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A b s t r a c t .  Statecharts are state-transition machines endowed with hi- 
erarchy on states and parallelism on transitions. It is shown that a stat- 
echart is described by a pair of relations over transitions (a transition 
structure), the former describing causality and the other describing a 
notion of asymmetric independence. A statechart can be effectively con- 
structed from its transition structure. Transition structures correspond- 
ing to a subclass of Statecharts are characterized. Natural notions of 
morphisms among transition structures allow to define classes of state- 
chart transformations which preserve behaviour. 

1 Introduct ion 

Statecharts  (see [2]) is a graphical specification formalism which enriches state- 
transit ion diagrams with a hierarchical structure (i.e., tree-like) on states and 
with graphical conventions for explicitly representing parallelism and commu- 
nication among parallel components.  In recent years, a great effort has been 
devoted to semantics of Statecharts (e.g., [3, 4, 1, 7, 5, 8]). A minor at tention 
has been paied to the investigation of equivalence notions and to the related is- 
sues of behaviour preserving transformations and '% priori" correct development 
of specifications. This paper  gives a contribution in this sense. 

The classical representation of Statecharts emphasizes the structure of the 
specification (it is a graphical structured formalism), but, if behaviour proper- 
ties are the main  concern, structure might be an useless "complication. For this 
reason we provide a basic representation of a statechart  in terms of its set of 
transitions, a relation of causality and a relation of asymmetr ic  independence 
on transitions (a transition structure). We show that  a transition structure is 
sufficient to describe a statechart  and that  states, hierarchy on states and rep- 
resentation of parallelism can be derived from the transition structure. In par- 
ticular, we provide a recursive algorithm which associates, with the transit ion 
structure of a statechart  Z, a statechart  Z ~ having the same transition struc- 
ture. In general, the statechart  Z ~ is not isomorphic to Z, since it has minimal  
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structure on states. The proposed algorithm is useful for removing redundances 
in the graphical representation of a statechart. We also characterize transition 
structures corresponding to "well structured statecharts" -a widely adopted re- 
striction of statecharts (e.g., see [8])- and we call them good structures. Good 
structures are dual with respect to well structured statecharts and it is possible 
to shift effortless from one formalism to the other. 

Since transition structures are simple objects which emphasize behavioural 
properties of a statecharts, they are a proper representation for studying transfor- 
mations. We investigate statechart transformations by investigating morphisms 
of transition structures which preserve behaviour. Implicitly, each notion of mor- 
phism defines a class of transformation of statecharts, in the sense that  if there 
is a morphism from the transition structure of a statechart Z to that  of Z', then 
Z can be transformed into Z' .  We provide two different notions of morphism 
which support two meaningful classes of structural transformations: transforma- 
tions which allow (in some cases) to reshape a statechart into a well structured 
statechart  and a form of top-down refinement. 

For the sake of simplicity, we consider statecharts in a version where many 
communication features are simplified (e.g., we do not consider shared variables 
and negative events). However, since our main concern is not communication, 
we stress that  the results of this paper does not depend on restricting commu- 
nication. The semantics we enforce slightly modifies the original one (see [3]). 

In section 2 Statecharts, transition structures and semantics are defined. In 
section 3 the technique for reconstructing a statechart from its transition struc- 
ture is described and it is proved correct. In section 4 transition structures cor- 
responding to well structured statecharts are characterized. In section 5 notions 
of behaviour preserving morphisms of transition structures are defined. 

2 S t a t e c h a r t s  

The graphical convention is that  states are depicted as boxes, and the box of a 
substate of a state b is drawn inside the area of the box of b. States are either 
of type OR, called or-states, or of type AND, called and-states. And-states are 
depicted as boxes whose area is partit ioned by dashed lines. Each element of the 
part i t ion is the root state of a statechart describing a parallel component of the 
and-state. When an or-state is entered, also one and only one of its immediate 
substates is. When an and-state is entered, all of its immediate substates are. 
Each non basic or-state has a privileged immediate substate: the default substate 
(graphically, it is the target of a dangling arc). For instance, in Fig.l ,  L is an and- 
state whose parallel components are K and J.  State B is the default substate of 
A. Transitions are represented graphically by arrows and are labelled by a pair of 
sets of events, one representing a "triggering", the other an "action". Events are 
interpreted as pure signals communicated by the environment. A transition is 
enabled if the set of events of the triggering are currently communicated. When 
a transition t is performed, the set of events in the action of t are instantaneously 
communicated, so augmenting the set of events offered by the environment /As 
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Fig.  1. A statechart. 

an example ,  if  t rans i t ion  a in Fig.1 is labelled by a pair  ({a,/~},  {7}), then  a is 
enabled  when events  a and/3  are communica ted .  W h e n  t rans i t ion  a is per formed,  
event  7 is ins tan taneous ly  communica ted .  

D e f i n i t i o n  1. A statechart Z is a 8-tuple ( B, p, r T, in, out, P, X, 6), where: 

- B is the n o n e m p t y  finite set of  states; 
- p : B --~ 2 B is the hierarchyfunctwn which gives, for each state,  the ' se t  of  its 

i m m e d i a t e  substates ;  for s E B, p*(s) denotes the least set S _C B such t h a t  
s E S and p(s') E S for all s '  E S, and p+(s) denotes the set p*(s) - {s}; 
p describes a tree-like s t ructure ,  namely:  

1. there exists a unique s E B s.t. p*(s) = B, denoted as rootz; 
2. s ~ p+(s), for all s C B; 
3. if s' ~ p+(s), s ~ p+(s'), then p*(s) M p*(s') • 0 implies  s = s ' ,  for all 

s ,s '  E B. 
Given  two s ta tes  b and b ~, the lowest common ancestor of b and b ~, denoted 
as s  b'), is the s ta te  b E B such tha t  p*(b) __~ {b, b'} and,  b E p*(b"), for 
each b" wi th  p*(b") D_ {b, b'}; 

- r : B --~ { A N D ,  OR}  is the state type function; 
- T is a finite set of  transitions; 
- in : T --~ B is the funct ion which gives the target state of a t ransi t ion;  
- out : T --+ B is the funct ion which gives the source state of a t ransi t ion;  

funct ions  in and out are such t ha t  r 1 6 3  = OR, 2 in(t) ~ p*(out(t)) and 
out(t) ~ p*(in(t)), for all t C T; 

- P is the finite set of  events; 
- X : T ---+ 2 P • 2 g is the  transition labelling function; Ev(t)  and Act(t) denote  

the first and the second componen t  of  :~(t), respectively;  
- 5 : B ---* B is the (par t ia l )  default function giving, for a non basic or-s ta te ,  

the  default  subs ta te ,  i.e., 6(b) C p(b), for all r = O R  s.t. p(b) ~ O. 

E(t) is a short writing for E(in(t), out(t)). 
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In the following, we shall write Bz intending the set of states of s tatechart  Z 
(and analogously for all the other statechart  components).  We shall write s  to 
stress tha t  relation s is over Z and we omit  the index when the context is clear 
(and analogously for all the other relations we shall define). 

When a state b is entered a subset of its substates is entered consistently 
with the requirement that  if an and-state (resp.: an or-state) is entered, then all 
of its (resp.: exactly one) immediate  substates are entered. In particular,  one of 
these sets of states is the one induced by the default function (i.e., the chosen 
immedia te  substate of an or-state is its default substate),  called default closure 
of b. As an example,  the default closure of state L is the set {L, K, J, G, H}. 

For K C_ Bz,  the default closure of K, denoted as g z  K,  is the least superset 
of K such tha t  

1. pz(d) C_ J~z K, for each and-state d E ~z  K,  
2. 6z(d) E ~.z K, for each or-state d E ~z  g such that  pz(d) M K = O. 

When the target  s tate b of a transition is entered, states in the default closure 
of b are entered. When an and-component  of an and-state is entered, states in 
the default closure of all the other components are entered. As an example,  when 
transit ion a is performed the set of entered states is {L, K, F, J, H}. In general, 
when a transit ion t is performed, the set of entered states is given by the default 
closure of the set of substates of s which are ancestors of in(t). 

On the transition set we define a sequentiality relation. A transition t ~ follows 
t if the source state of t ~ belongs to the set of states entered by performing t. 
Actually, we enrich the set of transitions T by a transition imp representing the 
"start  up" of the statechart  activities. We can assume tha t  imp is a transit ion 
without  source and leading to the root. The set of states entered by imp is the 
downward closure of the root of the statechart.  

D e f i n i t i o n 2 .  Let ~mp be a symbol not in Tz, called znit~al transition, and let 
T} denote Tz U {imp}. Sequentiality relation is --+zC T} x Tz, with 

* b t ~ t --*z t '  iff outz(t 1) E ~z {b: b E p+(Z(t)), inz(t) E Pz( )}, for t, E Tz 

and imp ~ z  t i f f  outz(t) E gz {rootz}. 

I f t  E Tz, then t --*z denotes the set {t ~ E Tz :t ~ z  tl}. 

With reference to Fig.I,  imp--* = e--* = {h, a}, a ~ = {c, b}, c ~ = 0, d-* = {f, e}, 
b-+ d, f --* g, g ---~ f and h --* b. 

On the transition set we define a concurrency relation. Two transit ion are 
concurrent if both  of their source states can be simultaneously entered. If  t and 
t ~ are concurrent, then they may be enabled simultaneously (it does not imply 
tha t  they can be performed simultaneously). 

D e f i n i t i o n 3 .  Concurrency relation is the symmetr ic  relation IizC Tz x Tz, 
with t' Ilz t" and t" llz t' iff one of the two following constraints is satisfied: 
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1. there is a transition t such that  t ---*z t ~, t -'-*z tl  ---*z . . .  ---+z t,~ --+z t ~' and 
s163 out(t')) = outz(t'), for all t / w i t h  1 < i < m; 

2. there is a transition t such that  t ---*z t l  ---*z . . .  --+z t,~ "--+z t ~ and 
t --+z hi ~ z  .. .  -'+z hn --+z t", with ti and hj transitions such that  
l :z(s163 s163 out(t")) and l :z(s  out(t')) are and- 
states, for a l l l < i < m a n d  l < j _ < n .  

With  ref. to Fig.l ,  a II h, b I1 c, d N c, f IIe and g IIe and the symmetr ic  cases. 
A transit ion t ~ is ~ndependent w.r.t a transition t i f t  and t ~ are concurrent and 

the performance of t does not disable the performance of t '  (i.e., the performance 
of t does not cause exiting the source state of f ) .  

D e f i n i t i o n 4 .  Independence relation is l>z C_ Tz x Tz with t t>z t '  iff 

either s163  outz(t')) = outz(t') 

or s163  outz(t')) is an and-state and t Nz t ' .  

Wi th  reference to Fig.l ,  b t> c, c t> b, c t> d, f t> e, g 1> e, and d ~ c, e ~/. f and 
e ~ g (the relation t> is not symmetric) .  If  t t> t ~ and not t ~ t> t, then t ~ can be 
seen as being an interrupt for t. If  t I> t ~ and t ~ t> r (we write shortly t o t  t and we 
say tha t  t and t ~ are parallel), then t and t ~ can be performed, if enabled, in any 
order as well as in parallel. With reference to Fig.l ,  transition e is an interrupt 
for f and g, and d is an interrupt for c. Transitions c and b are parallel. 

The transition structure of Z is the quadruple 

We shall introduce now a slight variant of the s tandard semantics of Statecharts  
(see [3]). At each instant of t ime (a discrete t ime domain is enforced, for instance 
natural  numbers IN) the environment prompts  a statechart  with a set of events. 
So, we assume to have a function Env : IN ---+ 2 p describing environment.  At 
a fixed instant of t ime n, a statechart  configuration is characterized by the set 
of states which are currently entered and by the set of events communicated 
at tha t  t ime. A statechart  reacts by simultaneously performing a number  of 
transitions (i.e., a microstep) enabled by events Env(n)..The effect is that  the 
set of currently entered states is changed and the set Env(n) is augmented by 
adding events in the action par t  of the performed transitions. As a consequence, 
a larger set of transitions might be enabled at t ime n (than that  enabled by 
Env(n)) and a chain reaction might occur (i.e., a sequence of microsteps). Events 
can be sensed only at the instant of t ime they have been communicated (i.e., 
they are instantaneous),  and only sets of parallel transitions can be performed 
instantaneously. Thus, the sequence of microsteps triggered by Env(n) is finite. 
In our definition, a configuration consists of a set D of transitions and a function 
describing the environment.  Transitions belonging to D are those having source 
s tate  in the set of currently entered set of states. Semantics is defined only by 
exploiting the transit ion structure of a statechart  without any direct reference 
to the notion of state and hierarchy on states. 
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D e f i n i t i o n 5 .  A configuration is a pair C = (D, Env),  where D C_ Tz  and 
Env  : iN --+ 2 Pz is the environment function; C is initial iff D = imp --*z . 
A transition t is enabled at time r E iN in C iff t E D and Ev(t)  C_ Env(T).  
A set L~ C Tz of transitions is a microstep at time r from C iff each transition 
in L~ is enabled at t ime 7 in C and t o t  ~, for any t , t  ~ E ~ with t r t ~. 
For a microstep L~ at t ime v from C, the configuration reached from C by L~ is 
( D 1, Env') ,  with: 

D' = {t E D :t ~ ~> t, for a l l t ' E L ~ } u U t e ~  t ~  

E n v ' ( n ) =  { Env(r )  u U e e ~  f o r n ~ r  
Env(n)  for n v. 

A sequence (possibly null) $ = ~0.~1 . . .  g r  of pairwise disjoint transition sets 
such that  ti I> t j ,  for each ti E ~i and tj E L~j with 0 _ i < j _< n, is a step at 
time ~- from a configuration C to a configuration C ~ iff there exists a sequence 
C 0 . . . C ~ + I  of configurations such that Co = C, Cn+I = C ~, C~+1 is reached 
fron'l Ci by microstep ~i at t ime r ,  for 0 < i < n. Step S is maximal iff S . ~  is 
not a step, for each non-empty microstep L~ from C .  
A sequence S0 . . .Sn ,  where Si is a sequence (possibly null) of transition sets, 
for 0 < i < n, is a behaviour from an initial configuration C iff there exists a 
sequence of configurations Co...C,~+1, with Co = C and Si is a maximal step 
at t ime i from Ci to Ci+l, for all 0 < i < n. 

In the standard semantics (see [3]) a step is a sequence ~0.L~l...L~n of pairwise 
disjoint transition sets such that  ti <> tj ,  for each ti E L~i and tj E Lhj with 
0 < i < j < n. With reference to Fig.l ,  if the transitions f and e (resp.: c and d) 
are both enabled, then they can be performed in the same step provided that  f 
is performed before e (resp.: b is performed before d). In the classical semantics 
they cannot be performed in the same step and the choice between them is 
non-deterministic. As shown in [6], the advantages (with respect to the standard 
semantics) are that  (high-level) transitions can be interpreted as interrupts and 
that  some natural refinement techniques are supported. 

3 S t a t e c h a r t s  f r o m  T r a n s i t i o n  S t r u c t u r e s  

In this section we show that a transition structure completely describes a stat- 
echart. We present a recursive algorithm which associates, with the transition 
structure of a statechart Z, a stateehart Z ~ having the same transition struc- 
ture of Z. Actually, the algorithm is given for a slight restriction of the class of 
Statecharts, namely, for Statecharts all of whose states are downward reachable. 
A state b E B z  is downward reachable iff there exists a transition t such that  
b E~ {in(t)}.  But in few pathological cases, a statechart can be transformed 
into a statechart with downward reachable states. In order to give a recursive 
definition of the algorithm, we have to ext-,:," : ,. ,o t ion  of Statecharts given 
in Def.1, thus allowing Statecharts possibi) ' ' .  ' o  o,ansitions either without 
source or without target state (dangling transitions). In particular, each state b 
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in a statechart  Z induces an (incomplete) statechart whose set of states is p*(b) 
and whose set of transitions is 

{t C Tg : inz( t )  E p*~(b) or outz( t)  E p~(b)} U {t E Tz : b C J)z { inz ( t ) }} .  

The other components are the obvious restrictions of the corresponding com- 
ponents of Z. 

As concerns the transition structure ~2 - (Tn, --+n, t>n, Xn) of an incomplete 
statechart  Z, we need to distinguish dangling transitions from the others. In 
particular, we are interested in the following subsets of Tn: 

1. h 'n  C Tn is the set of non dangling transitions; 
2. On _ Tn is the set of transitions without target; 
3. Wn C On is the set of transitions whose source is the root; 
4. In C_ Tn is the set of transitions without source; 
5. Un C In is the set of transitions not having a substate of the root as target. 

Note that  T~ = In U K n  U On.  Note, also, that if Z is a complete statechart  
(i.e., as in Def. 1), then the initial transition imp can be regarded as an incomplete 
transition leading to the root of Z, and so, our convention is that,  for (2 = T S ( Z ) ,  
K n  = Tz ,  In = Un = {imp},  and On = Wn = 0. Given a transition structure 
(2, we associate a pair of symbols o(t) and i(t) with each transition t E K n ,  a 
symbol i(t) with each transition t E In,  and a symbol o(t) with each transition 
t C On.  Symbols o(t) and i(t) represent a source and a target state, respectively, 
for transition t. Over that  set of symbols we define an equivalence relation - n  
and we consider the quotient set. If the quotient set is not a singleton, then we 
associate with J2 a statechart whose root is an or-state. The set of the immediate 
substates of the root is in one-to-one correspondence with the quotient set. If 
the quotient set is a singleton, then we associate with ~ a statechart whose 
root is an and-state and the set of parallel components of the root is in one- 
to-one correspondence with the quotient set of the set of transition T under an 
equivalence relation ~ n  (defined below). Each element of the quotient sets under 
~ n  and ~ n  induces a transition structure, and the required statechart can be 
obtained by recursively applying the outlined step to the transition structures 
induced by the elements of the quotient set. 

D e f i n i t i o n 6 .  For a transition structure Y2, assume that  i, o : T n  ~ M are fixed 
injective and image disjoint maps, with M a suitable alphabet; 
then, - n C  M x M is the least equivalence relation s.t.: 

1. i f t  --*- = t'--*" = O, then i(t) - n  i(t'), for t , t '  E In U K n ;  
2. i f t  ~>n t', then o(t) =-=-n o(t') and o(t) =-n i(t), for t , t t E  Tn; 
3. i f t  -*n  t ' ,  then i(t) =-n o(t'), for t E In U K~ and t '  C (On - Wn) U Kn;  

The quotient set of - n  over i(In U K n)  U o((On - Wn) U Kn)  is denoted by ~)n. 

Example1. Let Y2 be the transition structure of the statechart of Fig.l ,  then 
In = Un = {imp},  On = 0 and K n  = { a , b , c , d , e , f , g , h } .  
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The  quot ient  set is ];n = {vl,v~, v3}, with: 
vl = {i(e), i(imp), o(a), o(h)}; 
v2 = {i(a),  i(h), i(c), i(b), o(b), o(c), o(d)}; 
va = {i(d), i( f) ,  i(g), o(f), o(g), o(e)}. 
A s ta techar t  with an or-s ta te  root  corresponds with f2. 

For a t ransi t ion s t ructure  ~2, each element v E ])s? induces a transition structure 
/2v, where 

Ts?~ de__: {t E Ts? : either i(t) E v or o(t) E v} 

and --~s?~, t>s?~, and Xs~ are obvious restrictions of --~s?, I>s?, and Xa,  respec- 
tively, to TS?. Moreover, 

1. t<s?~ de__: {t E TS? : o(t), i(t) E v}; 

2. os?o {t  E Ts? : o(t) v, i(t) v}; 

3. Wa~ d~] {t E Os?. : h t>s? t for all h E Ks?~,h ---+s? t for all h E Is?~}; 

4. Is?. de__] {t E Ts? : o(t) ~ v and i(t) E v}; 
if i(Us?) M v r O, then - .  

5. Us?~ d~f U ~ U { t : t E I ~ - U s ? ' t - ~ ' ~ = h  ~ '  for all h E US?}; 
= otherwise, a maximal  set of t ransi t ions V C_ Is?~ s.t. 

t. h E V implies t -*~* = h -~'* . 

Example 2. With  reference to the quotient  set of Ex.1, 

Ks?.1 = O; Os?vi : W~Vl  : {a, h}; Is?~ = US?~I = {e, imp}; 
Ii's?.2 = {c, b}; O ~  = {d}; Ws?.~ = O; Is?~ 2 = {a, h}; 
there  are two possible choices for Us?~: either US?~ = {a} or US?~2 = {h}; 

K.o  = { f ,  g}; os?o  = = {e};  Is?o  = us?vo = {d} .  

The  sets Os?. and WS?~ allow us to determine whether  the source of a dangling 
outgoing t ransi t ion t in ~v is the root  of the s ta techar t  associated with f2v 
(i.e., t E Wa~) or a substate  of the root  (i.e., t E Os?. - Ws?~). The  t ransi t ions 
leading to the root  of the s ta techar t  associated with ~2~ are the ones belonging 
to Us?. - Us?. The  default  substate  of the root  is associated with the element  
v E Ya such tha t  US? C US?~. 

We define now the equivalence ~s?. 

D e f i n i t i o n 7 .  For a t ransi t ion s t ructure  f2, ~s?C__ (Ts? - (Us? U Ws?)) x (T~ - 
(Ua U Ws?)) is the least equivalence relat ion s.t.: 

1. i f t  ---+s? if, then t ~s? t ' ,  for t E Ks? and t '  E (On - Ws?) U Ks?; 
2. if ei ther t l  ---~a h, t2 7 t+ s?h or t2 - - ~  h, t l  ~ s?h, then t~ ~s? h, for t l  E Ua,  

t2 E ls? - Us? and h E (Os? - Ws?) U KS?; 
3. if there exists a chain t l  ---*~ . . .  ---+a t~ such tha t  tl E I~,  ti E Ks? for 

2 < i < k, then tk ~s? h, for all h E Ks? U (O~ - Ws?) such tha t  t l  ---~s? h 
and tk ~ s?h. 

The  quot ient  set of ~s? is denoted as .As?. 
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For a transition structure/2, each element v E .Aa induces a transition structure 
def 

t?v, where Tn~ = In U v and --+n,, t>a~, and Xn~ are the obvious restrictions 
of "-+n, t>n, and Xn, respectively, to Tn~. 

de] de] de] de] de] 
Moreover, Ka~ = KnNv; On~ = OnNv; Wa,, = O; In.  = I.c~; Un,~ = I a - v .  

Example& Let /2 ~ (resp.: /2") be the transitibn structure induced by v2 (see 
Ex.1 and Ex.2) with Un~ = {a} (resp.: U~.~ = {h}). The quotient sets l a ,  
and In,, are singletons. The quotient set ~4~, (resp.: A~,,) has two elements 
zl = {h,c) and z~ = {b,d} (resp.: wl = {a,c} and w2 = {b,d}). Moreover, 
K n ,  = K a a ~  = { c } ; K n ,  = K a a ~ = { b } ; O n :  = O ~ %  = 0 ; O n , , ~ = W n % =  
{d}; In,~, = I n -  = I ~ ,  = In~2 = {h,a}; Un ,  = {a}; Un~ = {h}; U n ,  = 

Un% = {a, h}. 

We define now the algorithm associating statecharts with transition struc- 
tures. Since the way for defining the set Ua~, for v ~ In ,  is not unique, more 
than one statechart can be associated with a transition structure. 

Def in l t lonS.  For a transition structure (2, a statechart Z and a symbol sym, 
[2 =~ym Z iff T~ = Tn, Xz = Xn, and 

1. if ~/~ = U~ U Wn, then Bz  = {sym}, Pz = {(sym, O)}, r  = {(sym, OR)}, 
inz  = 5z = O and outz = {(t, sym) : t E Wn}. 

2. if T ,  r  U Wn and I n  is a singleton, then, for v E As?, 

Zv is a statechart such that ~ =ez(sym,~) Zv, and 

B z  = {sym} U U ~ e ~  Bz~; 
p z  = {( ym,,ym x ,4n)} u czo; 
inz = U v e ~  inz~ and outz = Uve.4~ outz~ U {(t, sym) : t e Wn}; 
5z = UreA. 5z,; Cg = {(sym, A N D ) }  UUvea , Cz.- 

3. otherwise, for v E ls?, 

Zv is a statechart such that f2v =~Z(sym,~,) Zv, and 

Bz  = {sym} U Uvev ,  Bz~; 
pz  = x u pzo; 

5z = {(sym, (sym, g))} U U,,eva 5z~, with g C In  s.t. g71 i(U~) 7~ O; 
Cz = oR)}  u U ev. Cz . 

For Z the statechart of Fig.i, there are two statecharts Z ~ and Z" such that 
TS(Z)  =~,y,~ Z' and T S ( Z )  ~ y m  Z": Z' is isomorphic to Z (with ref. to Ex.2, 
Un~ 2 = {h}), and Z"  is represented in Fig.2 (with ref. to Ex.2, Un~ = {a}). 

T h e o r e m  9. For a (complete) statechart Z with downward reachable states, 

7/S(Z) ~sym Z' implies T S ( Z )  = TS(Z ' ) .  
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A % 
t d 

Y 

J 

Fig. 2. A statechart built from the transition structure of the one in Fig.1. 

Proof. (Sketch) Let Z be a (possibly incomplete) statechart with q-$(Z) = /2 
and let Z'  be such tha t /2  ~ y , ~  Z'. That  Z' is a statechart can be easily checked. 
We prove, by induction on the definition of relation =~Zsym, that,  if (2' = T S ( Z ) ,  
then /2 and tg' are componentwise equal but possibly unequal with respect to 
component U. (Actually, if Z is complete, then by construction, also Z' is, and 
Un = Ua, = {imp}, thus proving the thesis). 
(Base) That  (2 = ~2' immediately follows from construction. 
(Inductive step) Assume that  ]2n is not a singleton and let Z~', for v E Vn, be the 
statechart induced by state (sym, v) of Z'. If J2z, = T$(Z'v),  then, by induction 
hypothesis, we have that  ~2v and (2z, are componentwise equal (but possibly 
unequal with respect to component U). By construction Z' is a statechart having 
or-state root, and the transition structure of Z' can be obtained from the ones 
of Z~ (for v C ])n) as follows: Ta, = [.J~ev~ Ta~ U Wa; Kn,  = m~ev~ Kn~ U 
U~,~,ev~ In .noah , ;  on ,  = w a u U ~ e v ~  On~-Uv,~,ev~ In.NOne,;  Wn, = Wn; 
In, = z m -  zm n oao, ; - - ,n ,=  e 
In , , t '  e Wn }; I>a, = Uv~vn t>a. to {(t, t ' )  : t e Kn , , t '  e Wa,} .  Now, by 
exploiting Def.6, it can be easily shown that  Tn, = Tn, Kn, -= Kn On, -- On, 
In, = In,  --+n,=---+n and t>n, = t>n. (Note that  component Un is not referenced 
in Def.6). Assume now that  Yn is a singleton. It can be proved that  A a  is not 
a singleton. Let Z~, for v e An ,  be the statechart induced by state (sym, v) of 
Z'.  By induction hypothesis, we have that  $2~ and ~2z, are componentwise equal 
(but possibly unequal with respect to component U). Now, Z' is a statechart 
having and-state root and the transition structure of Z' can be obtained from the 
ones of Z~ (for v e A n )  as follows: Tn, = U~e.4~ Tn~ u W a ;  Kn, = U~e.4n Iia~; 
On, = U~eA~ On. U Wn; Wn, = Wn; In, = In.  (for all v e An);  ---+n,= 

K n .  t ~ E Tn~, f o r s o m e v  ~ v F a n d t h e r e i s h  G In, s.t. h --+* t, h --+* , tt} 3 ' ~ n , ,  ~ , ,  �9 

Now, by exploiting Def.7, it can be easily shown that  Tn, = Ta, Kn,  = Kn 
On, = On, -+n,=-+n and I>n, = t>n. (Equalities above can be proved by 
exploiting only points 1 and 3 of Def.7 where Un is not referenced). [] 

3 _+. denotes the transitive closure of --+. 
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",,, b / d 

Fig. 3. A statechart Z (on the letf-hand side) and a statechart Z t such that 
TS(Z)  ~ w  Z'. 

In general, two statecharts Z and Z ~ such that T S ( Z )  ~ , ym Z ~ are not iso- 
morphic. For instance, consider the statecharts Z and Z ~ of Fig.3. The statechart 
Z has an and-state though, apparently, no pair of transitions can be performed 
simultaneously. Since T S ( Z )  is an encoding of the behaviour properties of Z, 
the structural details of Z which do not affect behaviour cannot be recovered in 
Z ~. This suggests that,  in general, the algorithm of Def.8 can be exploited for 
simplifying a statechart by removing its irrelevant structural details. 

4 C h a r a c t e r i z i n g  T r a n s i t i o n  S t r u c t u r e s  f o r  W e l l  

S t r u c t u r e d  S t a t e c h a r t s  

In the previous section we have shown that  a given statechart can be repre- 
sented by its transition structure. In general, a quadruple (T, ---+, t>, X) (we call 
it structure), where -+ and l> are relations over set T and X is a function on 
T, describes a statechart if there is a statechart Z s.t. T S ( Z )  = (T, -% t>, X). 
We are able to characterize the class of structures which describe well structured 
statecharts. A statechart Z is well structured iff 

outz(t) pz(z:z( t ) ) ,  for all t C (1) 

Transitions of well structured statecharts preserve the hierarchy on states (i.e., no 
transition crosses borders of boxes depicting states). Well structured statecharts 
is a proper restriction of the formalism which has been adopted frequently in 
literature to enjoy a simpler definition of semantics (e.g. see [8]). With reference 
to Fig.l ,  the represented statechart is not well structured since transitions a and 
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d do not satisfy constraint (1). Structures describing well structured statecharts 
can be axiomatically defined, thus allowing to precisely state the relationship 
among causality, parallelism and interruptions (i.e., hierarchy) in the formalism. 

D e f i n i t i o n l 0 .  A 4-tuple (T,--+, ~>,X), where T is a finite set, -% ~> C_ T x T 
are anti-reflexive relations and X : T ~ 2 P x 2 P, for some finite set P ,  is a good 
structure iff: 

1. if t --** t ~, then t I~ t 14; 
2. there exists t s.t. t -+* t ~, for all t '  E T - {t}, and t"  -~ t, for all t"  C T; 
3. i f t  - -+f  and t D t ' ,  then t ~ I>t ' ;  
4. i f t  I>V a n d t '  ~ t, then h--+t and h ~ t ~ implies h --+ t~; 
5. i f t  I> t ~, t ~ ~ t, t '  i> t"  and t"  I~ t', then t I> t"; 
6. i f t  I>t I, t ~ ~ t andt~<>t '~ 5, then t<>t'; 
7. i f t  l>t' ,  t '  ~ t and t o r " ,  then t ~ Dt~; 
8. i f t  --~t ~ and t o t " ,  then t '(>t'; 
9. i f t  --+ t ~, h --+ h ~, t ~ <>h ~, t />h ~ and h/St  ~, then t --+ h ~ and h ~ f ;  

10. if t ~ t ~, h --+ h', t ~ <> h t, t ~hh ~ and h o t  ~, then t --~ gl --+ �9 .. --+ g~ --* h and 
gi <> tl ; 

11. if t'-* nt '-* # O, then t t> h, for all h E t '--~ - t  --~ and t '  ~> h, for all h E t-'* -t'--* ; 
12. if t --+ h, h I, h ' ,  then h t> h / and h" ~ h' implies h i> h ' ;  

The  properties at points 2, 5 and 6 are satisfied also by the intere class of State- 
charts. Good structures are a dual representation, with respect to the classical 
one, of well structured statechart. It is possible to shift from one representation 
to the other by exploiting the map T S  and the relation ~sym. 

T h e o r e m  11. A structure f2 is a good structure iff there exists a well structured 
(downward reachable) statechart such that  $2 = T S ( Z ) .  

Proof. (Sl~etch) ( ~ )  It can be shown that  the procedure of Def.8 is well defined 
when it is applied to good structures. In particular, it can be shown that  if $2 
is a good structure, and Ya is a singleton, then A n  is not a singleton, and, if 
v E Ya or v E A n ,  then $2, is also a good structure. So, the procedure always 
terminates and, for each good structure $2, there exists a statechart Z such that  
$2 ::~sy,~ Z. By Th.9, we have that  $2 = "TS(Z). Moreover, it is possible to show, 
by induction on the definition of relation ~ v , ~ ,  that  Z is well structured. 
( ~ )  It is easy to check that  T S ( Z )  satisfies the constraints of Def.10. [] 

5 M o r p h i s m s  o f  T r a n s i t i o n  S t r u c t u r e s  a n d  

T r a n s f o r m a t i o n s  o f  S t a t e c h a r t s  

In this section we show that  the investigation of transition structure morphisms is 
useful for investigating transformations of statecharts which preserve behaviour. 

4 ___~, denotes the transitive closure of --+. 
5 t o t' is a short writing for t I> t' and t' I> t. 
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A morphism between two transition structures is a map from the transition set 
of the former to the transition set of the latter which preserves the initial tran- 
sition, sequentiality and independence relations, and transition labels. We are 
interested in morphisms which preserve behaviour in the sense that  a behaviour 
corresponding to the former transition structure can be suitably mapped into a 
behaviour corresponding to the latter and viceversa. Behaviour preserving mor- 
phisms induce classes of behaviour preserving transformations over statecharts. 

D e f i n i t i o n  l2 .  A (partial) map co : T~ --~ Tn, is a morphism of transztion 
structures f2 and f2 ~, iff: 

1. a~(imp) = imp; 
2. ~ ---~ t '  implies co(t) --*~, w(t') (whenever w(t) and co(t') are defined); 
3. t I>~ t' implies co(t) I>~, a~(t') (whenever co(t) and co(t') are defined); 
4. X~,(co(t)) = x~( t )  (whenever co(t) is defined). 

Unless otherwise said, a morphism is assumed to be a total map. Obviously, 
isomorphisms 6 of transition structures preserve behaviour. For instance, if stat- 
echarts Z, Z'  and Z"  are such that  T$(Z)  ~ y m  Z' and 7-S(Z) ~ y , ~  Z",  
then their transition structures are isomorphic. In general, isomorphisms induces 
transformations over statecharts which allow to add (resp.: remove) irrelevant 
structural details to (resp.: from) a statechart or to suitably change its defaults 
(and sources of transitions accordingly). Actually, we are interested in morphisms 
less strict than isomorphisms. For instance, consider the problem of transforming 
a statechart  into a well structured equivalent statechart. Sometimes, a statechart 
can be transformed into a well structured statechart provided that a number of 
states and transitions are duplicated (the corresponding transition structures 
fail to be isomorphic). As an example, see Fig.4 where a transformation of the 
statechart  of Fig.1 is depicted. The transition a of Fig.4 does not violate the 
constraint 1 but  it does in Fig.1. The transformation requires the duplication of 
transitions b and d. Unfortunately, morphisms as defined in Def.12 do not pre- 
serve behaviour, since maximality of steps is not preserved and, so, additional 
constraints must be considered. 

D e f i n i t i o n  13. The morphism co of transition structures f2 and ~2 ~ is called 
strong when, 

w(t ~a) = co(t)-~"for all t e T~ and (2) 

t' for all t , t '  e T .  s.t. co(t) co(t') and t II. t (3) 

Let us consider the statecharts of Fig.4 and the one of Fig.1. The map w, from 
the transitions of the former to the ones of the latter such that  w(b) = w(b') = b, 
co(d) = co(d') = c, and acting as the identity elsewhere, is a strong morphism. 

6 A morphism ~ is an isomorphism iff it is a bijection and a: -1 is also a morphism. 
7 For a statechart Z, the concurrency relation [[z can be derived from t~ --- TS(Z) 

(it suffices to rephrase Def.3 by exploiting relations --~o and I>a). So, we write tin 
instead of ][z. 
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A 
h ~  a 

t d 

Fig. 4. A statechart admitting a strong morphism from its transition structure to the 
one of the statechart of'Fig.1. 

Partial strong morphisms preserve behaviour provided that  other constraints 
are satisfied. In particular, we consider partial morphisms which preserve causal- 
ity, choice and communication in the sense that  if a morphism is defined over 
a transition t, then it is defined over all the transitions causing t, over all the 
transitions which are concurrent and mutually exclusive with respect to t, and 
over all the transitions communicating signals enabling t. 

D e f i n i t l o n l 4 .  A partial morphism w of transition structures [2 and S-# pre- 
serves causes if, for t, t' ~ T~ w(t) defined and t' --+s~ t implies w(t')  is defined; 
w preserves choices if, for t , t ' , t "  �9 T~, that t --*~ t', t --~a t", w(t) and w(t')  
are defined and w( t ' )  is not defined implies t" I>~ t~; 
w preserves communication iff for all t, t' E T~, w(t) undefined and w(t')  defined 
implies Act(t)  A Ev( t ' )  = O. 

When a morphism of transition structures f2 and t9 ~ is partial, we compare 
the part of the transition structure over which the morphism is defined, with 
f2'. Partial morphisms can be exploited for proving the correctness of some 
refinement techniques. As an example, the statechart of Fig.1 is a refinement of 
both the statecharts of Fig.5 and the statechart on the left-hand side of figure 
Fig.5 is a refinement of the one on the right-hand side. The map w from the set 
of transitions of the statechart in Fig.1 to the set of the one on the left-hand side 
(resp.: right-hand side) of Fig.5 such that  w is not defined in f and g (resp.: in f ,  
g and c) and w is the identity elsewhere, is a strong morphism which preserves 
causes and choices (in our examples we have not considered transition labels and 
so we omit the property of preserving communication). A similar morphism can 
be defined between the transition structures of the two statecharts of Fig.5. 

T h e o r e m  15. Let w be a strong morphism of transition structures ~2 and t2 ~ 
(resp.: a strong partial morphism which preserve causes, choices and communi- 
cation), then S0.$~. . .S~ is a behaviour from a configuration (imp--*,', Env)  iff 
there exists a behaviour 80.51 . . .  S n from (imp ~ , Env)  such that  

80.81 ..S~ = ' ' .. �9 ~ (So ) .~ (S~)  .~ (S ' . ) .  
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A 

Fig. 5. Two statecharts of which the statechart in Fig.1 is a refinement. 

Note that  a strong morphism preserves behaviours (in the sense of Th.15) 
even when the classical semantics is enforced. Tha t  is not the case when part ial  
morphisms are considered. For a discussion on the problem we refer to [6]. 
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