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A b s t r a c t .  We address the specification and verification problem for 
process calculi such as Chocs, CML and Facile where processes or func- 
tions are transmissible values. Our work takes place in the context of a 
static treatment of restriction and of a bisimulation-based semantics. As 
a paradigmatic and simple case we concentrate on (Plain) Chocs. We 
show that  Chocs bisimulation can be characterized by an extension of 
Hennessy-Milner logic including a constructive implication, or function 
space constructor. This result is a non-trivial extension of the classical 
characterization result for labelled transition systems. In the second part 
of the paper we address the problem of developing a proof system for the 
verification of process specifications. Building on previous work for CCS 
we present a sound proof system for a Chocs sub-calculus not including 
restriction. We present two completeness results: one for the full specifi- 
cation language using an infinitary system, and one for a special class of 
so-called well-described specifications using a finitary system. 

1 I n t r o d u c t i o n  

In  the last years there has been a rising interest in calculi and p r o g r a m m i n g  
languages where complex d a t a  such as processes and funct ions are transmissible 
values [3, 5, 11, 13, 18]. At  least two main  mot ivat ions  for these studies can be 
identified: (i) to  generalize the functional  model  of  computa t ion  to  a parallel 
a n d / o r  concurrent  f ramework,  and (ii) to  model  the not ion of  code t ransmiss ion 
which is relevant to the p rog ramming  of  dis t r ibuted systems. 

A key issue in these languages is the interact ion between process t ransmis-  
sion and the  static scoping discipline for communica t ion  channels. Here we con- 
sider Thomsen ' s  Plain  Chocs. This is an extension of  CCS where processes are 
transmissible values and  the restr ict ion opera tor  is subject  to  a static scoping 
discipline. 

A considerable effort has been put  into the development  of  a bis imulat ion 
based semantics for this calculus (c.f. [18, 2, 14]). The  specification of  Plain  
Chocs processes (and processes in related calculi) is a much  less developed topic. 
Two notable  a t t empts  in this direction are described in [17, 6]. These works are 
based on logics ext rac ted  from a domain  theoret ic  in terpre ta t ion of the calculus, 
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following general ideas described in, e.g., [1]. This approach has been rather  
successful in the case of dynamic scoping. On the other hand it is not clear 
how to obtain a fully abstract denotational semantics of restriction in the case 
of static scoping (c.f. [12] for some typical problems). This motivates our shift 
towards an operational approach to the problem, along the lines of Hennessy 
and Milner [8]. 

What to specify? First, let us fix some notation for a process calculus of higher- 
order processes: c!P.P' is the process which sends P along the channel c and then 
becomes P', c?x.P is the process which performs an input along the channel c, 
and upon reception of some process Q becomes [Q/x]P. In uc.P the restriction 
operator  u creates a new channel which will be local to the process P.  Finally 
+ is the non-deterministic choice, I is the parallel composition, and 0 is the nil 
process, with the usual CCS semantics [9]. We briefly refer to this calculus as 
Chocs, after [17]. 

Second, we should determine some requirements for our candidate specifica- 
tion logic. Roughly, we expect it to be an extension of Hennessy-Milner logic 
which characterizes some standard Chocs bisimulation. 

Previous work on extending Hennessy-Milner logic to calculi including value 
and channel transmission (c.fl [4, 7, 10]) relies on the recurrent idea of introducing 
modalities tha t  state properties of the transmit ted values. For instance, one can 
specify that  a process P can output  the value 3 on channel c and then satisfy 
property r by writing: P : @!3).r 

This approach does not seem to scale up to process transmission. The naive 
idea of writing: 

P : (c!r162 if P c.~' Q and P '  : r  and Q : r 

does not take into account the fact tha t  P '  and Q might share local channels. 
For instance, consider the process P = ua.c!(a?x.x).a!O.Q. In this example the 
actions of the process t ransmit ted on channel c and of the relative continuation 
are clearly inter-dependent. We did not find any satisfying way to express this 
dependency. An alternative is to express properties of processes like P above in 
terms of the effect the output  has when P is put  in a receiving environment. Since 
receiving environments are just abstractions this suggests a simple extension of 
Hennessy-Milner logic by means of a constructive implication, say 0 .  We can 
now write specifications such as: 

P :  [c?](r ~ r  Q :  (c!}((r ~ r  ~ V) 

For inputs the interpretation is the expected one: P satisfies [c?](r =~ r  if 
whenever P makes an input action on channel c and receives an input satisfying 
r then the continuation will satisfy 9. In a first approximation, the intuition 
for output  is the following: Q satisfies (e!)((r ~ 9) =a 7) if it is possible for 
Q to output  a process, say Q1, along c such that  in any receiving context, 
say Ax.Q2, if Ax.Qe satisfies r =a 9 ,  and if Q3 is the continuation of Q after 
performing its output,  then ([Q1/x]Q2) [ Q3 satisfies v. In general Q1 and-Q3 
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may share channels local to Q, say cl, ...,c~, whose scope is extruded by the 
output  communication. Note that  in the specification we never need to speak 
about these extruded channels. 

Operational Semantics. Reflecting this intuition, a labelled transition system is 
given to Plain Chocs that  maps (closed) processes to (closed) process functionals, 
depending on the action performed. More precisely, a process Q rewrites by an 
input action to a process function Ax.Q2 and by an output  action to  a process 
functional Af.~cl...c~. (fQ1 I Q3), where, as above, Q1 is the t ransmit ted process, 
Q3 is the continuation, and cl .... , c~ are shared local channels. The result of a 
communication is simply computed by applying the process functional to the 
process function: 

(Af.~,c~...c,~.(fQ~ I Q3))(Ax.Q2) - vc~...c,,([Q~/x]Q.2 I Q3) 

The standard rules for substitution avoid clashes between local channels. Also 
note that  in this formulation Plain Chocs actions coincide with standard CCS 
actions. Of course one has to pay a price for this, namely one has to lift the notion 
of bisimulation higher-order by introducing a suitable notion of exponentiation. 
Section 2 will show that  this can be achieved in an elegant and simple way. 
It should be remarked that  the resulting bisimulation coincides with the one 
considered in [2, 14], which in turn  has been shown to be compatible with the 
~-calculus semantics. 

Logical Characterization. Having found a suitable way to specify properties of 
Chocs processes we pursue our programme of relating logical equivalence to 
bisimulation equivalence. In the CCS case, this is achieved by means of a co- 
inductive view of bisimulation. Roughly, the bisimulation relation, say ~,  can be 
seen as the limit of a descending sequence of equivalence relations ~ .  Equiva- 
lence in ,-,~ is then related to logical equivalence w.r.t, formulas having modal 
depth bound by k. In the higher-order case the task is complicated by the con- 
travariance of the constructive implication in its first argument. This is discussed 
in more detail in section 2 once some notat ion has been introduced. We obtain 
a logical characterization of Chocs bisinmlation modulo a technical lemma that  
relates the approximation ~k to a sharpened approximation ~ .  

Towards a Proof System. As a second contribution, we address the problem of 
developing a sound and complete proof system to verify tha t  a process meets (or 
realizes) a specification. We found a simple and clean solution for the restriction- 
free fragment of the calculus. The basic j udgmen t / "  F- P : ~b states that  the pro- 
cess P realizes the specification r under the hypothesis / ' .  Hypotheses state 
assumptions on the parameters of P .  The system thus allows for reasoning 
about  open processes. A rather  rough completeness result for the system can 
be achieved by the introduction of an w-rule and by the hypothesis tha t  there is 
only a finite number of channels. To give a more accurate picture of the power 
of our logical system we also exhibit a fmitary system which is complete on a 



205 

particular collection of well-described specifications. Concerning the restriction 
operator  it appears this may require considerable complication of the proof sys- 
tem as one has to represent the dependencies among functional variables and 
dynamically generated channels. We leave this problem for further investigation. 

2 T h e  C a l c u l u s  a n d  i t s  B i s i m u l a t i o n  B a s e d  S e m a n t i c s  

Language. The expressions of the language are classified in two kinds: channels 
and processes. Channels are variables and ranged over by c, d,.... Actions have 
one of the forms T, c? or c! and they are ranged over by a,  a ' , . . . .  To each 
process is associated a unique order among the orders: 0 (processes), 1 (process 
functions), and 2 (process functionals). We use x, x' ,  ..., f ,  f ' . . . ,  and F, F ' . . . ,  for 
variables of order 0, 1,2, respectively. We use z, z'... as generic variables. Open 
processes of order 0 are then generated by the following grammar: 

P: :=o lx l / e lP  + PI P t PI.c.PIc,P.PIcTx.P 

Whenever we write P[z] we intend that  z is the only variable that  can be free in 
P and moreover we identify P with the function Az.P. Thus alpha-conversion 
applies to identify P[z] with ([z'/z]P)[z'] whenever z' does not occur freely in 
Az.P, and to identify, e.g., t~c.(P[z]) with (vc.P)[z]. We also write P(z) for an 
open process in which z is the only variable that  can occur free. If z is free then 
P(z) is identified with P[z]. If z is not free then P(z) can ambiguously represent 
either a closed process or the constant function Az.P. The context will allow us 
to disambiguate this situation. 

Operational semantics. The labelled transition system is based on three kinds of 
c? c! 

judgments: P Z_~ Q, p __. Q'[x], and P --. Q"[f], where P, Q are closed processes. 
We assume that  sum and parallel composition are associative and commutative 
operators, and that  restriction commutes with parallel composition according to 
the standard law (~c.P) I P' = t,c.(P I P') whenever c is not free in P ' .  Then 

c! 
it can be showed that  whenever P ~ Q"[f] in the transition system specified 
below then Q"[f] has the form ~cl . ' "  vc~.(fP' I P")[ f ] .  Finally, note tha t  in 
the rule (!?) a second-order substitution is employed. That  is, one replaces first 
Qr[x] for f ,  and then the argument of f for x. 

c! c? (!) c!P'.P ~ ( fP '  l P)[f] (?) c?x.P --. P[x] 
(!?) if P -~ P'[f] and Q cA Q'[x] then P I Q -~ [Q'[x]/f]P'[f] 
(+) i f P - % P ' t h e n P + Q - % P '  (I) i f P - % P ' t h e n P I Q  - % P ' I Q  
(•) if P -% P' and a r c!, c? then ,c .P -% ,c.P' 

Bisimulation. Let Pro be the collection of closed processes, Pri be the collection 
of P[x] processes, and Pr2 be the collection of P[f] processes. Because of the 
input-output  actions a notion of bisimulation over Pro needs to be lifted to 
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Prl  and Pr2. For this purpose the following general notion of exponentiation is 
introduced: 

P[z] [S =~ S'] P'[z] if Q(w) S Q'(w) implies [Q(w) /z]p  S' [Q~(w)/z]P ~ 

Given a relation S over Pr~ and an action a we define the relations S[a] as 
follows, where Ido = {(P, P) [ P e Pro}, and Idl  = {(P[x], P[x]) [ P[x] e P r l} :  

S[~-] = S S[c?]. = [Ido =ez S] S[c!] = lid1 =v S] 

D ef in i t i on  1 B i s i m u l a t i o n .  A bisimulation S is a relation over Pro such that  
whenever P S Q  and P -% P ' ( z )  then for some Q'(z) ,  Q -% Q'(z)  and P'(z)S[a]Q'(z);  
and symmetrically. We denote with ,~ the largest bisimulation. 

Up to some notational conventions ,-, is the bisimulation studied in [2, 14]. 
The relation ~ is extended to process functionals by considering their equivalence 
on all closed instances, e.g. P[f] ,~ Q[f] if any R[x], [R[x]/f]P ~ [R[x]/f]Q. 
Define now the function F : Pr'~ --* P r  2 by P F ( S )  Q if whenever P -% P ' ( z )  
then Q -% Q'(z)  for some Q'(z) and P' ( z )  S[a] Q'(z); and symmetrically. Also, 
let ,,~o= Pr~, ~,~+1= F(~,~), and ~,~= N~<x ~'~. The relations ~ are extended 
to functionals following the convention for ~,. We obtain the following standard 
properties: 

P r o p o s i t i o n  2 P r o p e r t i e s  o f  F.  The set 2 Pr~ is a complete lattice when or- 
dered by set inclusion. Then: 
(1) F is monotone. 
(2) S is a bisimulation iff S C_ F(S) .  
(3) I f  {X i} ie i  is a codirected set, then F ( A i e  I Xi)  = ~ i c I  F (X i ) .  
(4) The greatest bisimulation ~ exists and coincides with ~ .  [3 

P r o p o s i t i o n 3  C o n g r u e n c e .  The relations ~ ,  for k < w, are congruences 
with respect to all the calculus operators. That is, 

Pi ~ Qi, i = 1, 2 ~ P~ + P'2 ~ Q1 + Q2, P1 ] P2 ~ Q1 ] Q2, c!P1.P2 ~'~ c!Q1.Q~ 
P ,-.,~ Q ~ uc.P ..,~ uc.Q 
P[x] ~,,~ Q[x] ~ c?x.P k c?x.Q 

P r o o f .  The only difficulty arises with parallel composition. For instance, in the 
case k = w one shows that  {(VCl.... ~cn.(P I Q), VCl. . . . ~c,~.(P ~ I Q) ) I p "" P ' }  
is a bisimulation. [] 

We give an alternative characterisation of the ,~k relations in terms of "sharp- 
ened" approximations, ~ .  These will be important  when it comes to relating 

the logical and bisimulation based equivalences. These sharpened relations ~ 
are defined as follows: 

P ~~ Q ~lw~ys 
p .~+1 Q if P -~ P'(z) then Q -~ QP(z) for some Q'(z) 

such that Pt(z) ,'.,~ Q'(z); and symmetrically 
[~~ ~~~] Oil] P[xl H i Q[X] if P[x] ~ k 
[[~~~~1 ~~~1 Q[f] P[f] ~ Q[f] if P[f] ~ k 
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We can now show that  the sharpened approximation relations coincide with 
the approximations ..~k. This result relies on the congruence properties of k .  

P r o p o s i t i o n  4. For any k < ~, ~ coincides with ~ . 

P r o o f .  By induction on k and the order. [] 

3 Logical Characterization 

Modal Formulas. Process properties are specified by the modal formulas which 
are generated by the following grammar,  where X is a countable set. As in the 
case of processes, specifications also have an order. A specification of a certain 
order can only be predicated of a process of the same order. Conjunction and 
disjunction apply to formulas of the same order. 

A V 
x E X  x E X  

The truth- and falsehood constants T and _k are defined as usual: T = A ~ and 
_L = V 0. These formulas are overloaded as they may have order 0, 1, and 2. We 
sometimes use (.) as a meta-connective ranging over {(.), [.]}. 

Realizability. We specify when a process P(z) realizes a formula 0, writ ten as 
P(z)  : r by induction on the structure of r Note that  a realizer of a formula 

r ::~ ~ is always a function, and a realizer of a modali ty is always a ground 
process. 

P(z) : V ~ x  r 
if for ~ll x �9 X ~ P ( z ) :  r 
if for some x �9 X ~ P ( z ) :  r 
if for all Q(z'), ~ Q(z ' )  : r implies ~ [Q(z')/z]P: r 
if for some P'(z), P -% P'(z) and ~ P ' ( z )  : r 

if whenever P -% P'(z), ~ P ' ( z )  : r 

The modal depth Ir of a formula r is defined as follows: 

I A . ~  r = I V . ~  0~1 = ~ p ~ l r  

Ir ~ r = I01 I(~)r = I[~]r = 1 + 101 

D e f i n i t i o n  5 Logica l  equ iva lences .  We define the family of equivalence rela- 
tions on process (functionals) , ,~ by P(z) ~ Q(z') if for all r such that  Ir -< a, 

P ( z ) :  r if and only if ~ Q(z') : r Also set: P(z) "~L Q(z') if P(z) ~ Q(z') ,  
for any a. 

P r o p o s i t i o n  6. (1) For any ,c, if P(z) ..~ Q(z') then P(z) ~ Q(z'). (2) If 
P(z) ~ Q(z') then P(z) ~L Q(z'). 
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Proof .  (1) We show that if P(z) .~  Q(z'), 1r -< a, and ~ P(z) : r then 
Q(z') : r by induction on the structure of r The only non-standard case is 

when r has the form r ~ r Suppose ~ Pi(zi) : r Then ~ [Pl(zi)/z]P : r 
By congruence of --~, [Pi (zl)/z]P ..~ [P1 (zi)/z']Q. By the induction hypothesis, 

[Pi(zl)/z']Q: r as desired. 
(2) Immediate from (i). [] 

Definition 7 Characteristic formula. For any process functional P(z), and 
ordinal k _< w we inductively define a formula C~(P(z)): 

c ~  = T 

A A V 
P&P'(z) c~EAct PLP'(z) 

c ~ + l ( p [ z l )  = A ~ c~+i([R(z')/z]P) 
R(~') 

C ' ~ ( P ( z ) )  = A 
k<w 

Observe that for any k <_ w, ICk(P(z))l <_ k. 

Proposition 8. For any k < w, 
(1) For all P(z), ~ P(z) :  C~(P(z)). 
(2) For all P(z),Q(z'), ~ P(z ) :  C~(Q(z')) iff P(z) ~ Q(z'). 

Proof .  One proves (1) and (2) at the same time, by induction on k and the 
order. We present the function case. 
(1) We have to show: ~ P[x] : AR C~+l(R) =~ Ck+Z([R/x]P) �9 Suppose that 
R' : C~+Z(R). By the induction hypothesis and (2): R' ~k+l R. By congruence: 
[R'/x]P ~ + i  [R/x]P. By ind. hyp. and (2): ~ [R'/x]P: C~+I([R/x]P). 
(2) Suppose ~ P[x]: C~+Z(Q[x]). That is, ~ P[x]: Ck+i(R) ~ c~+i([R/x]Q), 
any R. By ind. hyp and (1): ~ R :  Ck+I(R). Hence: ~ [R/x]P: Ck+i([R/x]Q). 
That is: [R/x]P ~k+i [R/x]Q. Vice versa, suppose P[x] ~k+i Q[x]. Given any 
R, let ~ R ' :  c~+i(R). Then R' ~k+i R, so [R'/x]P ~ + 1  [R/x]P "~+i [R/x]Q 
as desired. [] 

T h e o r e m  9 Logical character izat ion.  For any processes P, Q, 

P"~Q iffP"~L Q. 

Proof. Follows immediately from previous results. [] 
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A Characterization of Chocs Bisimulation. There is an alternative and natural  
definition of bisimulation, which resembles the definition of sharpened approx- 
imation. Given a relation S over Pr~ and an action a we define the relations 
S{a} as follows: 

= s s{c?}  = IS s]  s{c!} = [IS s] s]  

D e f i n i t i o n  10 M o d i f i e d  b i s imu la t i on .  A modified bisimulation S is a rela- 
tion over Pro such that  whenever PSQ and P -% P'(z) then for some Q'(z), 
Q -% Q'(z) and P'(z)S{a}Q'(z); and symmetrically. 

P r o p o s i t i o n  11. Among the modified bisimulations S such that Ido ca S and 
IS ~ S] C__ Idl there is a largest one and it coincides with the largest bisimula- 
tion. 

4 T o w a r d s  a P r o o f  S y s t e m  

As a second contribution we present a sound proof system to prove properties of 
processes stated in the finitary fragment of the Hennessy-Milner logic previously 
introduced. The following results are of a preliminary nature as they are obtained 
under the following strong assumptions: (1) We drop restriction. (2) We suppose 
that  the calculus has a finite number of channels. 

The restriction to finite label alphabets has two important  corollaries. First, 
the rule PAR-BOX-'/- for introducing the M-operator  for parallel compositions 
becomes finitary. This condition could be lifted if, for instance, a channel quan- 
tifier was introduced into the specification language. Indeed this appears to be 
a natural  extension. Note for example that  the property that  a process can per- 
form no actions could be stated as: Vc.([c!]_L A [~-]_L A [c?]_L). Second, the k-th 
characteristic formula of any process becomes finite, for k < w. This is quite 
useful in arguing about  the completeness of the system. We regard (1) as the 
main limitation of our system as in most applications one may assume a finite 
number of global channels. 

4.1 S y n t a c t i c  C o n v e n t i o n s  

Judgments. A context F is a set zl : r ..., z~ : ~ where all zl are pairwise 
distinct. The basic judgments are sequents of the following shape: /" F P : r  
The process P and the context F might contain variables of order 0, 1, 2. There 
can be at most one variable which is free in P and does not occur in F.  Following 
our conventions this variable should be intended as A-abstracted (note that  in 
our specific case this variable can be of order 0,1). The grammars of processes 
P0, P1, P2 of orders 0,1, 2, respectively, in a context F can be given as follows: 

P1 ::= P0[x] P2 ::= P0[f] 

In the following P will denote a generic process and r a generic formula. 
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Eta-expansions. By convention we eta-expand functional variables so that: f = 
fx[x], F = Ff[f]. This allows to fit functional variables in the grammar for 
P1 and P2. In the following we will write zl I P0. If Zl -= f l  then zl [ P0 - 
( f ix  [ P0)[x], and, similarly, i f z l  -- F1 then zl [P0 - (Fl f[Po)[f]  ( x , f  fresh 
variables). 

Interpretation. We write zl : 01 ..... z~ : r ~ P : r if for all closed P~ such that  
P i :  ~b~ (i = 1,.. . ,n) we have ~ [P1/z 1 . . . .  ,P,~/z,]P: r 

4.2 P r o o f  S y s t e m  

We divide the rules of the proof system (fig. 1) into three groups: general rules 
for the manipulation of the sequents, sequent calculus rules which allow for the 
(right and left) introduction of logical operators, and, finally, rules which exploit 
the process structure. Note that  we have omitted the rules symmetric to AND- 
L, OR-R, SUM-DIA, PAR-DIA, and PAR-DIA-'r. Really, A, V, +,  and [ should be 
understood as commutative operators. 

Most rules should be self-explanatory. The essential idea is that  in general the 
holding of F ~- P : r depends on the structure of both P and r In all cases, but 
for the modal operators, P can be dealt with uniformly - -  these are the logical 
rules, and they can be seen as coming straight from proof theory. For the modal 
operators, however, the structure of P is essential, and its transition behaviour 
is exposed by the operational semantics from which the rules for the modal 
operators are derived in a quite systematic fashion. In formulating this last set 
of rules we follow to some extent previous work by Colin Stifling [15] on proof 
systems for CCS. The rules for parallel composition are, however, somewhat 
different. The rules reflect very closely the operational semantics. The most 
involved rules are those for parallel composition. To prove a property r of a 
parallel composition, say, P [ Q, one needs in general to: (1) guess properties of 
the parallel constituents P and Q, (2) show that  they hold, and (3) show that  
the holding of these properties for the constituents entails the holding of r for 
their parallel composition. We regard this as quite natural and reflecting closely 
the compositional nature of the proof system. 

Example. In fig. 2 we give an example proof of the judgment }- al(b!O).b?y.c!O [ 
a?x.x : (r)(T)(c!)T where we have adopted the abbreviations r = r ~ r 
r = (5!)(r ~ (c!)T), and r = T ~ (c!)T. Typically, proofs are constructed 
bottom up. It is useful to consider successive refinements of the formulas involved 
in the PAR-DIA-~- rule in fig. 2. In practice one introduces formula variables which 
are incrementally resolved as the proof goes on. For instance the instantiations 
of r r and r in fig. 2 have been arrived at in this way. 

5 S o u n d n e s s  a n d  ( I n f i n i t a r y )  C o m p l e t e n e s s  

In this section we extend the system (fig. 3) by an infinitary w-rule which reduces 
the provability of open terms to the provability of their closed instances, and by 
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Sequent Structure Rules. 

HYP F, 2 : : r 1 6 2  

Logical Rules. 

F b - P ' : r  F , z : r 1 6 2  
CUT 

F F [P' /z]P:  r 

BOT-L 
F , z : •  P : r  

TOP-K 
F t - P : T  

AND-L /'~ 2: : r l- P : ~b AND-R 
F,z  : r ACe I- P :  

F ~ - P : r  F F P : r  
r k P : ~ b l A O e  

OR-L F,z  : ~bl F- P : r F , z  : r l- P : r 
F , z : r  VCe I - P :  r 

OmR 
FI -  P : r  

F I - P : r 1 6 2  

~ - L  
F F P ' : r  F , x : r 1 6 2  
F, 2: : r ~ Ce F- [zP' /x]P : r 

Process Structure Rules. 

OUT-1 
V F- ( f P ' l  P)[f]  : ~b 
F F" d P ' . P  : (c!)r 

OUT-2 

F , 2 : : r  P : r  
~ - R  

F I- P[2:] : r  # r 

F l- c!P' .P:  [~]r (c! # a) 

IN-1 
v v- P [ x ] :  r 

P ~ c?x.P : (c?)r  
IN-2 F l- c?x .P  : [a le  (c? :fi a)  

SUM-DIA 
/ ' I -  P :  (~ ) r  

V F P + P '  : (~)r  
SUM-BOX 

F l- P :  [a]~b F l- P ' :  [a le  
F F P + P '  : [c~]r 

NIL 
v e o : [~]r 

PAR-DIA 
s ~- P1 : <~>r v, 2:1 : r ~- 2:1 I Re : r 

V e P 1  IRe :  <~>r 

PAR-DIA-T 
s e 1='1 : (d!>r F l- P2 : (d?}r z l  : r ze : Ce ~- z12:e : r 

V F- P1 ] Re:  ( r} r  

PAR-BOX 

v l- P1 : [~]r c e P2:[~]r  
F, Z l : ~ h F 2 : I B P 2 : r  n 2 : 2 : r 1 6 2  ( ~ # ~ )  

v ~ pl  I Re: [~]r 

PAR-BOX-T 

v e Pl : [qr v l- P2:[~]r  
v,  x l  : r ~- x l  [ / '2 : r v ,  x2 : r ~- P1 I x2 : r 

v ~- P1 : [d?]r ^ [d!]r (all d) V ~- Pe : [d?]r ^ [d!]r (all d) 
2;1 : r 2:2 : r ~ 2:22:1 : ~b (all d) 2:1 : r z2 : r F z]2:2 : r (all d) 

F l - P ~  [ P,  : [r]r 

Fig.  1. Basic Proof System 
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I- O: T x :  (c ! )T I.- x :  {c ! )T 
g : r k gO : (c!)T 

~- go[g] : r ~ (d)T 
k b!0 : r x : r k x : r 

f :  r k f(b!O) : r 

1- g0[g] : T 
y : T k c ! 0 :  (e!)T 

k c!0M : r 
f- b?y.c!0 : (b?)r 

f :  r I- f(b]O) I b?y.~!0 : ( 'T)(e!)T 
I- a!(b!O).b?y.e!O: (a!)(r =>. ("r){c!)T) 

~- a!(b!0).b?y.~!0 I aT~.~ : ( 'T) {T) (e ! )T 

k x : r 1 6 2  

a?x.x : (a?}r  

Fig. 2. Proof example 

a rule stat ing the monotonici ty of the modal  operators.  3 The OMEGA rule 
is needed to establish a completeness result for the full specification language 
whereas the MON rule is needed to prove the completeness of the finitary system 
for a special class of so-called well-described specifications (to be described in the 
next section). First, however, we prove the soundness of the extended system. 

OMEGA 
For all P '  such that ~ P' : r F ~- [P'/z]P : r 

F , z : r  P : r  

MON F,z : r162  
r ,  x :  (~)r ~- x :  (~)r 

Fig. 3. AdditionM Rules for Completeness Results. 

P r o p o s i t i o n  12 S o u n d n e s s .  If 1" k P : r then F ~ P : r 

P r o o f .  Proofs are well-founded, countably branching trees. To every proof  one 
can associate a (transfinite) ordinal which measures its depth. Proceed by trans- 
finite induction on the proof depth. [] 

P r o p o s i t i o n  13. Suppose that there are a finite number of channels. Then, for 
any process P and number k < w: (1) C~(P) is a finite formula, (2) {C~(P)  I 
P process} is a finite set (up to identification of r with r A r  

P r o o f .  Prove 1 and 2 together by induction on k and P order. [] 

T h e o r e m  14 C o m p l e t e n e s s  for  c losed  p r o c e s s e s .  If ~ P : r then k P : r 

3 Note that in fact HYP is derivable using MON. This can be seen using a little struc- 
tural induction. 
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Proof .  Induction on the lexicographic order (1r order(C), struct(P), struct(r 
One proceeds by case analysis on the structure of P and r 

1. r ::= T I _L: Direct. 

2. r ::= ~bl A r I r Y r struct(r decreases. 
3. r ::= r ~ ~b2: order(C) decreases, use w-rule. 
4. r ::= (a)r We analyse the structure of the process P (which has order 0). 

(a) P ::= 0: Direct. 
(b) e ::= c!P.P I c?x.P: 1r decreases. 
(c) P ::= P + P: struct(P) decreases. 
(d) P ::= P [ P: There are two subeases. 

i. r ::= (a}r We give this case in some detail. 

�9 Suppose ~ P1 [ P2: (a ) r  because P1 -~ P~ and ~ P~ [ P2:  r  Let 
k = ]r a n d r  = C~(P~). We know: ~ P~: r Hence: ~ P1 : (a)~bl. 
We can conclude F P1 : (a}r by ind. hyp. on P.  
Next we show: zl : r ~ zl [ P2 : r Suppose ~ P~' : r then P~' ~ 
P~, which implies P~'[ P2 ~ P~ [ P2. Conclude: ~ P~'[ P2 : r By 
induction on [r we have: F P~' [ P'2 : r By the w-rule and PAR-D~A 
we prove: F P1 ]P2:  (a}r 

d~ 
�9 Otherwise suppose a - T and ~ P1 [ P2: (~-)~b because P1 :-* P~ [f], 

d? 
P2 --* P~[x], and ~ [P.~[x]/f]P~ : r Let k = Ir r = ck(P~[f]), 
and r = C~(P.~[x]), Clearly: ~ P1 : (d!)r and ~ P2 : (d?)r 
Conclude: F P1 : (d!)r and F P2 : (d?)r by ind. hyp. on P. 
It remains to show zl : ~bl, z2 : r ~ zlz2 : r Apply again the 
logical characterization of the , ~  relation. Then apply twice the w 
rule to get: Zl : ~bl, z2 : r F zlz2 : r Conclude F P1 I P2 : (~-)r by 
P A R - D I A - T .  

ii. r ::= [c~]r This behaves as the previous case w.r.t, the induction 
hypothesis. [] 

Remark. Note that  this proof never uses the left introduction rules (as hypothe- 
ses on the left of the sequent are eliminated by means of the w-rule). Of course 
a finitary system makes essential use of the left introduction rules, as in fig. 2. 

C o r o l l a r y  15 C o m p l e t e n e s s .  If 1" ~ P : r then F F P : r [] 

6 F i n i t a r y  C o m p l e t e n e s s  f o r  W e l l - d e s c r i b e d  S p e c i f i c a t i o n s  

In this section we seek a finer evaluation of the power and weakness of the finitary 
system, i.e. the basic proof system in fig. 1 plus the MON rule. The guiding idea is 
that  the system is complete provided specifications are presented in an "explicit" 
way. We intend to capture this idea by the concepts of k-determinedness, and 
well-describedness. 
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Def in i t ion  16. A formula r is k-determined (k < w) if there are P1 (z), .o., P~(z),  
n _> 1, such that  r --- Ck(Pl (z ) )  V ... V Ck(Pn(z)) .  

Def in i t ion  17. The class of well-described formulas is determined as follows: 

T, _L are well-described. 
r V r r A •2 are well-described if r r are. 
(a)r  is well-described if r is well-described. 
r ~ r is well-described if r well-described and r is k-determined, 1r -< k. 

Remarks. 

1. The intention is to show that  the proof system is complete on all well-formed 
judgments Zl : ~bl,..., z~ : r ~- P : r such that  r ~ ... =~ r ~ r is well- 
described. By convention we will call these judgments well-described. 

2. Every k-determined formula is well-described (easy induction). However, 
there are well-described formulas which are not k-determined, for instance: 

3. The notion of k-determined formula (and therefore also the notion of well- 
described formula) is not invariant under interpretation equivalent formulas. 
For instance, T and Vv Cl(p) are equivalent formulas but in general the 
former is not 1-determined (note that  the second formula is finite modulo 
identification of r V lb with r 

4. Note that  a k-determined formula is always realizable. 

On well-described judgments the validity of a disjunction of formulas can al- 
ways be reduced to the validity of one of the formulas. This property plays an 
important role in the following completeness proof. 

P r o p o s i t i o n  18. I f  1" ~ P : r V r then 1" ~ P : r or 1" ~ P : r 

Proof .  Suppose [r V r = k. W.l.o.g we may assume (the disjunction on the 
left can be eliminated): zl : C~(PI(z)) ,  ...,z~ : Ck(P~(z))  ~ P :  r V r 
This implies: ~ [P i (z ) /z i ]P  : r for j = 1 or j = 2. Say j = 1, then: 
Zl : Ck(Pl ( z ) )  .... ,z~ : Ck(P~(z))  ~ P :  r as if ~ Qi(z) :  Ck(Pl (z ) ) ,  i = 1, . . . ,n 
then [Qi(z) /z i ]P  ~k [pi(z) /zi]  P and therefore ~ [Qi(z) /z i ]P  : r  [] 

T h e o r e m  19 C o m p l e t e n e s s  on we l l -desc r ibed  j u d g m e n t s .  Suppose 1" 
P : r and the judgment is well-described. Then 1" ~- P : r is provable without 
the w-rule. 

Proof .  Suppose zl : r  : Cn ~ P : r As in Theorem 14 proceed by 
induction on the lexicographic order: ( l r162162  and 
by case analysis on the structure of P and r We only discuss cases which differ 
in some important way from the corresponding case in the proof of Theorem 14. 

1. r ::= r V r s truct (r  decreases. By the disjunctive property follows F 
P : r say for i = 1. By ind. hyp. 1" F- P : r Conclude by OR-R. 
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2. "r ::= r =~ r 1" k P[z] : r =~ r  iff F,z : r k P : r  and order(C) 
decreases. 

3. r ::= (a) r  We analyse the structure of the process P (which has order 0). 

(a) P ::= x: This case and the next  one do not arise in the completeness 
proof for the infinitary system. W.l.o.g suppose x : Ck(q) ~ x : (a)r 
Then ~ q : (a ) r  Distinguish two cases: 

i. (a) = {a). Then q -~ q' and ~ q': r Hence Ck(q) = (a)C~-l(q ') A 
Ct, for some r  It  follows: x : C~- l (q  ') ~ x : r  By ind. hyp. 
x : Ck- l (q  ') F x : ~b. Conclude by MoN plus AND-R. 

ii. (a) = [a]. If q can make no a transition then C~(q) =_ [c~]• Ar for 
some r Conclude from z : _L F z : ~b. Otherwise, suppose q -% q* 
then x : Ck- l (q  ') ~ x : ~b. Conclude as in the previous case. 

(b) P ::= zP: W.l.o.g. suppose F,z : Ck(q[z']) ~ zP  : (a ) r  where F _~ 
Zl : C~(ql(z')), ...,zn : Ck(q~(z')). Note that  z does not occur in P.  Let 
r - [q /z ]P .  Then ~ q[r] :  (a ) r  Hence: x : Ck(q[r]) ~ x : (a)~b and 
1" ~ P : Ck(r). By ind. hyp. (struct(P) decreases) x : C~(q[r]) F x : 
( a ) r  and F F P :  Ck(r). By ::~-L 1",z: Ck(r) ::~ C~(q[r]) F z P :  (a)r 
By AND-L 1",Z : Ck(q[z']) F zP : (a) r  D 

7 R e s e a r c h  D i r e c t i o n s  

The issue of finitary completeness, and the a t tempt  to expand the finitary com- 
pleteness result to richer types of sequent is worth further investigation. We 
discuss this through a couple of examples. 

Example 1. Consider the following valid judgment: 

x :  T k x :  { ' r )T  V [ ' r ] •  

It  is easy to see that  this judgment cannot be proved in the finitary proof system 
as it stands. One solution could be the inclusion of a rule of consequence allowing 
the inference of F, x : r F x : ~b whenever r D r is a a theorem of the modal logic 
K (c.f. [16]). Note that  K-theoremhood is decidable. This would allow inference of 
a number of distribution-like properties such as A-V distribution and distribution 
of V through (a} which are not presently derivable. However we have currently 
no completeness result for this inference system. 

Example 2. Next let us consider a more subtle valid judgment: 

f :  (17 ~ 2,) A (2, ~ 1T) F f :  • 

where 1T - C(7-) and 2~ _= C(~-.~-) (C is the characteristic formula). Proving 
this judgment amounts to realise that  there is no process function p[x] which 
can separate the processes z and ~-.~- without trying to execute them. A proof of 
this fact should rely on the structure of closed processes. For instance, one may 
consider adding an induction principle which analyses the structure of process 
(functionals). 
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Finally, yet another interesting problem which remains to be settled is that  of 
developing a proof system which can handle restriction. In order to appreciate 
the difficulties, one may try to develop rules to prove the following valid fact, 
where Nil  is a formula stating that  a process can do no action: 

~a.(b!(a?x.O).a?x.O) : (a!)(Nil  ::~ Ni l )  =v Ni l .  

Acknowledgments. We are indebted to L. Leth, S. Prasad, and B. Thomsen for 
several discussions on the topics presented here. 
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