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Abstract. A language for specifying nondeterminisuc operations which generalizes the 
equational specificauon language is introduced. Then, vanous notions of generated mul- 
timodels are discussed and sufficmnt condiuons for the existence of quasi-initial seman- 
ucs of nondeterministic specifications are given. Two calculi are introduced: NEQ and 
NIP. The former is sound and complete with respect to the class of all muhimodels. The 
latter is an extension of the former veuh the ta-mle. It is sound and complete with respect 
to one of the classes of the generated mulnmodels. The calcuh reduce to the respective 
determimstic calculi whenever the specffl cation involves only deterministic operations. 

1. Introduction 
The notion of nondeterminism arises naturally in describing concurrent systems. Various 
approaches to the theory and specification of such systems, for instance, CCS [23], CSP 
[16], process algebras [1], event structures [39], include the phenomenon of nondeter- 
minism. But nondeterminism is also a natural concept in describing sequential programs, 
as witnessed for instance, by the powerdomain constructions of denotational semantics 
[28, 31, 29, 4] and by attempts to extend abstract data types with nondeterministic oper- 
ations [3, 2, 25, 26]. 

As we argued elswhere [35, 38] the use of nondeterministic operators is an appro- 
priate and useful abstraction tool, and more" nondeterminism is a natural abstraction 
concept whenever there is a hidden state or other components of a system description 
which are, methodologically, conceptually or technically, inaccessible at a particular level 
of abstraction. Whether the world really is nondeterministic or not we leave to the physi- 
cists and philosophers to ponder. A computer system in isolation certainly is determinis- 
tic: When started from a particular state (given in full detail) twice, both executions will 
demonstrate identical behavior. Possible sources of perceived nondeterminism lie only in 
the unpredictability of the environment such as hardware failures or human factors. 
Considering all such factors as parts of the total state given in full detail may obviate the 
perceived nondeterminism, but leads to undesirable complexity and is possible only in 
principle. 

The primary argument in favor of accepting nondeterministic operators is instru- 
mental, and identical to the credo of the abstract data type community: One should specify 
a system only in such detail that any implementation satisfying the specification also satisfies the 
user, and no more. It turns out that nondeterministic operators ease the process of specify- 
ing systems by allowing one to disregard irrelevant aspects - be they the external lnflu- 

*) This work has been partially suppormd by the Architectural Abstraction project under NFR 
(Norway), by CEC under ESPRIT-II Basic Reearch Working Group No. 6112 COMPASS, by the 
US DARPA under ONR contract N00014-92-J-1928, N00014-93-1-1335 and by the US Air Force 
Office of Scienufic Research under Grant AFOSR-91-0354. 
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ences or implementation details - and thus reducing the danger of overspecification re- 
suiting from technical rather than methodical reasons. 

In recent years several authors have tried to provide algebraic specifications of non- 
determinism with the semantics based on the notion of rnultialgebras [22, 15, 17, 24, 
21 ]. It is also the approach we are taking here. Multialgebras seem to offer a natural gen- 
eralization needed for the adequate treatment of nondeterminism. However, since a mul- 
tialgebra models the nondeterministic terms as sets of individuals, the concept of reach: 
ability of such a model remains unclear. For instance, is an element which can be re- 
turned as one of the possible results of a nondeterministic operation, but which is not a 
unique interpretation of any (deterministic) term, to be considered reachable or not? The 
logical counterpart of the deterministic generated models is the induction principle. 
What form should it have if we want to apply it to multialgebras? And which multialge- 
braic models should we choose in order to obtain sound inductive reasoning? In this pa- 
per we intend to answer some of these questions. 

Let SP denote an equational specification; Mod(SP) the class of its models, 
Modz(SP) the generated models, Tse an initial model; SP ~-CAL e provability of an equation 
e from the axioms of SP with a calculus CAL. Among the fundamental results for the de- 
terminis tic equational specifications there are the following theorems: 

1. Mod(SP) ~ e iff SP FEQ e - soundness and completeness of equational calculus 
2. Mod:~(SP) ~ e iff SP F-~ e - soundness and completeness of induction principle 
3. Tsp C Mody.(SP) - initial models are generated 

We present the analogous theorems for the specifications involving nondeterministic op- 
erations. Section 2 introduces the specification language s and discusses briefly its main 
features. Section 3 defines the multialgebraic semantics of specifications in s  Then we 
discuss various notions of generated multimodels (section 4), suggest a generalization of 
the initial semantics to the nondeterministic context and give the sufficient condition for 
the existence of such semantics (section 5), and present the results analogous to 3. 
(section 5), 1. (section 6), and 2. (section 7). All the constructions and theorems are non- 
intrusive in the sense that, when restricted to the deterministic context, they specialize to 
the above (and other) standard results. 

The present paper is a self-contained version of some of the results from [36]. The 
reader interested in the motivation for some unorthodox decisions we have made here, as 
well as the explanations of some technical details is referred to [36] where he can also 
find the proofs omitted here. 

2.  T h e  s p e c i f i c a t i o n  l a n g u a g e  

A specification is a pair (~;, H), where the signature ~ is a pair of a sets (S, F) of sorts S 
and operation symbols F (with arguments and result sorts in S). There exists a denumer- 
able set V of variables for every sort. For any syntactic entity (term, formula, set of formu- 
lae) X, V[• will denote the set of variables in • Letters from the end of the latin alpha- 
bet, x,y,z are used for variables. The set of terms over the signature s and a variable set X 
is denoted W2, x. We always assume that, for every sort S, the set of ground terms of sort 
S, (W~)_, is not empty. 1 

FoRmulae of the language s are clauses and II is a set of such formulae. Each clause 
C is a set of atomic formulae (i e., the ordering and multiplicity of the atomic formulae 

1 We do not address the problem of empty sorts here and will present calculi which work 
under the assumption that sorts are not empty We will usually gave signatures with at least one 
constant for every sort, but other means of restricting the signatures [19, 10] or ensuring 
nonemptiness [10, 12] can be used instead. It seems also that the most flexible approach which 
generalizes calculus by introducing explicit variables [10, 11, 7] can be adapted to our framework. 
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do not matter), written as a 1 . . . . .  a n (possibly within "{ }'). To ease readability we will 
sometimes write disjunction explicitly as a i r . . ,  v a  n. Comma indicates concatenation of 
clauses, and semicolon a collection. E.g., if C is {c i ..... Cn}, D is {d 1 ..... din}, then "C ; D" 
denotes the conjunction of the two clauses, while "C, D" denotes the clause 
{c i ..... c,vd i ..... din}. Usually, we use uppercase Latin letters for single clauses, uppercase 
Greek letters for sets of clauses, and lowercase Latin letters c, t for terms. 

An atomic formula (atomic clause) is either an equation, t-s,  an inclusion, t-<s, or an 
inequalities, t#+s, of terms t, s E W  z Equalities are understood to mean necessary equality z '  
(i.e. the two terms always return the same result). Inequalities are understood to mean 
necessary inequality (i.e. the two terms never return the same results). Equations and 
inclusions are called positive atoms, and inequalities negative atoms. This distinction 
expresses the fact that a clause { tees, p--<r} is equivalent to the conditional formula 
-,(t:~s) ~ p--<r, stating that whenever t intersects s, p is included in r. A clause with 
exactly one positive atom is called a Horn formula, and a Horn formula with no negative 
atoms a simple formula. 

All variables occurring in a clause are implicitly universally quantified over the 
whole clause. A clause is satisfied if, for every assignment to the variables, at least one of 
the atoms is true. For a specification SP=(s l-I), s is the restriction of s to W z v" 

A specification SP is interpreted in a multialgebra where the (nondeterministi~) op- 
erations correspond to set-valued functions. The main point concerning the interpretation 
of s is related to the meaning of equality. Since terms are interpreted in a multialgebra as 
sets of the possible results, the formula t=s is usually interpreted as the equality of the 
sets corresponding to all possible results of the operations. This gives a model which is 
mathematically plausible but does not correspond to our operational intuition. The 
equality t=s does not guarantee that the result returned by some particular application of 
t will actually be equal to the result returned by an application of s. It merely tells us that 
in principle (in all possible executions) any result produced by t can also be produced by s 
and vice versa. 

Equality in our view, on the other hand, should be a necessary equality which must 
hold in every evaluation of a program (specification). It does not correspond to set equality, 
but to identity of 1-element sets. Thus the simple formula t'--s should hold in a multistruc- 
ture M iff both t and s are interpreted in M as one and the same set which, in addition, 
has only one element. (This is the reason for using the symbol -" instead of usual =.) 
Equality is then a partial equivalence relation (not necessarily reflexive) and terms t for 
which t - t  holds are exactly the deterministic terms, denoted by Dsp x" More precisely, 
tEDsp x if t-'-t holds in every model of the specification. (In particular', variables will al- 
ways be interpreted deterministically.) 

If it is possible to produce a computation where t and s return different results 
- and this is possible whenever they are nondeterministic - then the terms are not equal 
but, at best, equivalent They are equivalent if they are capable of returning the same re- 
suits, i.e., if they are interpreted as the same set. This may be expressed using the inclu- 
sion relation: s--< t holds iff the set of possible results of s is included in the set of possible 
results of t, and s ~ t  iff each is included in the other. 

A nondeterministic operation may then be specified by a series of inclusions - each 
defining one of its possible results. Such a specification establishes only a '~ 
bound" on the admitted nondeterminism. 

Example 2.1 
S: { Nat }, 
F: 0: --+ Nat (zero) 

s_: Nat -+ Nat (successor) 
U : Nat• Nat ---+ Nat (binary nondeterministic choice) 
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1I. 1. 0 - 0  
2. s(x)-s(x) 
3.1 # 0 (As usual, we abbreviate s"(0) as n.) 
4. 0 -<0U1 i -<OUI [] 

The first two axioms make zero and successor deterministic. A limited form of negation 
ts present in s in the form of clauses with only negative atoms. Axiom 3. makes 0 dis- 
tinct from 1. Axioms 4. make then U a nondeterministic choice with 0 and 1 among its 
possible results. This, however, ensures only that in every model both 0 and 1 can be re- 
turned by 0U 1. In most models all other kinds of elements may be among its possible re- 
suits as well, since no extension of the result set of 0U 1 will violate the inclusions of 4. If 
we are satisfied with this degree of precision, we may stop here and use only Horn for- 
mula. All the results in the rest of the paper apply to this special case. But to specify an 
"upper bound" of nondeterministic operations we also need disjunction of positive 
atoms. Before we illustrate this we have to consider another feature of the language. 

The fact that equality is not reflexive for the nondeterministic terms reflects the in- 
tended interpretation of terms as applications of the respective operations. Every two syn- 
tactic occurrences of a term t refer to possibly distinct applications of t. For nondetermmis- 
tic t, the equality t - t  does not hold because the first occurrence refers to an arbitrary 
application of t and the second one to an arbitrary, hence possibly distinct, application of 
the same operation t. The equality says that arbitrary two applications return the same re- 
suit. Now, if we write the axiom: 

5. 0U1-" 0 v0UI="  1 

the two occurrences of 0U 1 refer to two arbitrary applications and, consequently, we ob- 
tain that either a W application of 0U 1 equals 0 or else it equals 1, i.e., that U is not really 
nondeterministic but merely underspecified. Since axioms 4. require that both 0 and 1 
be among the results of t, addition of 5. will actually make the specification inconsistent. 

What we are trying to say with the disjunction 5. is that every application of 0U 1 re- 
turns either 0 or 1, i.e., we need a means of Identifying two occurrences of a nondeter- 
ministic term as referring to one and the same application. This can be done by binding 
both occurrences to a variable. We would write instead 

5' .x:~0U1 v x- '0  v x ' - i  

The axiom says: whenever 0Ul  returns x, then x equals 0 or x equals 1. Notice that such 
an interpretation presupposes that variables refer to unique, individual values. Variants 
of this interpretation are known as call-time-choice [14, 6], singular [30], inside-out or IO 
[8, 91 and correspond, roughly, to the call-by-value passing of deterministic parameters. 
This is the most common approach in the literature on the algebraic semantics of nonde- 
terministic specification languages, in spite of the fact that it prohibits unrestricted sub- 
stitution of terms for variables. Any substitution must now be guarded by the check that 
the substituted term yields a unique value, i.e., is deterministic. We return to this point 
in the section on reasoning where we introduce a calculus with the appropriately re- 
stricted substitution rules. (For a further discussion of the distinction between plural and 
singualr semantics of variables, see [33, 38] .) 

3. Multistructures and multimodels. 

Definition 3.2 (Multistructures). For a signature E, M is a X-multistructure if 
1. its carrier ]M] is an S-sorted set, and 
2. for every f: S. • • S -~S in F, there is a corresponding function 

. M ' i ~ '  ~ M 
fM.s 1 x . . . x  s n --,o'  ( s ) .  
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A function ~ :  A---+B (i.e., a family of functions qSs: Sa--~S B, for every SC S) is a 
multihomomorphism from a s A to B if 
H1. for each constant symbol cCF, ~(c a) _C c B and 
H2. for every~SlX...XSn--~S in F and al...anESiAx ...XSna : 

~{r _c f ( r 1 6 2  - - 

If all inclusions in H1 and H2 are (set) equalities the homomorphism is tight, 
otherwise it is strictly loose (or just loose). [] 

Operations applied to sets refer to their unique pointwise extensions; ~P+(S) is the set of 
non-empty subsets of S. Notice that for a constant c: --+S, 2. indicates that c M can be a set 
of several elements of sort 5. 

If there exists a multihomomorphims @: A-+B which is an inclusion we say that A 
is a submultistructure of B. (Optionally, we may only require that q5 is injective.) If, in 
addition, �9 is tight A is a tight submuItistructure of B. 

Since multihomomorphisms are defined on individuals and not sets they preserve 
singletons and are C-monotonic. We denote the class of E-multistructures by MStr(E). It 
has the distinguished word structure: 

Definition 3.3 (Word mult is t rueture) .  The word multistructure MW~ for a 
specification SP over signature E =(S, F) is defined as: 

1. for each S ES, S Mw= is the set of all 1-element sets containing ground 
words of sort S, 

2. for each f:  S 1 x . . . x S n ~ S  in F, {t,}CS~ Mw= : fw~vz({t I} ..... {t,}) = {f(t 1 ..... t O} 
[] 

According to 2. every ground term is interpreted in MW2 as a singleton set. We will often 
treat such results as terms rather than 1-element sets (i.e., we do not take special pains to 
distinguish MW~ and WE). 

With this definition MW~ is not an initial Y.-structure since it is deterministic and 
there can exist several homomorphisms from it to a given multistructure. In [18] it is 
shown that it is (tightly) initial if we modify definition 3.2 by allowing a homomorphism 
�9 : A-- ,B to send single dements of IAI to (nonempty) sets of elements of IBI (i.e., letting 
@: IA]--<P+(]B])). We will retain the notion of homomorphism as in definition 3.2 because 
such a generalization is not needed. It merely "disguises" some strictly loose homo-  
morphisms as tight ones since we may then have ca--{~} and @ (ca)={Q ..... cJ=c B. 
(Underscored lower case letters, such as a, c, are used for the elements of a semantic do- 
main.) 

More importantly, it is a known fact [18, 24] that, in the general case, one should 
not expect the existence of initial multimodels. In [18] Hugmann has shown that such 
multimodels may not exist even if the specification language is restricted to simple for- 
mulae. Therefore we allow general clauses in the specifications and will concentrate on 
the whole class of multimodels of a specification. For the discussion of the structure of 
this class and (the lack of) initiality results, the reader is referred to [18, 37, 36]. In the 
present context, the significance of the term structure is expressed in 

Lemma 3.4. If M is a E-multistructure then, for every set of variables X and as- 
signment I3: X--+fM], there exists a unique function 13[_]: W~,x-<P+(]M]) such 
that: 

[3[x] = liB(x)} iB[cl = c M iB[f(t, ..... tn)] = O{fM(tl .... tn) l tie[3[tl]} [] 

In pamcular, for X=O, there is a unique interpretation function (not a mult ihomomor-  
phism) "27: Wx--,T+(]MI) satisfying the last two points of this definition. Observe that, as a 
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consequence of the definition of mukistructures, operations in M are G-monotonic, i.e., 
~[s]G~[t] =~ ~[f(s)] Gf3[f(t)]. Next we define the class of multimodels of a specification: 

Definition 3.5 (Satisfiability). Let M be an E-multistructure, [3: X--*IM] an as- 
signment to a set of variables X. M satisfies an atom a under [3 iff 

�9 a is s-et and [3[s] C_ I3[t] 
�9 a is s~ t  and ~[s] n ~ [ t ]  = O 
~ a is s--t and [3[s] = flit] = {x}, for some x~lMI 

M satisfies a clause C, M~ C, iff for each [3, M satisfies at least one atom of C. 
An SP-rnultimodel is an SP-multistructure which satisfies all the axioms of SP. 
MMod(SP) denotes the class of multimodels of SP. [] 

The reason for using empty intersection (and not set mequality) as the interpretation of 
the negative atomic formulae s4t-t is the same as for using "elementwise" equality as the 
interpretation of --'. Since we avoid set equality in the positive sense, the most natural 
negative form seems to be the one we have chosen. Under the chosen interpretation, "-- 
denotes necessary equality and # necessary inequality. For deterministic terms t and s, 
s# t is the same as s;at, i.e., deterministic negative atoms correspond exactly to equational 
(deterministic) conditions. 

For nondeterministic terms the predicate 4~ reflects our interest in binding such 
terms. According to the last definition variables may be assigned only single elements 
from the carrier I M[ and so always denote individual values. This means that, for in- 
stance, the clause s # t is equivalent to { x ~s, x ~* t }. Considering x to be an individual and 
t a set, x# t  may be seen as the more familiar xf!t. Thus we may treat our notation as an 
abbreviation for more elaborate formulae with two negated membership relations and 
one new variable (not occurring m the rest of the clause). 

4 .  G e n e r a t e d  m u h i m o d e l s .  

Consider a deterministic specification over signature E, and let Str(E) denote the class of 
E-structures, and W E the word structure over signature E. 

Definition 4.6. A CStr(E) is generated iff the unique (interpretation) homomor-  
phism 27: W~--*A is surjective. [] 

It is convenient to use a more general notion of generatedness. For specifications with 
constructors, sufficient completeness corresponds to models being generated by the con- 
structor operations. In the context of nondeterministic specifications we may want to say 
that a model is to be generated by the determmistic operauons only. This motivates 

Definition 4.7. Let TCN~,  AC Str(E) is T-generated iff the unique homomor- 
phism 27: W z ~ A  is su~ective when restricted to T, i.e., 2~[2r] = [A]. [] 

In particular, "generated" will mean WE-generated. We may allow T t o  comprise only 
terms of some (not all) sorts and speak about T-generated structures meaning the struc- 
tures where only the corresponding sorts are T-generated. 

The notion of generated structure does not generalize trivially to multistructures. As 
usual, there are several possibilities for extending the deterministic concepts to the non-  
deterministic context. 

Since nondeterministic terms may be interpreted as sets of values rather than as in- 
dividuals, the choices we are facing concern which of these values are to be considered 
as gener ate& The first definition comes from [17]: 
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Definition 4.8. A structure MCMStr(Y,) is 1-T-generated iff for every me]M[ 
there exists a tET": {m}=t M. [] 

According to this definition, every value in M must be denoted by some term t which, in 
addition, is interpreted in M deterministically even if t =" t is not a consequence of SP. 

The next definition is less restrictive in this respect: 

Definition 4.9. M CMStr(Y,) is 2-T-generated iff there exists a multihomomor- 
phism h: MW:c--+M which is surjective when restricted to T [] 

It implies that all elements of the carrier of M are denotable by some term - for every 
mE]M] there exists a tcT({t}~MW=) such that h(t)=m. Here a nondeterministic term c 
can be used by the homomorphism/~ as a pre-image of some individual, even if its in- 
terpretation dWmay be a set of several values. 

Both definitions focus on the elements of the structure and do not require that also 
all sets be denotable. The last definition, from [15], allows most freedom in the generated 
multistructures: 

Definition 4.10. A structure ME MStr(Y,) is 3-T-generated iff for every mC I M] 
there exists a tET: rnEt M. [] 

Equality from the first definition has been replaced here by the membership relation. 
According to this definition a structure is generated if every element is a member of a set 
denoted by some term. 

Definition 4.11. M is a n-T-generated multimodel (for n=1,2,3), MC MModn. 
7(SP), if it is a n-T-generated multistructure and satisfies the axioms of the 
specification SP. [] 

The following example illustrates the relation between the three definitions: 

Example 4. I2 
Let SP = (({S}, {a,c: +S}), { {a-<c} }): 

A1 A2 A3 
a {.r {.r {a_va_e,...} 
c {a_} ~,c__} {a.l,a_2 ..... cl,q,.. .} 

A1 is 1-, 2-, and 3-generated, A2 is 2- and 3-generated, and A3 is only 3-gener- 
ated. A2 is not 1-generated because there is no term (among {a,c}) which can 
be interpreted deterministically as {c} (c cannot be such a term without 
violating the axiom). A3 is not 2-generated because there is no surjective 
homomorphism from {a,c} onto the elements of IA31. [] 

1-generatedness is characterised by the non-existence of substructures: M is 1-generated 
(for T=W z) if and only if it has no proper submultistructure. This notion corresponds to 
the idea of deterministic constructors - only the values which can be reached by some 
deterministic operation are considered generated. It reflects the intuition that programs 
operate on some definite universe of values. 3-generatedness stands on the opposite side 
allowing constructors to be nondeterministic - anything such operations can return is 
taken to be generated. 3-generated models may be convenient when some axioms are 
given for nondeterministic terms without reference to any (intended or actual) determin- 
istic basis. This concept corresponds to the non-existence of tight substructures: M is 3- 
generated if and only if it has no proper tight submultistructure. 2-generatedness may 
seem a bit strange but it too has a plausible interpretation. It restricts nondeterminism, 
but preserves the information about underspecified nondeterministic operations. The 
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axiom a--<c indicates only that a must be a possible result of c. But nondeterminism of c is 
not exhausted by this information and so 2-generatedness allows the generated model A2 
to have an additional element c representing the possibility of c returning something 
more than _o_ 

Obviously, 1-T-generatedness is the smallest predicate and we have the trivial 

Lemma 4.13. MModl_:r(SP) C MMod2_~(SP ) C_ MMod3_7(SP). [] 

Which of the definitions one prefers may be a matter of taste, and we will not attempt to 
choose among them at this point. The choice will be suggested in section 7 on inductive 
reasoning. At the moment, we only observe that when T C D  s~, they are all equivalent to 
the classical definition. 

Definition 4.14. ME MMod(SP) is DET-generated iff it is T-generated, for some 
E g D  sP. [] 

We have dropped the numbering of generatedness because all three definitions are 
equivalent for TCD s,. 

Lemma 4.15. Let TC Ds~. Then MModl.r(SP) = MMod2_~(SP) = MMod3.7(SP). 
[] 

The difference between 1-T-generated and DET-generated structures is that the former 
simply enforce the deterministic interpretation of (possibly nondeterministic) terms from 
Twhile  the latter can only contain elements which are denoted by terms which have to 
be de terministic. 

The DET-generated muhialgebras have the important property that the homomor-  
phisms from such structures are unique. 

Example 4.16 
Let SP contain only one operation c: -+S. Any 1- or 2-generated multialgebra 
N1, N2 will have a 1-element S sort - S N = {c}. A 3-generated muhialgebra N3 
may have any number  of elements in the sort S. Let NEMStr(SP) interpret c 
nondeterministically, e.g. d v = {c_e_Q}. Obviously, there are two homomor-  
phisms from the generated N1, N2 to N. Also, for any N3 there will be at least 
two homomorphisms to N. 
Let SP1 contain, in addition, the operations a, b: --+S, and the axioms 

1. a-.<c 2. b-<c 3. a-a, 4. b-b 5. a#b 
and consider (1- and 2-)generated muhimodels of SP1, M1 and M2, where 

S M1 = {~h} ,  S M2 = {o..b_,c}, 
cM1 = { r  C M2 = {r 

Let N EMMod(SP1). For M2 (and M3 with more than 2 elements of sort S), a 
homomorphtsm to N will not be umque. But if there is a homomorphism 
$:M1 -+N then such a 6 is unique since 
6(a  M) = a N r  = b N qb(c ~ )  = r = { r 1 6 2  = {aN,b N} C 
C N 

[] 

From the first part of this example we can see that 1-generatedness of N1 does not guar- 
antee uniqueness of the homomorphisms from N1. Uniqueness of qb is a consequence 
not of M1 being 1-generated but of the fact that it is DET-generated. 
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Lemma 4.17. Let M,N CMMod(SP) and let M be DET-generated. There exists at 
most one homomorphism ~b: M--+N. 

Proof idea: 
Any homomorphism qb: M + N  must satisfy qb(t M) C_ t N, which for deterministic 
t means identity. DET-generatedness of M implies then that the image of any 
homomorphism from M is uniquely determined by the image of the interpreta- 
tions of the deterministic terms. [] 

5. Quasi-initial semantics. 
The last lemma is important because it allows us to define quasi-initial semantics of non- 
deterministic specifications. Since we have allowed the use of disjunction in the specifi- 
cations it should not be surprising that, in general, we do not have initial (multi)models. 
However, as shown for instance in [17, 18], even if we restrict the specifications to Horn 
formulae, or even to simple formulae, initial multimodels still need not exist. 

Quasi-initial semantics assigns to a specification an initial covering of its model 
class. It is a natural generalization of initial semantics in that it effects a partition of the 
model class into components - each with an initial object which is the quasi initial object 
from the covering. It was used by several authors as the basis for the semantics of specifi- 
cations using more expressive language than Horn formulae [20, 13, 32, 42]. 

The class MMod(SP) together with the mult ihomomorphisms is a pre-order, de- 
noted (MMod(SP),---0, where N ~ M  iff there is a multihomomorphism from N to M. 

Definition 5.18 (Minimal, Quasi-Initial). ME MMod(SP) is 
1. minimal in the pre-order (MMod(SP),--+) iff, for all N CMMod(SP), N--*M 

implies M--+N, 
2. quasi-initial iff it is minimal and for every N C MMod(SP), there exists at 

most one homomorphism M--*N. [] 

Definition 5.19 (Covering). 
L A covering of a pre-order (MMod(SP),--+) is a subset C_C MMod(SP) such 

that for each M EMMod(SP) there is a CEC with C--*M. 
2. A covering is mimmaJ if none of its proper subsets is a covering. 
3. A covering C is initial iff it is minimal and contains only quasi-initial ob- 

jects. [] 

The general result is 

Theorem 5.20. If MMod(SP) ts not empty then it has a minimal covering. 

Proof idea: 
Every non-empty chain in (MMod(SP),--+) has a lower bound. Zorn's lemma 
implies the conclusion. [] 

Unfortunately, we cannot ensure the existence of an initial covering in the general case. 
To obtain a sufficient condition for its existence we need an appropriate restriction on 
the form of the specifications. Lemma 4.17 indicates that if a minimal covering contains 
only DET-generated models then the covering is initial. To ensure the existence of DET- 
generated models we need 
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Definition 5.21. SP=(Y~,II) is DET-complete iff for every tEW~ there exists an 
sED~ such that s~t is valid. [] 

The restriction to DET-complete specifications was introduced, for slightly different rea- 
sons, in [17]. DET-generated structures constitute the semantic counterpart of DET- 
completeness in the sense that only DET-complete specifications are guaranteed to pos- 
sess DET-generated multimodels. 

Lemma 5022. Let SP be DET-complete. Every M EMMod(SP) has a DET-gener- 
ated subalgebra N, i,e., such that there is an injective homomorphism ~: N---+M. 

Proof idea: 
N M For every tEW~ let t = ~MDsp. DET-completeness of SP ensures that no such 

set is empty and the inclusion I N] C_ ]M] is the required homomorphism. [] 

Moreover, for DET-complete specifications, the DET-generated subalgebras of minimal 
models are exactly the quasi-initial models. 

Lemma 5.23. Let SP be DET-complete, M EMMod(SP) and N be DET-gener- 
ated subalgebra of M. Then: 
1. if M is quasi-initial then M is DET-generated, 
2. if M is minimal then N is quasi-initial. 

Proof idea: 
1. Quasi-initiality of M forces the inclusion IN I _C ]MI to be surjective. 
2. Inclusion homomorphism INI c ]MI, minimality of M and lemma 4.17. [] 

Finally, for the DET-complete specifications we have: 

Theorem 5.24. If SP is a DET-complete specification and MMod(SP)*O then 
MMod(SP) has an initial covering. 

Proof idea: 
Take the DET-generated subalgebras of the elements of a minimal covering. [] 

6. T h e  ca lcu lus  for  n o n d e t e r m i n i s t i c  spec i f i ca t ions .  

In [36] we have introduced the calculus NEQ which is sound and complete with respect 
to the class MMod(SP). Its rules are given below: 

R0: t- C for any C E 11 

RI: a) F- x,~y, x - y  b) ~- x#t, x--~t x,yEV 

bC:[ ; ~ D,s "--t 
R2: 

X F-Cs,D 

R3: 
~-C~ ; I-- D, s-~ t 

X 
F-Cs,D 

x not in a right-hand side of -4 in C 
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~-C,s<t  ; F-D,s#t 
R4: (CUT) 

b - C , D  

~-C 
RS: (WEAK) 

~- C,e 

(_ being either - or --<) 

k- C, x# t  
R6: (ELIM) xEV-'l)[t], at most one x in C 

x C t denotes C with t substituted for x. We will write II  ~-C to indicate that C is provable 
from 11 with the calculus NEQ. Few comments regarding the rules may be in order. 
R1 expresses the relation between # and equality and inclusion. Since variables x and y 

are individuals, the two rules correspond to, respectively, x#y v x=y, and x ~ t v  xEt. 
They also capture the fact that ' - ' '  is a partial equivalence relation and is reflexive 
only for variables (see PER below). 

R2 is a paramodulation rule allowing replacement of deterministic terms (in the case 
when s---" t holds in the second assumption). In particular, it allows derivation of the 
standard substitution rule when the substituted terms are deterministic, and prevents 
substitution of nondeterministic terms for variables. 

R3 allows "specialization" of a clause by substituting for a term t another term s which is 
included in t. The restriction that the occurrences of t which are substituted for don't 
occur in the right-hand side of -< in C is needed to prevent, for instance, the unsound 
conclusion ~- p--<s from the premises ~- p-~ t and F- s-<t. 

s# t  implies both negation of s - t  and of s-<t. R4 allows us to resolve these complemen- 
tary atoms. 

R6 eliminates redundant bindings, namely those that bind an application of a term oc- 
curring at most once in the rest of the clause. 

The following derived rules illustrate some consequences of NEQ. 

PER: H x'=x variables are guaranteed to be deterministic 

I-- x # t  
NE: - -  R6 ~ 0  

terms are interpreted as non-empty sets 

SUB: 
I--C ; t - t ' - t  

variables can be substituted by deterministic terms 

The counterpart of soundness/completeness of the equational calculus is the following: 

Theorem 6.25. NEQ is sound and complete wrt. MMod(SP): 
MMod(SP) ~ C iff II  b- C [] 

The proof of this theorem is a rather involved Henkln-style argument which we cannot 
even sketch here (see [34]). In the next section we consider extension of NEQ with an in- 
duction principle. 
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7.  The nondete r rn in i s t ic  to-rule. 

Let SP=(E,17) be a deterministic specification, C be a formula in the associated specifica- 
tion language/C with a free variable x of sort S. Let TC_Wz and ModT(SP) be the class of 
T-generated models of SP. The co-rule is a semi-formal proof rule [e.g., 40, 41]: 2 

II  ~- C[ V t ~ T  (IP) 
1 7 ~ C  

Then, for instance for the equational specification language /C, one can prove the 
metatheorem 

ModT(SP) ~ C iff I I  ~- C t for all t E T  (IP-completness) 

The inductive proof schema specifies, in addition, the strategy for proving the premise of IP 
by means of some enumeration of all terms in T. For example, if Tcan  be built from a set 
of constants C of sort S, and operations F= (fl,.. ",fn: S---*S} then the induction schema will 
be 

II ~ C~ VcEC 
171-C ~ I I ~ - C  x V f ~ F  f(x) 

17 ~- C (IS) 

Obviously, soundness of IP imphes soundness of IS but, in general, IS is not complete 
[27]. We will focus on the co-rule - a particular induction schema must be constructed 
depending on the chosen set T. 

We first consider the question of which among the notions of generatedness we 
have introduced constitute a natural semantic counterpart of the possible nondeterminis- 
tic induction. DET-generated models are certainly of special interest and we will consider 
them at the end of this section. 1- and 2-T-generated models turn out to be ill-suited for 
the purpose. At least two reasons for this are that: 

1. they are not guaranteed to exist, and inconsistency may be unprovable 
with the induction principle, and 

2 even if they do exist, additional semantic and syntactic assumptions are 
needed in order to make the natural induction principle sound. 

We elaborate on these two points with respect to 1-T-generated models. The case of 2-7"- 
generated models is similar and merely involves even further complications. 

Example 7.26 
Let SP contain three constants a, b, c: ~ S, and the following three axioms: 

17: { a-<c ; b-ec ; a ~ b  } 

SP does not have a 1-{ a,c }-generated model because in such a model both a and 
c must be interpreted deterministically, and then, due to the third axiom, b 
cannot be contained in the set {c}={a}. [] 

1-{ a,c }-generatedness is inconsistent with SP because it forces the elements a, c to be in- 
terpreted as deterministic operations while SP requires c to be nondeterministic. It might 
seem that we could prove inconsistency by adding the determinacy axiom for every term 
tET. But this would lead to unsound reasoning because not all interpretations of the T- 
terms have to be deterministic in a 1-T-generated multimodel. 

2 We formulate the principle, as well as the theorems, for one vanable x. The general 
formulations are obtained trivially by replacing the occurrences of single x and t by the tuples 
xp...,x n and tw..,t ~. 
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Example 7,27 
Let SP1 contain three constants a, b, c : --*S, and no axioms. There are several 
1-{a,b,c}-generated models of SPI: 

A1 A2 A3 A4 A5 

a 2} ~} {.a_} {.h,c} {.} 
b {h} {h} ~.,c} {h} {'} 

c k} ~,h} {;.} k} {'} 
The suggested determinacy axioms, a-a, b-b, c-c hold only for A1 and A5. 
[] 

Thus, on the one hand we need the additional determinacy axioms and, on the other 
hand, they are too strong for the whole class of I-T-generated models. To remove this 
contradiction several additional restrictions on the form of specifications as well as the 
model class are needed. Hugmann, who m [17] uses 1-generated models, introduced for 
a limited version of the language s restrictions to DET-complete, DET-additive specifica- 
tions and maximally deterministic models (in the last example only A1 and A5 would be 
maximally deterministic) which allow only a reduced version of the induction principle. 

We therefore turn to 3-T-generated models as being more promising. For every M 
in the class MMod~z(SP) of 3-T-generated models, all elements are in the result set of 
some term tET, However, we cannot base our induction on the assumption that C t is 
provable for all tETsince for nondeterministic t such a substitution does not correspond 
to the validity of the clause C for all elements of a generated domain. The correct formu- 
lation of the co-rule is the following: 

I f I I  F- {x#t, C} for all tET then II F- C (NIP) 

Let NIP denote the calculus NEQ+NIP. Our main result is 

Theorem 7.28. Let C be an s clause: 
SP FNt P C iff MMod3.7(SP) ~ C [] 

Soundness is an easy consequence of soundness of NEQ, the proof of completeness is a 
more elaborate application of the omitting type theorem from [5]. 

As a trivial consequence of lemma 4.15, the induction principle NIP can be used for 
the DET-generated models. In this case T_C Ds~ , so NIP reduces to IP, because binding a 
deterministic term t to x in a clause C is equivalent to the substitution C ~: 

Lemma 7.29. Suppose that II  ~- t-t. Then: 
171 ~ C~ iff I I  ~- {xe~t, C} [] 

8. Conclusion. 
We have defined four notions of generated multistructures for nondeterministic specifi- 
cations. Three of them admit generated structures with respect to arbitrary terms, and 
the fourth - DET-generatedness - models generated by the deterministic terms only. We 
have shown that in the case of DET-generatedness all definitions are equivalent, and 
hence, correspond also to the classical definition of the generated structures. 

We have also given the sufficient condition of DET-completeness for the existence 
of quaa-initial semantics for nondeterministic specifications and shown that quasi-initial 
models are DET-generated. 

We have presented two calculi for reasoning about nondetermism. NEQ is sound 
and complete with respect to all multimodels of a nondeterministic specification. 
Furthermore, when all terms are deterministic, it is a generalization of the equational cal- 
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culus to conditional disjunctive equations. NIP is NEQ extended with the induction 
principle. We have stated soundness and completeness of NIP with respect to the class of 
3-generated multimodels, as well as the equivalence of the principle with the classical in- 
duction in the case when the generating terms are deterministic. 

Thus we have generalized the results on induction in the deterministic specifica- 
tions to the case of nondeterminism. This extension is non-intrusive in the sense that, 
whenever an s happens to be deterministic, the results and constructions 
provided by the classical theory coincide with those introduced in this paper. 

Acknowledgment. 
We thank an anonymous referee for useful suggestions, in particular, for drawing our at- 
tention to the eqmvalence of the definitions 4.8 and 4.10 to the respective notions of 
submultistructures. 

REFERENCES 
[1] Bergstra, J.A., Klop, J.W., "Algebra of communicating processes," Proc. of CWI 

Symposium on Mathematics and CS, 89 - 138, Oct. 6-7 1986. 
[2] Broy, M., Gnatz, R., Wirsing, M., "Semantics of Nondeterministic and 

Noncontinuous Constructs," LNCS, vol. 69, Springer, 1980, pp. 553 - 392. 
[3] Broy, M., Wirsing, M., "On the Algebraic Specification of Nondeterministic 

Programming Languages," in CAAP'81, LNCS, vol. 112, Springer, 1981, pp. 162 
- 179. 

[4] Broy, M., "On the Herbrand Kleene universe for nondeterministic computa- 
tions," in Proc. MFCS'84, LNCS, vol. 176, Springer, 1984. 

[5] Chang, C.C., Keisler, H.J., Model Theory, Amsterdam, North-Holand, 1977. 
[6] Clinger, W., "Nondeterministic call by need is neither lazy nor by name," Proc. 

ACM Syrup. LISP and Functional Programming, 226-234, 1982. 
[7] Ehrig, H., Mahr, B., Fundamentals of Algebraic Specification, vol. 1, Springer, 

1985. 
[8] Engelfriet, J., Schmidt, E.M., "IO and OI. 1," Journal of Computer and System 

Sciences, vol. 15,328-353, 1977. 
[9] Engelfriet, J., Schmidt, E.M., "IO and OI. 2," Journal of Computer and System 

Sciences, vol. 16, 67-99, 1978. 
[10] Goguen, J.A., Meseguer, J., "Completeness of Many-Sorted Equational Logic," 

SIGPLANNotices, vol. 16, no. 7, 1981. 
[11] Goguen, J.A., Meseguer, J., "Universal realization, persistent interconnection 

and implementation of abstract modules," in Proc., 9th Int. Coll. on Automata, 
Languages and Programming, LNCS, vol. 140, Springer, 1982. 

[12] Goguen, J.A., Meseguer, J., "Remarks on Remarks on Many-Sorted Equational 
Logic," SIGPLANNotices, vo[. 22, no. 4, 41-48, April 1987. 

[13] Goguen, J.A., What is unification? A categorical view of substitution, equation, and 
solution, Tech. Rep. CSLI-88-124, Center for Study of Languages and 
Information, 1988. 

[14] Hennessy, M.C.B., "The semantics of call-by-value and call-by-name in a 
nondeterministic environment," SIAMJ. Comput., vol. 9, no. 1, 1980. 

[15] Hesselink, W.H., "A Mathematical Approach to Nondeterminism in Data 
Types," ACM Transactions on Programming Languages and Systems, vol. 10, 1988. 

[16] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall International 
Ltd., 1985. 

[17] Hutgmann, H., Nondeterministic Algebraic Specifications, Ph.D. thesis, Fakultat fglr 
Mathematik und Informatik, Universit~t Passau, 1990. 



438 

[18] 

[19] 

[2o1 

[21] 

[22] 

[23l 
[24] 

[25] 

[26] 

[27] 

[281 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

[361 

[37] 

[38] 

[39] 

[401 

[41] 

[42] 

Hugmann, H., Nondeterminism in Algebraic Specifications and Algebraic Programs, 
Birkhauser, 1993. 
Huet, G., Oppen, D., "Equations and Rewrite Rules: A Survey," in Formal 
Language Theory: Perspectives and Open Problems, Academic Press, 1980. 
Kaplan, S., "Conditional Rewriting," in Conditional Term Rewriting Systems, 
LNCS, vol. 308, Springer, 1987. 
Kaplan, S., "Rewriting with a Nondetermfnistic Choice Operator," Theoretical 
Computer Science, vol. 56, 37-57, 1988. 
Kapur, D., Towards a theory of abstract data types, Ph.D. thesis, Laboratory for 
CS, MIT, 1980. 
Milner, R., Calculi for Communicating Systems, LNCS vol. 92, Springer, 1980. 
Mosses, P.D., "Unified Algebras and Institutions," in Proc. of UCS'89, Fourth 
Annual Symposium on Lofftc in Computer Science, 1989. 
Nipkow, T., "Non-deterministic Data Types: Models and Implementations," 
Acta Informatica, vol. 22, 629 - 661, I986. 
Nipkow, T., "Observing nondeterministic data types," in Recent Trends in Data 
Type Specification, LNCS, voL 332, Springer, 1987. 
Nourani, F., "On induction for program logic: Syntax, semantics, and inductive 
closure," EATCS Bulletin, vol. 13, 1981. 
Plotkin, G., "A power domain construction," SIAM Jour. Comp., vol. 5, no. 3, 
452 - 487, 1976. 
Plotkin, G., Apt, KR., "Countable Nondeterminism and Random Assignment," 
Tech. Rep. University of Edinburgh, 1982. 
Sondergaard, H., Sestoft, P,  Non-Determinacy and Its Semantics, Tech. Rep. 
86/12, Datalogisk Institut, Kobenhavns Universitet, January 1987. 
Smyth, M.B., "Power domains," J. of Computer and System Sciences, vol. 16, 
1978. 
Volger, H., "The semantics of disjunctive deductive databases," in CSL'89, 
LNCS, vol. 440, Springer, 1989. 
Walicki, M.A., Meldal, S., "Singular and plural nondeterministic parameters," 
SIAM Journ. of Computing (submitted),. 
Walicki, M.A., Meldal, S., "A complete calculus for the multialgebraic and 
functional semantics of nondeterminism," ACM Transactions on Programming 
Languages and Systems (submitted),. 
Walicki, M., Meldal, S., "Sets and Nondeterminism," in Proc. of the Workshop on 
Lofftc Programming with Sets: ICLP'93, 1993. 
Walicki, M., Algebraic Specifications of Nondeterminism, Ph.D. thesis, University 
of Bergen, Department of Informatlcs, 1993. 
Walicki, M., Meldal, S., "Initiality + Nondeterminism Implies Junk," m Proc. of 
NIK'93, Haveraaen, M., Tapir, November 1993, pp. 129-138. 
Walicki, M., Meldal, S., "Multialgebras, Power Algebras and Complete Calculi of 
Identities and Inclusions," to be publsihed in Recent Trends in Data Type 
Specifications, LNCS 1995. 
Winskel, G., "An introduction to event structures," LNCS, vol. 354, Springer, 
1988. 
Wirsing, M., Algebraic Specification, Tech. Rep. MIP-8914, Universitat Passau, 
1989. 
Wirsing, M., "Algebraic Specification," in Handbook of Theoretical Computer 
Science, vol. B, The MIT Press, 1990. 
Wolter, U., Lowe, M., "Beyond Conditional Equations," in CAAP'92, LNCS, vol. 
581, Springer, 1992. 


