
Polynomia l Algor i thms for the Synthes is of
Bounded Nets *

Eric Badouel, Luca Bernardinello, and Philippe Darondeau

Irisa, Campus de Beaulieu, F-35042 Rennes Cedex, France
E-mail : {Eric.Badouel, Luca.Bernardinello, Philippe.Darondeau)@irisa.fr

Abstract . The so-called synthesis problem for nets, which consists in decid-
ing whether a given graph is isomorphic to the case graph of some net, and
then constructing the net, has been solved in the litterature for various types
of nets, ranging from elementary nets to Petri nets. The common principle
for the synthesis is the idea of regions in graphs, representing possible exten-
sions of places in nets. However, no practical algorithm has been defined so
far for the synthesis. We give here exphcit algorithms solving in polynomial
time the synthesis problem for bounded nets from regular languages or from
finite automata.

1 I n t r o d u c t i o n

The so-called synthesis problem for nets consists in deciding whether a given graph
is isomorphic to the case graph of some net, and then constructing the net. This
problem has been solved for various types of nets, ranging from elementary nets to
Petri nets. However, no practical algorithm has been defined so far for the synthesis.
In this paper we give an explicit algorithm for the synthesis of bounded nets from
finite automata. This algorithm is polynomial in time (and space) in the size of
the automata. We also consider a variant of the synthesis problem which consists in
deciding whether a given regular language is the language accepted by some bounded
net, and then constructing the net. We give an independent algorithm solving this
problem. This algorithm is polynomial in time (and space) in the size of regular
expressions in "failure tree form". Any regular language can be described by such
an expression, that can be derived (in exponential time) from a finite automaton
recognizing the language.

Ehrenfeucht and Rozenberg addressed in [ER90] the problem of characterizing
axiomatically the class of simple directed graphs labeled on arcs which may be
represented unambiguously by a set of subsets of an overall coding,set together
with a set of mutual differences between them. Central to that work is the concept
of region in a graph, defined as a set of vertices which are entered, exited, or left
invariant by all arcs with an identical label. The overall coding set for a graph may
always be chosen as its set of regions. A region is a property of the vertices it contains.
Conversely, a vertex may be represented as the set of regions which it belongs to, and

* This work was partly supported by the French P.R.c. ModUles et Preuves, by the H . C . M .

Network Express, and by the H.C.M. fellowship granted to Luca Bernardinello, on leave
from the University of Milan.

365

that representation is unambiguous if and only if every pair of vertices is separated
in the usual sense by some region. Since all arcs with an identical label carry the
same change of properties, a label may be represented as the mutual difference
between the respective sets of properties of the source and target vertices of any arc
associated with that label in the graph, and that representation is unambiguous due
to simpleness. The graph may be reconstructed from the set of mutual differences if
each vertex which is not the origin of any arc with a given label is separated from
that label by some region, which means that the region contains all the origins of the
arcs carrying that label, but not the considered vertex. The so-called regional axioms
specify those two different requirements of separation. Ehrenfeucht and Rozenberg
applied the regional axioms to solve the synthesis problem for elementary nets in
[ER90]. Given a simple directed graph labeled on arcs, they construct from that
graph an elementary net with one place per region, one transition per label, and
with flow relations between places and transitions laid down according to the mutual
differences between vertices seen as sets of places, or markings. The case graph of the
net assembled in this way is isomorphic to the given graph if and only if that graph
is an elementary transilion system, which implies essentially that the two regional
axioms are satisfied. It is worth noting that in case the given graph is the case graph
of an elementary net, the construction leads to a saIurated version of that net, where
extra places have been added without disturbing the behaviour but only copies of
those places can still be added. Desel and Reisig observed in [DR92] that one may
optimize the solution of the synthesis problem by computing any reduced set of
regions sufficient to ensure satisfaction of the regional axioms in the graph. Along a
similar line, Bernardinello proved in [Ber93] that the set of minimal regions (w.r.t.
set inclusion) is adequate for that purpose. Unfortunately, this result does not seem
to lead specially to practical algorithms with low complexity.

We will show that standard techniques of linear algebra lead to smooth algorithms
for the synthesis of bounded nets in the extended framework of general regions, which
were introduced under variant forms by Droste and Shortt [DS93], Mukund [Muk93],
and Bernardinello, De Michelis and Petruni [BDP93]. General regions are multisets
where regions are sets. A general region in a labeled graph is a multiset of vertices
whose rank of membership is modified by a uniform translation along all arcs with an
identical label. Since ranks of membership are whole numbers, uniform translations
on ranks are defined by relative numbers. A general region is a property which
may be satisfied at different degrees, measured by ranks of membership of vertices.
In a dual way, a vertex may be represented as the multiset of properties which it
satisfies at some positive rank. Given a simple directed graph labeled on arcs, one
can construct all induced place transition net with one place per general region,
one transition per label, and with arcs between places and transitions weighted by
norms of uniform translations and directed according to the signs of their defining
numbers. Here again, the place transition net assembled in this way is a saturated
net and its ease graph is isomorphic to the given graph if and only if that graph
satisfies the two regional axioms, restated in terms of ranked membership.

The object of this paper is to provide practical algorithms for deciding satisfaction
of the regional axioms in a finite graph and for computing in that case just enough
general regions to induce a place transition net with an isomorphic case graph. We
leave for further study possible extensions to particular classes of infinite graphs. For

366

sure, a finite graph is never the case graph of an unbounded Net. We shall therefore
deal exclusively with bounded nets, whose precise definition is given in section 2.

We tackle in a first stage a relaxation of the synthesis problem for bounded
nets, which is addressed in section 3 for languages defined by regular expressions. A
language closed under left factors may be identified with a deterministic labeled tree.
Regions in a language may therefore be defined as general regions in the underlying
tree. Of special interest since we deal with bounded nets are general regions with
bounded rank of membership, which we call bounded regions. The synthesis problem
for languages is not quite the same as for labeled graphs: the sole constraint on the net
assembled from regions in a language is to behave according to that language, which
is significantly weaker than having a case graph isomorphic to the underlying tree.
This weaker requirement is met if and only if that tree satisfies the second regional
axiom, which was observed by Hoogers, Kleijn and Thiagarajan in the context of
trace languages [HKT92]. A region in a language is totally determined by an offset,
which is the rank of membership of the empty word, and by a vector of displacements,
which are relative numbers defining the uniform translations attached to labels.
Abstracting a little more, one may forget about offsets and consider abstract regions
defined as vectors of relative numbers, or yet equivalently as morphisms from the free
monoid over the set of labels to the additive monoid of relative numbers. The abstract
regions which are the projections of the bounded regions in a regular language form
a module of finite dimension over 2~. We will show that deciding whether a regular
language satisfies the second regional axiom and computing in that case a bounded
net with equivalent behaviour may be reduced to solving finite linear systems over the
integers, uniform in the regular expression. We evolve therefrom a practical method
for the synthesis of bounded nets, based on polynomial algorithms discovered in the
late seventies for linear programming over the rational field. Altogether, we obtain
a polynomial algorithm for the synthesis of nets from regular expressions in the so-
called failures tree form (which in particular means they are represented by trees
labeled with action symbols and starred expressions).

We tackle in a second stage the general synthesis problem for bounded nets,
which is addressed in section 4 for finite automata. Since we are back in the frame-
work of labeled graphs, the first regional axiom is re-imposed. A general region in a
finite automaton is determined by an offset, which is the rank of membership of the
initial state, and by a vector of relative numbers which associate uniform transla-
tions to labels. A region in a finite automaton is always a region in the language of
the automaton, but the converse is not true. The set of abstract regions in a finite
automaton is a submodule of the module of abstract regions in the language of the
automaton. The abstract regions which are projections of bounded regions are the
solutions of a system of linear equations which express equality constraints relative
to states, stronger in general than the boundedness constraints relative to the lan-
guage of the automaton. Altogether, one retrieves the constraints set on synchronic
dislances in [BDP93], which shows that abstract regions are in a one-one correspon-
dence with synchronic distances. The advantage of the more algebraic view taken
here is to lead directly to algorithms. We will show that deciding whether a finite
automaton satisfies the two regional axiom and then computing a bounded net with
equivalent behaviour, reduce again to solving finite linear systems over the rational
field, uniform in the automaton. Altogether, we obtain a polynomial algorithm for
the synthesis of nets from finite automata.

367

2 N o t a t i o n s for P e t r i N e t s

We adopt in this paper a notation for Place/Transition nets slightly different from
the usual one; this should not cause confusion.

Def in i t ion 2.1 (Nets) A net is a structure N = (P,T, W), where P and T are
disjoint sets, of places and transitions respectively, and W : P • T ~ 2~ is the
weight function. The set of input (rasp. output) places of a transition t is the set "t
(rasp. t ') of places p such that W(p , t) < 0 (rasp. W(p, t) > 0). A marking of X is
a map m : P---* lN.

Nets are usuMly equipped with a flow relation F C_ (P • T) U (T • P) and a weight
function W : F --* Er +. We can adopt here a more compact notation because we
consider exclusively pure nets, i.e. nets such that Vx,y E P U T (x, y) E F ::~
(u, x) r F.

The overall behaviour of a Place/Transition net is determined by the so-called firing
rule which tells that a transition is enabled at a marking if that marking supplies
enough resources in each of its input places.

Def in i t ion 2.2 (F i r ing rule) Let N = (P, T, W) be a net and M a marking of N;
a transition t E T is enabled at m if Vp E P M(p) + W(p, t) >_ O. I f transition t is
enabled at marking M, then it can fire; in doing so, it produces a new marking M',
defined by Vp E P M'(p) = M (p) + W (p , t) . This fimng step is denoted M[t> M'. A
sequence of trans~lions u = tit2 " "tn zs enabled at a marking Mo if 3M1,.. .)kin such
that Mi-1 [ti > Mi, for all i = 1 , . . . , n. This firing sequence is denoted Mo[u > Mn.

While the overall behaviour of a Place/Transition net reflects its whole structure,
one is most often interested in restricted behaviours induced by initial markings.

Def in i t ion 2.3 (Marked ne t) A marked net is a structure N = (P,T, W, Mo),
where (P, T, W) zs a net and Mo : P ---* 177 is the initial marking. The set of reachable
markings of N is the smallest set A/I(N) of markings such that

1. Mo �9 ./vI(N),
2. i f M �9 A,4(N) and M [t > M ' then M' �9 A4(N).

The marking graph of N is the labeled transition system rig(N) with set of states
.h,4(N), initial state Mo, set of labels T, and set of labeled transztions Tr(N) C
.M(N) • T • .M(N) defined by (M , t , M ') �9 T r (N) r M[t> M'. The language of
net N, or equivalently the language of the marking graph rig(N), is the set of all
sequences of transitions enabled at Mo (thus this language is prefix closed).

Of special interest in this paper are marked nets with finite sets of reachable mark-
ings. A relaxed form of finiteness may be defined as follows.

Def in i t ion 2.4 (B o u n d e d ne t) A place p of a marked net N = (P, T, W, Mo) is
bounded if the set {M(p)[M �9 A4(N)} ~s finite. A marked net with bounded places
is called a bounded net.

368

Droste and Shortt observed in [DS92] that a bounded net with finitely many tran-
sitions must have a finite set of reachable markings. Hence any bounded net with
finite dimension may be transformed into a finite equivalent net.

3 Regions in Regular Languages

The goal of the section is to solve the following problem:

P r o b l e m 3.1 Given a prefix-closed language L C A*, decide whether there exists a
marked net with language L and if so, construct such a net.

We will present a polynomial algorithm which answers this problem for regular
languages. The basic constituent of the proposed solution is the principle of abstract
regions which may in fact be applied to arbitrary languages. We shall therefore cast
the definition of regions in a general context, and subsequently focus on regular
languages.

Throughout the section, let L denote a prefix-closed language over a finite alpha-
bet A = {a l , . . . , an} , ranged over by a, and for any map p :A --~ ~, let ~ :A* --*
denote the monoid morphism ~(ua) = ~(u) + p(a). Thus in particular 0 E ~(L),
where/~(n) = {~(u) l u e L}.

3.1 Reg ions in Formal Languages

An abstract region in a prefix-closed language L over alphabet A is a morphism from
A* to 2~, satisfying the requirement that L should be mapped to an interval of z~
bounded from below. If one imagines the morphic image of a word in L as the measure
of variation of an abstract resource through a deterministic process, the requirement
guarantees that starvation may be avoided globally by feeding in every process in L
with a fixed amount of initial resource. Bounded abstract regions, which will play an
essential role in our study of regular languages, satisfy the stronger requirement that
L should be mapped to a finite interval of 2~, reflecting the intuition that a language
considered as a non-deterministic process can only produce a bounded amount of
resource.

Def in i t i on 3.2 (Regions of a l anguage) A region of L is a map p : A ~ ~ such
that the set {~(w)] w e L} has an infimum. A bounded region of L is a region p of
L such that the set {F3(w) I w E L} has also a supremum. Let RL, resp. BRL denote
the set of regions, resp. bounded regwns of L.

The algebraic properties of abstract regions which follow immediately from the def-
inition are gathered below.

Fact 3.3 The sets RL and BRL are closed under poinlwise sum of maps, and the
null region Po with constant value po(a) -= 0 is the neutral element for sum. Moreover,
the set BRL is closed under inverses. Thus RL is a monoid, and BRL is an abelian
group.

369

As already observed in [BDP93], the bounded regions of a language over alphabet
A are a subgroup of the free abelian group of maps from A to 5 , which is finitely
generated since A is finite. As a consequence, BRL is also a free group with a finite
set of generators, which is tantamount to a module of finite dimension over 2g. In
order to recover concrete regions from abstract regions, it suffices to attach to each
abstract region p E RL the minimal offset ML(p) such that any possible displacement
tS(u) associated with some word u E L leads therefrom to a non negative value
ML(p) q- ~(u). The term region is used in all the sequel as an abbreviation for
abstract region.

We are now in a position to derive marked nets from prefix-closed languages: the
transitions are the symbols in the alphabet, the places are regions, and the weight
functions are set in agreement with the values of regions.

D e f i n i t i o n 3.4 (Ne t s d e r i v e d f r o m l a n g u a g e s)

1. The saturated net Af(L) derived from L as the net (RL, A, W, ML), where W (p, a) =
p(a) for p �9 RL, and ML(p) = - inf{b() I u L) .

2. For any set of regions R C RL, the R-net derived from L is the sub-net of A/'(L)
with set of places R.

3. In particular, the saturated bounded net /3A/'(L) derived from L is the sub-net
olAf(L) with set of places BRL.

Notice that since L is prefix-closed ML(p) >_ O. We are mostly interested in deter-
mining the necessary and sufficient conditions under which the languages of the nets
Af(L) or BA/'(L) coincide with the language L. Those conditions may be stated in
terms of the following properties of separation.

D e f i n i t i o n 3.5 (S e p a r a t i o n p r o p e r t i e s for l a n g u a g e s) Let R C RL be a subset
of regions of L, then L is said to be separated by _R if and only if for all word u,
(u ~ L ~ 3p �9 R ML(p)+~(u) < 0). The language n is separated if it is separated
by RL, and boundedly separated if ii is separated by BI:g L.

R e m a r k 3.6 We say that a region p of L kills the word ua whenever ML(p) +
fi(ua) < 0 whereas ML(p)+fi(u) ~ O. Thefore a prefix-closed language L is separated
by R if and only if every faulty word u. a E (L. A) \ L is killed by some region of R.

E x a m p l e 3.7

1. Let L be the (prefix-closed) regular language a* + a*b then necessarzly p(a) > 0
for every region p of L, thus no region p E RL kills the word ba and L is not
separated (sznce b E L and ba ~ L).

2. Let L be the (prefix-closed) regular language a* +a(a*)b(a*) then L is separated,
but L is not boundedly separated, since any region p of L which kills the word
b f[L sat,sties p(a) > 0 (any region p of L must satisfy ML(p) + fi(ab) > 0).

3. Let L be the prefix-closure of the language {(a.-d)r~b(c.-O)nin �9 1N}, which zs alge-
braic but not regular, then L is separated by a finite set of regions but it cannot be
separated by any set of bounded regions (if it was, L would be regular according
to the remark of Droste and Schorll).

370

The places of a net may always be identified with regions in the language of that
net, moreover the language of a net is separated by the set of regions associated with
places in the net, even though Mr.(p) does not necessarily coincide with the value
of the initial marking of the net at the place associated with p.

P r o p o s i t i o n 3.8 A prefix-closed language L coincides with the language of the R-
net derived from L iff st is separated by R.

Coro l l a r y 3.9

1. A prefix-closed language L coinczdes with the language of the saturated net A/'(L)
~ff it is separated.

2. A prefix-closed language L coincides with the language of the saturated bounded
net BA/'(L) iff it is boundedly separated.

Observe that no place (except places obtained from existing places by possibly in-
creasing their values at the initial marking) can be added to the saturated net A/'(L)
derived from a separated language L without modifying its behaviour (and sim-
ilarly for bounded places w.r.t saturated bounded nets and boundedly separated
languages). In the rest of the section, we concentrate on the problem of synthesizing
bounded nets from regular expressions.

3.2 C o m p u t i n g a Basis for B o u n d e d Regions in a Reg u l a r Language

We already observed (see Fact. 3.3) that the bounded regions of a prefix-closed
language form a module of finite dimension over ~,. Our purpose is now to design an
algorithm which computes in polynomial time a basis of that module for any prefix-
closed and regular language given by a regular expression. Let us fix the notation.

Def in i t ion 3.10 (R e g u l a r express ions) A regular expression over alphabet A is
an expression E in the B.N.F. syntax E ::-- ~ I a [E + E I E• E] E* , where a C A.

Regular expressions E are mapped to regular languages]El by the obvious morphism
[" I, which is onto. By abuse of notations, we shall often extend to regular expressions
notations defined for their languages, for instance BRE will stand for the module of
bounded regions of the language [E I. From now on, E is a fixed regular expression
denoting a prefix-closed language. We will show that the module of regions BR13
is the kernel of a linear system over ,~, obtained by decomposing E into so-called
cyclic factors, next translated independently to equations whose unknowns are the
values p(a l) , . . . , p(an) of an abstract region.

Def in i t ion 3.11 (Cycl ic fac tors of a r egu la r express ion) A cyclic factor of the
regular expression E is the zmage of an iterated sub-expression F ore (i.e. such that
F* appears in E) by the shortcut operator .~ with inductive definition as follows:
(E*) ~ = ~, (E x E ') ~ = (E) ~ x (Z ') ~, (E + E ') ~ = (E) ~ + (E ') ~, a ~ = a, r =~.
Let CF(E) denote the set of cyclic factors orE.

O b s e r v a t i o n 3.12 The sum of sizes of the cyclic factors o re is bounded from above
by the size of E.

371

P r o p o s i t i o n 3.13 A map p : A --+ 2~ is a bounded region of the language defined
by E iff ~(Ei) = {0} for every cyclic factor Ei orE.

Propos i t ion 3.13 shows tha t the module BRE of bounded regions of E is the ker-
nel K e r (M E) of a l inear map ME : ,~n ---+ ~ , opera t ing on n-vectors p =
< p(al) , p(a~) > which represent maps p : A ~ 2g, where A = { e l , . . . , an) . For
each cyclic factor Ei of E , the condi t ion ~(Ei) --0 {0} laid down by the proposi t ion
may in fact be t rans la ted in po lynomia l t ime to an equivalent condi t ion Mi(p) = O,
where Mi is a l inear map from 2g n to ~zm, for some finite dimension mi bounded
from above by the size of Ei. The overall dimension m = ~ { m i l E i E CF(E)} is
then bounded from above by the size of E.

We give here the sketch of a polynomial algorithm computing the integer matrix
Mi from the cyclic factor E,. Let E,,j be an enumeration of the regular sub-
expressions of E,, where E, = E,,0 and 0 < j < p,, and let {x~ I 0 < j ~ p,} be a
set of integer variables. Each variable zj is aimed at representing the contents of the
corresponding set tS(E,,3), which must be a singleton set in order that condition
~(E,) = {0} may be satisfied. Let {yk I 1 < k < n} be another set of integer
variables, aimed at representing the values p(ak). By iterating the following step
indexed by j , one assembles a system of hnear equations in variables xj and yk.
For each j E {0 ,p,}:

1. if E,,3 = r write the equation zj = 0;
2. if E,,j = ak, write the equation z~ = yk;
3. if E,,j = E,,j 1 • Ei,3~, write the equation xj = z31 + x32;
4. if E,,j = E, m + E~,32, write the pair of equations xj = z~l and z~ = zj~

Let the equation zo = 0 be added to the system assembled in this way. The operator
M, is finally obtained by gaussian elimination of the variables z 3.

Once an (mi • n) m a t r i x Mi such tha t M~ p = 0 iff ~(Ei) = {0} has been ob ta ined
for each cyclic factor Ei of E, i t only remains to pile up all the matr ices M~ in order
to form an (m x n) m a t r i x Mz satisfying BRE = {p I MEp = 0}. At this stage,
the a lgor i thm of yon zur Ga then and Sieveking (see [Sch86] p.58) m a y be used to
compute in po lynomia l t ime a family of vectors P l , . �9 Pt of integers such tha t

with P l , . . . , Pt l inearly independent . In the sequel, { P l . . . P t } is assumed to be a
fixed basis of the module of bounded regions of the language defined by the expression
E.

3 .3 D e c i d i n g u p o n S e p a r a t e d n e s s o f a R e g u l a r L a n g u a g e

Resting upon the avai labi l i ty of computable bases for modules of regions, we now
intend to design an a lgor i thm deciding whether a prefix-closed and regular language
is boundedly separa ted or equivalently, whether it coincides with the language of
a bounded net. We do not know how to solve this problem in po lynomia l t ime for
a rb i t r a ry regular expressions. We shall therefore focus on a special form of regular ex-
pressions, allowing to decide on separatedness in po lynomia l t ime. These expressions
may be seen as trees, labeled on arcs with act ion symbols or s tar red expressions, such
tha t any restr ic t ion of a tree T to a par t icu lar branch induces a regular language
where all words are failure equivalent in ITI.

372

D e f i n i t i o n 3.14 (R e g u l a r e x p r e s s i o n s i n t r e e f o r m) A regular expression in tree
form is a regular expression T written according to the restricted syntax

T:::~ I a x r I E*• I T+T,

where E is a regular expression. The branches of T are the regular expressions ~n
the set br(T) defined as

br() = br(T1 + T2) = u
br(a x T) : {a x B I B 6 br(T)} br(E* x T) = {E* x B [B E b r (T) }

Clearly, every regular expression may be set in tree form, bu t tha t t ransformat ion
may induce an exponential increase in size.

Consider for instance the indexed family of regular expressions Er~ - (e + a + b) x
... x (e + a + b), where E= contains n occurrences of the symbol a (or b). The
language IE, I contains exactly the words of length less than or equal to n over the
alphabet {a, b}. The tree-like expansion of En contains 2" - 1 occurrences of the
symbol a (or b), and the minimal words on two letters which do not belong to [E,~t,
i.e. the words of length n + 1, are 2 =+t in number. Our algorithm will take one
step for each of these faulty words, and thus altogether 2 n+l steps, for deciding on
separatedness, when the constant region p(a) = p(b) --- - 1 with offset ML(p) = n
suffices to separate IE~[!

D e f i n i t i o n 3.15 (R e g u l a r e x p r e s s i o n s i n f a i l u r e s t r e e f o r m) A regular expres-
sion in failures tree form is a regular expression T in tree fo rm such that

VB E br(T) Vu, u' 6 IBI Va E A u . a 6 IT l r u ' . a 6 IT[

One can natural ly decide whether a regular expression is in failures tree form, but
the decision algorithm is exponential. In order to show tha t every regular expression
may be set in failures tree form, we sketch below an (exponential) a lgori thm which
produces such expressions from deterministic finite au tomata .

Let A = (Q, A, T, q0, F) be a deterministic automaton, with initial state qo E Q and
final states F C Q, recognizing a regular language L. For q, q' 6 Q and R C Q, let
Lq,q,R denote the set of non-empty words al �9 �9 �9 an labeling sequences of transitions

a l qo --+ ql ~ q2 . . . qn-1 22, qn such that qo = q , q , E R r o r l < i < n - l ~ a n d q n = q ' .
Similarly, let Lq R denote the set which contains the empty word if q E F, and in

any case the non-empty words al . . . an labeling sequences of transitions qo 2s q1
a 2 a n -+ q2 . . . qn-1 "+ qn such that qo = q, qi E R for 1 < i < n - 1, and qn E F f'l R.
Then the following equations

L = L~o

L~=~/L~\{qh * q , q j .LRq \{q} if q 6 R

{ e + ~ a. Lu~ if q E F

L~ q • q'' q' e R = if q ~ R
C a. iq R, otherwise

q ~ q t q*eR

373

produce a regular expression in failures tree form for language L, with branches
Ro)* . (LRX ~* an *

(Lqo,qo �9 al , - q , , q , , . a s . . . (L q . , q ,)

a 2 a n such that q0 -~ ql --* q2 . . . %-~ ~ q,~, q,+a E R, --- Q\{q0,. . . ,q,-1}, and q~ E F.

The main interest of the failures tree form lies in the next two propositions. From now
on, let T be a fixed regular expression in failures tree form, denoting a prefix-closed
language over A = { a l , . . . , an}.

P r o p o s i t i o n 3.16 {~(w) t w E T} = {~(w) I w E T ~} for every bounded region p
o f t (where .Q is the shortcut operator, see Def. 3.11).

P r o p o s i t i o n 3.17 T is boundedly separated iff every faulty word w E (T~A \ T) is
killed by some bounded region of T.

Let {uh [1 < h < t iT) be an enumeration of T ~, and let {vk] 1 < k < KT) be an
enumeration of (TQA \ T). HT and KT are clearly bounded from above by linear
functions of the size of T. In view of Def. 3.5, a bounded region p E BRT kills a
faulty word vk iff)tit (p)+ t~(vk) < 0, with MT (p) = --inf{~(w)]w E T}. In view of
Prop. 3.16, MT(p) = --inf{t~(uh) [Uh E T~). Thus, by Prop. 3.17, T is boundedly
separated iffthe following problem may be solved for every k (with 1 < k < KT):

P r o b l e m 3.18 F~nd a linear combination p = Aa Pl + . . .+ A~ Pt of the base vectors
of the module BRT such that ~(vk) - ~(uh) < 0 for every h (with 1 < h < HT).

We address now the above problem for a fixed word v~ E (TQA \ T). Let x = <
x l , . . . , x ~ > be the Parikh image of v~, where xl counts the occurrences of hi.
Similarly, let Yh be the Parikh image of uh. Each condition ~(vk) - ~(Uh) < 0
induces a corresponding constraint on the unknown A = < A1,. . . , At > (E ~) , viz
the inequation: A~ p~ (x - Yh) + - . . + At Pt (x - -yh) < 0. Assembling the constraints
for 1 < h < FIT, one obtains ~ linear system

Mka < (-1) Hr (1)

where Mk is an integral matrix and (-1) HT = < - 1 , . . . , - 1 :> (e ~HT). ~u claim
that (1) has an integral solution iff it has a rational solution. A rational solution
A = < z l /n l , zr > gives indeed rise to an integral solution nA for any common
multiple n of the denominators nl. At this stage, the method of Khachiyan (see
[Sch86] p.170) may be used to decide the feasability of (1) and to compute an explicit
solution, if it exists, in polynomial time. Thus, every instance of Prob. 3.18 is solved
explicitly, or shown unfeasible, in polynomial time.

Now, deciding whether T is boundedly separated takes polynomial time, since it
reduces to solving KT instances of Prob. 3.18.

3.4 C o m p u t i n g a F i n i t e N e t f r o m a R e g u l a r L a n g u a g e

Let T be a boundedly separated, prefix-closed, and regular language. Thus, every
faulty word vk E (T~A \ T) is killed by some region p~ E BRT. Let R = {p~ I 1 <
k _< KT}, where p~k kills vk. In view of Prop. 3.8, T coincides with the language of
the R-net derived from L, i.e. the finite net (R, A, W, M) with W(p~, a) = p~(a)
and M(p~) = - inf{/5~(Uh) I 1 < h < HT}. Hence the results of the section may be
summarized as follows.

374

T h e o r e m 3.19 Let T be a prefix.closed language given by a regular expression in
failures tree form, then one may decide whether 17"1 coincides with the language of
some finite net and construct that net in polynomial time.

4 R e g i o n s in F i n i t e G r a p h s

The goal of the section is to solve the following problem:

P rob l e m 4.1 Given an A-labeled graph G, decide whether there exists a marked net
with marking graph isomorphic to G and if so, construct such a net.

We will present a polynomial algorithm answering this problem for finite graphs. The
basic constituent of the" proposed solution is again the principle of abstract regions,
but regions in graphs are more tightly constrained than regions in languages, as
will appear soon. Since equality of languages is strictly weaker than isomorphism of
graphs, the synthesis problem for languages is a weakening of the synthesis problem
for graphs. Nevertheless, we do not know any polynomiM reduction of one problem
to the other. We propose therefore two variant but not directly related algorithms
for solving the two different synthesis problems.

The principle of regions applies more generally to infinite graphs. We shall there-
fore introduce regions for general graphs, and then focus on finite graphs.

4.1 Some G r a p h Termino logy

Def ini t ion 4.2 (Graphs) A graph G = [S, iF] is given by a set S of nodes, a
set T of transitions (or arcs), together with two maps 0 ~ 01 : T "-+ S , indicaling
respectively the source and target of transitions. A path in G is a finite sequence of
transitions tl . . . tk where 01(tl) = Oe(t i+l) for i < k. Nodes O~ and 01(t~) are
the extremities, or respectively the initial and terminal nodes of the path. A chain
in G is a path in the graph [S,T + T-1], where a~ -1) = al(t) and 01(t -1) = 0~
for t E T. A cycle is a chain with zdentical extremities. A cycle which is a path is
directed. A rooted graph is a graph with a distinguished node, called the initial node.
Paths from the initial node are initial paths. An accessible graph is a rooted graph in
which every node, to the possible exception of the initial node, is the terminal node
of some imtial path.

Defini t ion 4.3 (Labeled Graphs) A labeled graph G = [S, 7", A, l] is a graph
IS, T] enriched w~th a labeling function l : T ---+ A, where A is the set of actions.
A labeled graph ,s deterministic if (0~ = O~ ') A l(t) = l(t')) ~ 01(t) = 01(t').
The label of chain c, denoted t(c), is the sequence of actions a and inverse actions
a -1 labeling arcs on that chain. The Parikh image of a chain e, denoted 7r(e), is the
evaluation of its label l(c) in the commutative group FeG(A) freely generated by A.
The language L(G) C_ A* of graph G is the set of labels of initial paths in G.

Observe that Fca(A) can be identified with the set of maps p : A ---+ 2~ equipped
with pointwise sum, which permits to represent the elements of the commutative
group as A-indexed vectors of integers. Henceforth, for any map p : A ~ ~, let

375

: F e e (A) ~ 2~ denote the group morphism ~(ua) = ~(u)+p(a), where u E Fcv(A)
and a e A U 2 -1 (C FoG(A)). Thus in particular, ~(a -~) = -15(a) = -p(a) . The
map (~) is related to the map (:) used in the preceding section by the formula

O b s e r v a t i o n 4.4 /~(u) = ~(ev(u)), where ev (the evaluation map mentioned in
Def.~.3) takes a wordu e (A+A-1) * (i.e. a sequence of actions and inverse actions)
to the vector whose component in a is the difference between the respective numbers
of occurrences of a and a -1 in u: ev(u)(a) --- ~u(a) - ~u(a-1).

4.2 Reg ions in Access ib le G r a p h s wi th D e t e r m i n i s t i c Labe l ing

An abstract region in an accessible graph represents a resource, measured at each
node by a displacement (w.r.t. the initial amount) which must be the same through
any initial path leading to that node.

Def in i t i on 4.5 (Regions in accessible g raphs wi th d e t e rm in i s t i c label ing)
A region of G is a region of L(G) which gives identical value to all labels of initial
paths having the same terminal node, i.e. p E RL(e), and for every initial paths Pl,
P2, [01(Pt) -- 01(P2) ~ ~(l(pl)) = ~(l(p2)). Let RG, rasp. B n e denote the set of
regions, rasp. bounded regions of G.

Again, -Ra is a monoid, B R a is an abelian group, and concrete regions p : S ~ / N
may be derived from abstract regions p : A --~ ~, where G = [S, T, A, l], by assigning
to each node s E S, reached by some initial path ps, the value Me(p) + th(Tr(ps))
(=Me(p) + ~(l(p,)) by Obs. 4.4) where Me(p) = ML(G)(P). Likewise, nets derived
from graphs are defined by a straightforward adaptation of Def.3.4.

Definition 4.6 (Nets derived from graphs)

1. The saturated net A/'(G) derived from G is the net (Rc, A, W, Ma), where
W(p, a) = p(a) for p E Ra, and Me(p) = - inf{/~(u) I u E L(G)).

2. For any set of regions R C RG, the R-net derived from G is the sub-net of A/'(G)
with set of places R.

3. In particular, the saturated bounded net B.V'(G) demved from G is the sub-net
of A/'(G) with set of places B R a .

However, it does not suffice, for obtaining the necessary and sufficient conditions
under which the marking graphs of nets A/(G) or 13A/'(G) are isomorphic to the
given graph G, to translate literally to graph terminology the properties of separation
defined earlier for languages, because isomorphism of graphs is stronger than equality
of languages. The adequate properties for graphs are the following.

Def in i t i on 4.7 (S e p a r a t i o n p r o p e r t i e s for g raphs) Let G = [S, T, A, l]. Two
nodes s, s' E S are separated by a region p C Rc if ~(u) r ~(u') for some words
u, u I labeling initial paths with terminal nodes s, s ~. Let R C RG be a subset of regions
of G. Graph G is separated by R if L(G) is separated by R and every non identical
pair s, s ~ E S is separated by some p E R. Graph G is separated if it is separated by
Re , and boundedly separated if it is separated by B R c .

376

Since the places of a net may always be identified with regions of its marking
graph, the marking graph of a net is necessarily separated. The converse is stated
in Prop. 4.8 and its corollary.

P r o p o s i t i o n 4.8 An accessible graph wzth deterministic labeling zs isomorphic to
the derived R-net if, and only if, il is separated by R.

C o r o l l a r y 4.9 Given an accessible graph G with deterministic labeling:

1. G is isomorphic to the marking graph of the saturated net N(G) iff it is separated;
2. G is isomorphic to the marking graph of the saturated bounded net B N (G) iff it

is boundedly separated.

Observing that every region in a finite graph is finite, we concentrate in the rest of
the section on the problem of synthesizing finite nets from finite graphs.

4.3 Reg ions in F i n i t e Access ib le G r a p h s w i t h D e t e r m i n i s t i c L a b e l i n g

From now on, G -- [S, T, A, 1] is a finite accessible graph with deterministic labeling
on A - { a l , . . . , am}. Therefore, Ra = BRG, and this module is a sub-module of the
finite dimensional ~'-module BRL(a). In a first stage, we will provide an algorithm
which computes in polynomial t ime a basis for the module of regionsRe. Let us start
with an algebraic characterization of regions.

P r o p o s i t i o n 4.10
1. A map p : A --~ z~ is a bounded region of the language L(G) ~ff fi(lr(c)) = 0 for

every directed cycle e ,n G.
2. A map p: A --~)g is a bounded reg,on of graph G ,ff fi(Tr(c)) = 0 for every cycle

c i n G .

Proposition 4.10 tells us that Re , the module of regions of G represented as n-
vectors < p(al) , p (a .) >, is the kernel of a linear transformation from ~zn to 2~ a
for a equal to the cardinal of the set of cycles in G. Surely, a may be infinite, but
there are at most n linearly independent constraints rr(c) �9 p = 0 imposed by cycles
c on regions p. According to a usual practice in graph theory (see e.g. [Ber70]),
let us represent a cycle c as a vector c E (T --+ 2~). It is a well known fact that
all vectors representing cycles in G may be generated from a basis of u(G) linearly
independent vectors, with u(G) = ITI- ISl + 1. Let us observe that 7r is a linear
operator from Fee(T) (= (T --+ 2g)) to Fee(A) (= (A --* 2~)). Therefore, u(G)
equations of the form rr(c) �9 p = 0 suffice to generate all of them! Summing up, the
following proposition holds.

P r o p o s i t i o n 4.11 Let { c l , . . . , cv(e)} be a basis of cycles of G = [S, T, A, l], where
T = {Q.. . t~n} and A = {a l , . . . , an} , then Re is the kernel of the linear transfor-
mation defined by the (u(G) • n) matriz M e with integral elements:

MG(i , j) = ~ { c i (t k) I (1 < k < m) ^ (l(t~) = a~)}.

If we can compute the integral matrix Me, the algorithm of von zur Gathen and
Sieveking yields now in polynomial time a basis of linearly independent vectors
{Pl p~} for the module of regions Re.

377

4.4 C o m p u t i n g a S p a n n i n g Tree a n d a Bas is o f Cyc les fo r G

We show here how to compute (in polynomial time) a basis of cycles for a finite
and accessible graph G = IS, 7']. In view of the following proposition, borrowed from
[GM85], this task reduces to constructing a spanning tree in graph G.

P r o p o s i t i o n 4.12 (G o n d r a n a n d M i n o u x) Let G = IS, T] be a finite graph with
p connected components. Let Y: = [S, U] be a maximal forest (i.e. graph without
cycle} in G. For t E (T - U), let c t be the cycle with set of arcs U + {t} (this cycle is
unique up to reversal}. Cycles c t, for t ranging over (T - U), form a basis of cycles
of G, with dimension u(G) = tTI - ISI + P.

In case when G is an accessible graph, the maximal forest of the proposition may
naturally be chosen among the spanning trees rooted at the initial node of the graph.
Constructing a spanning tree takes polynomial time, hence computing a basis of
cycles for G takes polynomial time.

4.5 D e c i d i n g u p o n S e p a r a t e d n e s s o f a F i n i t e Access ib le G r a p h

Let G = IS, T, A, l] be a finite accessible graph, and let Span(G) be a spanning tree
of G. By Def. 4.7, graph G is separated if and only if the following problems are
solvable:

P r o b l e m 4.13 For each non identical pair of initial paths p,pt in Span(G), includ-
ing the empty path ~, find a linear combination p =)U Pl + �9 .. +)~t Pt of the base
vectors of the module RG such that/~(Tr(p)) 5s ~(Tr(p')).

P r o b l e m 4.14 For each action a E A and for each initial path p in Span(G) such
that (l(p) . a) ~[L(G), where posszbly p = e, find a linear combination p = A1 Pl q-
�9 ..+)~t Pt of the base vectors of the module Rc such that fi(~r(p))+p(a)-~(~r(p')) < 0
for every path p' in Span(G).

Now Prob. 4.13 is trivial, whereas Prob. 4.14 may be solved in polynomial time
following Khachiyan's method (along the same lines as in section 3.3). Hence, we
can sum up the section as follows.

T h e o r e m 4.15 Let G be a finite and accessible graph with determznistic labeling,
then one may decide whether G is isomorphic to the case graph of some finite (and
irreducible) net, and construct that net, in polynomial time.

5 C o n c l u s i o n

In the introduction the notion of synchronic distance is briefly mentioned; it was
introduced, in the context of net theory, by C.A. Petri as a tool to measure the
relative degree of freedom between sets of transitions in a concurrent system. The
close relation between synchronic distances and regions has been discussed in some
detail in [BDP93] -where further references can be found-. In brief, to each region in
a separated graph corresponds a finite synchronic distance and vice versa. Actually,

378

the existence of a bounded abstract region in a language or in a graph implies
a constraint on the relative frequence of execution of the transitions affecting the
region itself. The range of variation of the region, that is, the difference between
its minimum and maximum values, is a measure of the reciprocal independence:
higher values mean looser constraints. This is in agreement with the interpretation
of regions as abstract resources shared by transitions, given in this paper. Hence,
the algorithms presented here can be seen as a way to compute efficiently synchronic
distances.

The results presented in this paper should be contrasted with the one in [BBD95]
where we prove that the synthesis problem for elementary net systems is NP-
complete, thus extending complexity results by Hiraishi [Hir94].

R e f e r e n c e s

[BBD95] BADOUEL, E., BERNARDINELLO, L., and DARONDEAU, PH., The Synthesis Prob-
lem for Elementary Net Systems is NP-Complete. Irisa/Inria research report to appear
(1995).

[Ber70] BERGE, C., Graphes et hypergraphes. Dunod, Paris (1970).
[Ber93] BERNARDINELLO, L., Synthesis o / N e t Systems. Application and Theory of Petri

Nets, Springer-Verlag Lecture Notes in Computer Science, vol. 691 (1993) 89-105.
[BDP93] BERNARDINELLO, L., DE MICHELIS, G., and PETRUNI, K., Synchronic dis-

tances as Generalized Regions. Rapporto Interno n. 107-93, Dipartimento di Scienze
deU'Informazione, Universits degli Studi di Milano (1993).

[DR92] DESEL, J., and REISIG, W., The Synthesis Problem o] Petri Nets. TUM research
report, Munich (1992).

[DS92] DROSTE, M., and SHORTT, R.M., Bounded Petri Nets of Finite Dimension have
only Fin'itely Many Reachable Markings. Bulletin of the European Association for Com-
puter Science, number 48, (1992) 172-174.

[DS93] DROSTE, M., and SHORTT, R.M., Petm Nets and Automata with Concurrency Re-
la t ions- an Adjunction. in "Semantics of Programming Languages and Model Theory",
M. Droste and Y. Gurevich eds(1993) 69-87.

[ER90] EHRENFEUCHT, A., and ROZENBERG, G., Partial 2-structures ; Part I : Basic No-
tions and the Representation Problem, and Part II : State Spaces of Concurrent Systems,
Acta Informatica, vol 27 (1990).

[GM85] GONDRAN, M., and MINOUX, M., Graphes et algorithmes. Eyrolles, Paris (1985).
[Hit94] HIRAISHI, K., Some complexity results on transitions systems and elementary net

systems. Theoretical Computer Science 135 (1994) 361-376.
[HKT92] HOOGERS, P.W., KLE~JN, H.C.M., and THIAGA~tAJAN, P.S., A trace semantics

for Petri nets. Springer-Verlag, Lecture Notes in Computer Science, vol. 623 (1992) 595-
604.

[Muk93] MUKtYND, M., Petri Nets and Step Transition Systems. International Journal of
Foundation of Computer Science, vol 3, n ~ 3 (1993).

[Sch86] SCHRIJVErt, A., Theory of Linear and Integer Programming. John Wiley (1986).

