}

addrA I[deref p~ AA ---- V AA(addrA p AA)

580

SA [[while e do s~ AA t = let A'A = SA s AA (t V CA e AA)

in if A'A <_ AA then AA else 5A [[while e do s]] A~ t

SA ~ := el] AA t = asg (s e AA V t) AA (addrA p AA)

SA [[Sl; S2]] AA t = SA s2 (SA s, AA t) t

To relate the instrumented and abstract semantics an ordering between instrumented and
abstract values is defined relative to an environment:

A~- (v , t) E a

if and onty if a = _L =~ t = _l_ anda C I :=~ (t = .1_ and v E A(a)).
Informally, the first implication means that if the abstract semantics says that a value is
a trustworthy scalar then indeed it is marked trusted in the instrumented semantics. The
secondimplication means that if the abstract semantics thinks a value is a pointer to one of
the variables in a set a then by the instrumented semantics the value is indeed trustworthy
and is a pointer to one of the variables in the set a.

The relation is extended to relate combined instrumented memories and environments
with abstract environments like this:

M I o A E A A

ifandonlyifdom(MIoA) = dom(A, 0 andA ~- (MioA) (i) E AA(i)for allvariables i E
dom(AA)
We relate the abstract interpretation to the instrumented semantics in the following way:

Proposition 1 Safety. If a statement is executed in an environment A and a memory M1
by the instrumented semantics, and the abstract environment A A is a safe approximation
of A and Mx then the result of the abstract interpretation is a safe approximation of the
memory resulting from the instrumented semantics. Formally: If

S I s A M r t = M r, M x o A E A A , S A S A A t A ~- A' and t ~ t A

then M' o A f- A'.

Proof. See Appendix A.
The abstract interpretation terminates. It is clear that s terminates as it is defined
inductively in the (finite) structure of expressions, and no fixpoints are computed. The
only possibility for,SA to diverge would be in the while case where a fixpoint is computed,
but by Lemma 6 the fixpoint is computed of a monotone function over a lattice of finite
height, hence the fixpoint can be found in finite time by iteration.
If we let n denote the number of distinct variables used in a program, let l denote the
number of statements and expressions, and let ra denote the greatest depth of while-loop
nests in the program, the number of least upper bound operations on VaIA executed by
the abstract interpretation will be in O((n + l)2m). In the worst case, the least upper
bound operation on VaIA can be computed in O(n) time. This sounds worse than it really
is. For ordinary programs m will be a small constant, and the complexity of analyzing a
while-loop is at most O(n~) times the complexity of analyzing the loop body. Here nb is
the number of pointer variables occurring in the body of the loop.

581

If procedures are added to the language, fixpoints need to be computed for each procedure
call, hence the time complexity will be even worse in that case.
Apart from the time complexity, the main drawback of the abstract interpretation analysis
is that it needs the world to be closed; that is, the analysis cannot be mn for each program
module separately. In the next section a separable constraint based analysis is presented.

6 Constraint Generation

- Or else, what follows?
- Bloody constraint!...

William Shakespeare: Henry V, Act II, Scene 4.

The constraint generator is going to associate three constraint variables to each program
variable. A solution to the generated set of constraints will assign an appropriate trust
value for the program variable to one of these constraint variables.
The constraint analysis constructs constraints from any sequence of statements. This is
more general than simply allowing for separate analysis of individual functions, since any
sequence of statements can be (partly) analyzed out of context. This might for example
be useful with an advanced module system like the Beta fragment system [7].
For the purpose of this article, a program consists of a top fragment that includes zero
or more fragments which may again include smaller fragments and so on. The inclusion
ordering of the fragments form a directed acyclic graph (DAG), as a single fragment may
be included more than once, but we disallow circular dependencies.
Fragments are supposed to be analyzed in a bottom-up fashion, first analyzing the leaf
fragments that include no other fragments, then analyzing fragments that include only
leaf fragments and so on. In effect, the fragments am treated in reverse topological order.
The domains used in the definition of the constraint generation analysis am defined below:

V ::= I [V I I A I

5,)1 : V -+ V

N : P - + V

Ct = (V u Tr) x V

C = 2 ct

s : E - + C x V

S s : S - - + C x 2 v

G E V

V is the set of constraint variables. For an identifier i, Ai, and Vi are simply constraint
variables. The intuition is that whereas i will hold the trustworthiness of the value of the
program variable i, Ai will hold the trust of all the values reachable by dereferencing i
any number of times. Constraint variables Vi are used to hold the trust of addr terms.
G is a special constraint variable corresponding to the global trustworthiness of a memory.
That is, if a value is assigned to the target of an untrusted pointer then that value could
end up anywhere, and the trustworthiness of the entire memory is corrupted.
The pair (s, t) E Ct codes the constraint s < t. For readability we write { s _< t} for such
a constraint and {s = t} as an abbreviation for {s < t, t < s}. The generated constraints
will be of the form { variable or cons tan t < variable} over the two element lattice

582

{.1., T}, hence they can,be solved by simple constraint propagation in linear time. The
existence of a solution is guaranteed since assigning T to all constraint variables will
satisfy the generated constraints.
We assume that any set of constraints include the constraints {i < Ai} for all identifiers
i.
The function 8 on V "dereferences" constraint variables:

6 V i = i

* i = A i

A i ---- ,6i

The function ~t "safely" takes the address of a constraint variable.

rt V i = Vi

~ i = ~Ti

A i = Ai

The map N generates constraint variables from pointer expressions P:

N i = i

Nl[deref p]] = ~N(p)

s generates constraints for expressions together with the variable corresponding to the
given expression. In each case n denotes a freshly created constraint variable.

Es i = (0, i)

Csl[addr/11 = (0, Vi)

, f s [de re f vii = let (e, v) = ,~s p

in (e, By)

Es lie, + e2]] = let (c,, v~) = s el

in (cl u c2 u {vl _< n, v2 <_ n}, n)

Esl[trust e] = (0, n)

s el] = ({T _~ n}, n)

~ s c o n s t = (0 , -)

S s generates constraints for statements. The second part of the result is the set of constraint
variables corresponding to variables assigned to within the statement. This is used to
generate additional constraints for while-loops such that variables assigned to in the loop
body are trusted only if the condition of the loop is.

Ss [wh i l e e do s] = let (c~, v) = Es e

(cs, a) = S s s

in (c~ u ~ u (. _ < ~ I ~ ~}, ~)

583

Ss [[p : = e]] = l e t (c , , v) = ~ 's e

in (c~ U {v _< N(p), 8N(p) = 8v, tiN(p) < G}, {N(p)}}

S..5"l]'Sl;-.q2]] = let (c,, al} = S s s,

(c2, a=) = a s *=

in (cl u c2, al U a2)

A solution to the generated constraints (called a model) is a map m giving values to
the constraint variables such that the constraints c are fulfilled, this is written m ~ c.
Formally: m ~ c if and only if

v(, , t) ~ c : ~ (,) < ~(,) .

It is clear that if m ~ ci U C2 then m ~ cl and m ~ (::2.

We will consider only a subset of all possible models for a set of constraints, namely
so-called coherentmodels. A model m is coherent if it satisfies

re(a) < re(b) ~ m(6a) <_ rn(6b).

It is clear that the model that assigns T to all variables is a coherent model, hence the
existence of a coherent model is assured.
Coherent models and abstract environments can be related to each other in the following
way: We write AA E m if and only if

AA(i) = T ~ re(i) = T

and

a E AA(i) ~ m (A i) ---- re(a),

or, alternatively re(G) = T .
An intuitive view of the above is that in order for a model to be a safe approximation of
an abstract environment, it must assign conservative trust-values to all variables, and if
a pointer p can point to a number of variables then the constraint variable Ap must be
equated to the trust-values of all these variables.
The constraint generation analysis is related to the abstract interpretation by the following
safety statement:

Proposition 2. If

(c,v) = S s s,

m ~ c, and m is coherent

AA E_ m~

VJcEv : t<_m(x) ,

A'A = SA s AA t

then A'A g m.

584

Proof. See Appendix B.

The constraint generation analysis is strictly weaker than the abstract interpretation in the
sense that more variables are treated as untrusted, as is demonstrated by the following
example:

Program New constraint
p :=addrj { V j <_p, Ap=j}
p := addr i [{vi _< p, Ap = i}
i:= distrust 81{T < i}
k := deref p [{z~p-< k, ,Sk = Z~p}

Remember that the following constraint is implicitly assumed: {p _< Ap}. In the abstract
interpretation, only i will be marked untrusted at the end, whereas in the constraint analysis
the trust of i and j are linked by equality since p may point to both 2.

Generating the constraints for a program of size n takes O(n 2) time in the worst case
assuming that the addition of a single constraint can be done in constant time. The
constraints, being of such simple nature, may be solved by value propagation in linear
time in the number of constraints. All in all constraint generation and (partial) solving can
be done in quadratic time in the size of the program fragment.

7 Extens ions

By treating arrays as one logical variable, the analysis is able to handle arrays as well
as scalar data. This means that the analysis cannot know that some elements of an array
are trusted and some are not. Either all elements are trusted or none are. This tradeoff is
necessary for the abstract and constraint analyses since they are unable to compute actual
offsets in the array. This tradeoff in accuracy is the same as encountered in set-based
analysis [5].
Records or structs can be handled by treating each field of the record as a separate
variable.
Extending the language with first order procedures is simple enough. The abstract inter-
pretation will simply model the procedure calls directly and compute fixed points in case
of recursion. The constraint generation will first compute constraints for the body of a
procedure and for each call add constraints matching formal and actual parameters. By
copying the constraints generated for the body we can achieve a polyvariant analysis such
that a particular call of the procedure with an untrustworthy argument does not influence
other calls of that procedure.
A "check for trusted value" construct that will raise an error when an untrusted value is
given as parameter is easily added to the language, but makes the semantics larger and a
bit more complicated as it has to deal with abnormal termination. The relation between the
instrumented and abstract interpretation must state that if the instrumented semantics says
that a program will fail then the abstract interpretation will too. Extending the constraint
generation analysis with the "check" construct means that there will only be a model for
the generated constraints if all checks are met.

2 As remarked by one of the referees, it might be possible to detect some of these situations as p is
dead after the first assignment, so one might remove the constraints added in the first line from the
final constraints and thereby get a better solution. This effect might also be achieved by removing
assignments to dead variables before trust analysis.

585

Extending the analysis to languages with higher order functions while still catering for
pointers and mutable data seems to be more complicated and is left for future research.
The concept of trust can be extended to multiple levels of trust, so that instead of a
binary lattice of trust values, a lattice with longer chains was used. For the instrumented
semantics and the constraint generation, this is a straightforward generalization. For the
abstract interpretation, the abstract domain is changed such that all "very trusted" pointers
are below the "lesser trusted" pointers all of which are below -1-.

8 Conclusion

We have argued that the analysis of the trustworthiness of data is a useful program analysis
in security conscious settings, and we have given two static analyses for this purpose, one
based on abstract interpretation, and another constraint analysis that facilitates separate
analysis of program modules at the cost of slightly less accuracy.
The analyses have been proved safe with respect to an instrumented semantics that has
served as the definition of the goal of the analysis.
The main contribution of this paper is thought to be the introduction of the concept of
trust analysis, and the application of it to a language with pointers and mutable data
Currently, work is in progress together with Jens Palsberg to formulate trust analysis for
a higher order language with polymorphic functions in terms of a type inference system.
There am some similarities between binding-time analysis [6] and trust analysis in this
case, but there am also significant differences. Most notably, in binding-time analysis: if
an argument is used by a function that expects a dynamic argument, the argument itself
has to be marked dynamic, and the "dynamicness"propagates back through the argument.
Not so in trust analysis. There the argument can be "lifted" from trusted to untrusted in
that place without affecting other parts of the program.
A c k n o w l e d g m e n t s : The author wants to thank Jens Palsberg, Peter D. Mosses and
Neil D. Jones for reading earlier drafts of this paper and giving useful comments. Also
the anonymous referees provided useful feedback.

A Safety of Abstract Interpretation

F a c t 1 l f a < b and b E s C_ ValA then a <_ V s.

F a c t 2 l f A ~- v E a and a < b then A F- v E b.

Lemma3. I f M i o A E AA then A ~- s e A Mz E ,f A e AA.

Proof. By structural induction on e. We proceed with a case analysis:
- e = i: Show Z ~- Mz (A(i)) E_ AA(i) which follows from the definition of E.
- e = ~addr i]]: Show A I- (A(i) , _1_) E {i}, and clearly A(i) E A({i}).
- e = I[deref p]]: Let (v, t) = s p A Mz and a -- CA p AA, show:

A I- (r , (M r (v)) , t V r2(M~r(v))) E V AA(a) .

By induction, A t- (v, t) E a. By strong typing we can assume that v is indeed a
pointer and that either a -- T or a C I . In the first case the desired inequality holds

586

trivially. In the second case we know that v E A(a), and also that t = 1 . Assume
that v = A(ao), ao E a. As M I o A E AA, A ~- Mi(v) E AA(ao), and using Fact
1 and Fact 2 we get the result.

- e = [ej + e2]]: By induction,

A ~- ((v~, tl) = EI el a Mz) E ~A el AA = al,

A F ((vz, t2) = Ct ez A Mr) E ~A e2 AA :- az.

ShowA F (vl +v2, tt Vtz) E al Va2. f f oneo f {aha2} is T , the resultistrivial.
ff they am both _L, both tl and tz must be too.

- e = [t r u s t 4 : Show A F (g i e ' A Ms, .1_) E I . This follows directly from the
definition of E.

- e = [d is t rus t e']]: Trivial from the definitions.
- e = const: S h o w A F (consl, l) E l , whichistrivial .

L e m m a 4 . l f M z o A E A A then

A F (addrt p A Mz, .L) ff addra p AA

Proof By structural induction in p.

- p = i: Show A)- (A (i) , /) ___ {i} which follows directly from the definition of E-
- p = [deref p']]: ShowA t- (r l (Mx(addri p' A Mx)), _1_) E VAA(addrA P' AA).

By induction: A ~- (addri p~ A MI, .L) E addrA p' AA. ff addrA p' AA = T
the result is trivial. If addrA p~ AA = s C I then there is an identifier ao E s such
that A(a0) = addri p' A Mr. Thus A ~- Mi(A(ao)) E AA(ao) by the assumption
that Mx o A E AA, and via Fact 1 and 2 the result follows.

L e m m a 5. ~ A is monotone in its second argument:

AA < A'A ~ s e AA < CA e A~A.

Proof Trivial by structural induction in e.

L e m m a 6 . S A / s monotone in its second argument:

AA ~ A~A =~ SA S AA t < SA s A'A t

Proof By structural induction in s.

Proof o f Proposition I (Safety). We want to prove the following: If

Sz s A Mx t = M ~, MI o A E AA, SA a A A tA = A~a and t < tA

then M ' o A ff A~t.
The proof is by induction in the number of calls of Sz. We proceed by a case analysis of
the syntax of s:

587

- s = [[while e do s"fl: By Lemma 3, monotonicity of EA and Fact 2 we know that

A F Sz e A M I E_s e AA.
ff v is false (in the definition of SI) the result follows from monotonicity.

Otherwise, let (v , t ') = EI e A Mz, M " = S I s ' A MI (t V t') and A ~ =
$A s' AA (tA V EA e AA). By the above fact on e we can apply induction and get
M " o A E A~t.
Now we have M ' = S t I[while e do s']] A M " ' t and

XA = SA [[while e d 9 s'~ AA tA = SA [[while e do s'~ A~ tA.

By induction we get M ' o A E A~.
- s = [[p := e]]: Let (v, t') = $ I e A MI, VA = s e AA, a = addrt p A M1 and

aA = addrA p AA. We need to show:

M,[(v, t v t')/a] o A E asg (VA V tA) AA aa.

If aa : T then this follows directly from the definition ofasg. Otherwise by Lemma
4 we have A F (a, _k) E aA, hence there exists an ao E aA such that A(ao) = a. It
is enough to ensure the inequality at ao since this is the only point where the left hand
side is different from MI o A and asg is clearly monotone in the second argument
so by Fact 2 the inequality holds automatically everywhere else. Evaluating we get:

(asg (VA V tA) A t aA)(ao) = (VA V tA V aA(ao)).

and
(Mz[(v, t V t')/a] o A)(ao) = (v, t V t').

By Lemma 3 we know that A I- (v, r E V a . All that remains to show is: A I-
(v, t v t') F VA V tA V AA(aO) which follows from Fact 1.

- s = [[sl; s2]]: This case follows immediately by two applications of induction.

B S afe t y o f C o n s t r a i n t G e n e r a t i o n

I ~ m m a 7 Addresses. l f m is a coherentmodel, re(G) = I and AA E_ m then these
two implications hold:

a EaddrApAA C_I ~ r n (a) = m (N (p))

and
addra p AA = T ~ T = re(tiN(p)) < m(N(p)) .

Proof. By structural induction in p.
- p = i: addr A i AA = (i} and re(i) -= m(N(p)) = re(i).
- p = [deref p']:Notethatm(N(p')) < m(,N(p)).Firstassumea C addrA p AA =

V A A (a d d r A p' AA) C I. By induction, b e addrA p' AA @ m(b) =
m(N(p')). Since m is coherent, m(Sb) = m(SN(r = m(N(p)). Also, as
AA E_ m: m(Sb) = m(Ab) = re(a). Combining the equalities we get the desired
result.
Secondly, suppose V A A (a d d r A p' AA) = T. Either addr A p' AA = T
in which c a s e induction yields T = m(N(p ')) < m(SN(p ')) = m(N(p)) , or
there is some bo E addrA p' AA such that AA(bo) = T . Since m is a safe
approximation of AA this means m(bo) = T. By induction re(b) = m(N(p ')) for
all b C addrA p' AA so we get T = m(bo) = m(N (p')) < m(N (p)) whichis the
required result.

588

[, emma 8 Expressions. The constraints generated for expressions safely approximate
the abstract interpretation o f expressions.
Suppose (c, v) = # s e, m is a coherent model of c, A A E m and a = # A e A A then the
following implications hold:

a = T ~ m (v) = T

and

ao E a C_I =r m (a o) = m (6 v) .

Proof. By structural induction in e.

- e = i: CA i AA = AA(i) and (e, v) = (0, i) by definition. If AA(i) = T then
re(i) = re(v) = T as AA E_ m. f f ao E AA(i) then m(Ai) = m(6i) = m(ao) by
the same reason.

- e = [a d d r i]]: (e, v) = (0, V i) and a = {i}. What is required to prove thus is

m(ao) = rn(6v) = rn(i) for a0 E {i} which is clear.

- e = [de re f p]]: (c, vp) = Ca p, v = 6vp anda = VAA(CA p AA).
If a = T then either CA p A a = T and by induction T = m(vp) <_ m(~vp) =
re(v), or s P AA C I in which case there is some ao E EA p AA such that

Aa(ao) = T. As AA _ m this means that m(ao) = T. By induction T =
re(a0) = m(~, ,p) = m(, ,) .
If ao E a C I then we must show m(ao) = rn(6v). By induction m(a~) = m(6vp)
for all a~ C ~A P AA C I. ao = AA(a~) for some such a~ thus since AA E rn,
rn(Aa'o) = m(ao) and since rn is coherent:

m(a~o) = m(#vv) = m(v) ::~ m(ao) = m(6a~o) = m(6v).

- e = [e l + e 2] : L e t (e,, vl) = ~'s el and (c2, v2) = s e2.Wehave c = clUe2U{vl <_
v, v2 _< v} and by induction the implications hold for the two subexpressions.
Suppose a = T : This means that CA e~ AA = T for some j E {1 ,2} and by
induction this means that rn(v~) = T and by definition of c we get re(v) = T .
By strong typing, the abstract value for the expression must be either T or _L so this
concludes the case.

- e = [t r u s t e']]: We have a = _L so the implications hold vacuously.

- e = [d i s t ru s t e '] : We have a = T and c = { T < v} hence rn(v) -- T as required.

- e = const: We have a = .L so the implications hold vacuously.

Proof o f Proposition 2. We want to prove the following: If

(c, v) = S s s, (1)
m ~ c, and m is coherent (2)

AA E m, (3)

V z E v : t < m (x) , (4)

A'a = SA 8 AA t (5)

then A ~ _ m.
We proceed by induction in the number of calls to SA. If re(G) = T then the final
inequality holds regardless of A ~ , so assume re(G) = _L. A case analysis follows:

589

- s = [[while e do s'•: Let (c,, v,) = Es e and (c,, v,) = Ss s'. By definition of c:
x E v~ ~ m(v ,) < re(x) and by Lemma 8 EA e AA = T ~ re(v,) = T thus
by (4) Vx E vs : t V CA e AA < re(x). We can now apply induction on s t and
get A~t = SA s' AA (t V CA e AA) E m . If this is the same as AA we are done.
Otherwise we apply induction once more and get the result.

- s = ~ := el: If addr A p AA = T then by Lemma 7, T = m(yN(p)) < re(G)
so in that case A~t E m by definition of E.
Now suppose ao E a = addrA p AA C I. AtA differs from AA only on the set a
by definition of asg. Let (c,, v,) = Cs e and a~ = s e AA.
If A~a(ao) = t V Aa(ao) V ae ---- -[" we must show m(ao) = T. By (4) t <
m(N(p)) ---- ra(ao) where that last equality comes from Lemma 7. By (3) AA(ao) =
T ~ m(ao) = T. By Lemma 8 a , = T ~ rn(v~) = T, and by definition of c,
rn(v,) < re(v) = ra(N(p)) = m(ao), using Lemma 7 last. For a'A(ao) to be T at
least one of the parts of the above disjunction must be -1- (by definition of the VaIA
lattice) and by the inequalities, m(ao) = T in all cases.
If A'A(ao) = t V AA(ao) V ae C_ I then we must show that a ' E A~A(ao)
m(Aao) = rn(a'), a' cannot belongto t as t E Tr. If a' E AA(ao) then (3) secures
the result. Otherwise, if a ' E a , then by Lemma 8 m(a') = m(Sv,) = rn(SN(p))
where the last equality stems from the definition of c. By Lemma 7 and coherence
m(SN(p)) = m(Sao) = m(Aao).

- s = [[s,; s2]]: Let A~ = SA 81 AA t and (ct, vl) = Ss st. Now ct C c and v, C v
by definition of Ss , so by induction we get A~ _E m. With this and equivalent
considerations as above we can apply induction to A~ and s2 and get A~ E_ m as
required.

References

1. CERT Advisory 94:12 Sendmail Vulnerability. Technical report, CERT, 1994. URL:
ftp :l/ftp.cert.orgL

2. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Conference
Proceedings of the Fourth A CM Symposium on Principles of Programming Languages,
pages 238-252, Los Angeles, January 1977.

3. D. E. Denning. A Lattice Model of Secure Information Flow. Communications of the
ACM, 19(5):236-242, May 1976.

4. D. E. Denning and P. J. Denning. Certifications of Programs for Secure Information
Flow. Communications of the A CM, 20(7):504-512, July 1977.

5. N. Heintze. Set-Based Analysis of ML Programs. Technical Re-
port CMU-CS-93-193, CMU School of Computer Science, 1993. URL:
ftp://reports.adm.cs.cmu.edu/usr/anon/1993/CMU-CS-93 - 193.ps.

6. E Henglein and C. Mossin. Polymorphic Binding-Time Analysis. In D. Sannella,
editor, Proceedings of the 1994 European Symposium on Programming (ESOP'94),
volume 788 of LNCS, pages 287-301. Springer-Vedag, April 1994.

7. J. L. Knudsen, M. L0fgren, O. L. Madsen, and B. Magnusson. Object Oriented En-
vironments: The Mjr Approach. Prentice-Hall, 1993. ISBN 0-13-009291-6.

8. L. Wall and R. L. Schwartz. Programming Perl. O'Reilly and Associates, 1991.

