
Reasoning about Higher-Order Processes

Rober to M. Amad io 1. and Mads D a m 2.*

1 CNRS, BP 145, Sophia-Antipolis, F-06903, France, e-mail: amadio@cma.cma.fr
2 SICS, Box 1263, S-164 28, Kista, Sweden, e-mail: mfd@sics.se

A b s t r a c t . We address the specification and verification problem for
process calculi such as Chocs, CML and Facile where processes or func-
tions are transmissible values. Our work takes place in the context of a
static treatment of restriction and of a bisimulation-based semantics. As
a paradigmatic and simple case we concentrate on (Plain) Chocs. We
show that Chocs bisimulation can be characterized by an extension of
Hennessy-Milner logic including a constructive implication, or function
space constructor. This result is a non-trivial extension of the classical
characterization result for labelled transition systems. In the second part
of the paper we address the problem of developing a proof system for the
verification of process specifications. Building on previous work for CCS
we present a sound proof system for a Chocs sub-calculus not including
restriction. We present two completeness results: one for the full specifi-
cation language using an infinitary system, and one for a special class of
so-called well-described specifications using a finitary system.

1 I n t r o d u c t i o n

In the last years there has been a rising interest in calculi and p r o g r a m m i n g
languages where complex d a t a such as processes and funct ions are transmissible
values [3, 5, 11, 13, 18]. At least two main mot ivat ions for these studies can be
identified: (i) to generalize the functional model of computa t ion to a parallel
a n d / o r concurrent f ramework, and (ii) to model the not ion of code t ransmiss ion
which is relevant to the p rog ramming of dis t r ibuted systems.

A key issue in these languages is the interact ion between process t ransmis-
sion and the static scoping discipline for communica t ion channels. Here we con-
sider Thomsen ' s Plain Chocs. This is an extension of CCS where processes are
transmissible values and the restr ict ion opera tor is subject to a static scoping
discipline.

A considerable effort has been put into the development of a bis imulat ion
based semantics for this calculus (c.f. [18, 2, 14]). The specification of Plain
Chocs processes (and processes in related calculi) is a much less developed topic.
Two notable a t t empts in this direction are described in [17, 6]. These works are
based on logics ext rac ted from a domain theoret ic in terpre ta t ion of the calculus,

* Partially supported by ESPRIT BRA 6454 CONFER. Part of the work was done
while visiting SICS.

** Partially supported by ESPRIT BRA 8130 LOMAPS.

203

following general ideas described in, e.g., [1]. This approach has been rather
successful in the case of dynamic scoping. On the other hand it is not clear
how to obtain a fully abstract denotational semantics of restriction in the case
of static scoping (c.f. [12] for some typical problems). This motivates our shift
towards an operational approach to the problem, along the lines of Hennessy
and Milner [8].

What to specify? First, let us fix some notation for a process calculus of higher-
order processes: c!P.P' is the process which sends P along the channel c and then
becomes P', c?x.P is the process which performs an input along the channel c,
and upon reception of some process Q becomes [Q/x]P. In uc.P the restriction
operator u creates a new channel which will be local to the process P. Finally
+ is the non-deterministic choice, I is the parallel composition, and 0 is the nil
process, with the usual CCS semantics [9]. We briefly refer to this calculus as
Chocs, after [17].

Second, we should determine some requirements for our candidate specifica-
tion logic. Roughly, we expect it to be an extension of Hennessy-Milner logic
which characterizes some standard Chocs bisimulation.

Previous work on extending Hennessy-Milner logic to calculi including value
and channel transmission (c.fl [4, 7, 10]) relies on the recurrent idea of introducing
modalities tha t state properties of the transmit ted values. For instance, one can
specify that a process P can output the value 3 on channel c and then satisfy
property r by writing: P : @!3).r

This approach does not seem to scale up to process transmission. The naive
idea of writing:

P : (c!r162 if P c.~' Q and P ' : r and Q : r

does not take into account the fact tha t P ' and Q might share local channels.
For instance, consider the process P = ua.c!(a?x.x).a!O.Q. In this example the
actions of the process t ransmit ted on channel c and of the relative continuation
are clearly inter-dependent. We did not find any satisfying way to express this
dependency. An alternative is to express properties of processes like P above in
terms of the effect the output has when P is put in a receiving environment. Since
receiving environments are just abstractions this suggests a simple extension of
Hennessy-Milner logic by means of a constructive implication, say 0 . We can
now write specifications such as:

P : [c?](r ~ r Q : (c!}((r ~ r ~ V)

For inputs the interpretation is the expected one: P satisfies [c?](r =~ r if
whenever P makes an input action on channel c and receives an input satisfying
r then the continuation will satisfy 9. In a first approximation, the intuition
for output is the following: Q satisfies (e!)((r ~ 9) =a 7) if it is possible for
Q to output a process, say Q1, along c such that in any receiving context,
say Ax.Q2, if Ax.Qe satisfies r =a 9 , and if Q3 is the continuation of Q after
performing its output, then ([Q1/x]Q2) [Q3 satisfies v. In general Q1 and-Q3

204

may share channels local to Q, say cl, ...,c~, whose scope is extruded by the
output communication. Note that in the specification we never need to speak
about these extruded channels.

Operational Semantics. Reflecting this intuition, a labelled transition system is
given to Plain Chocs that maps (closed) processes to (closed) process functionals,
depending on the action performed. More precisely, a process Q rewrites by an
input action to a process function Ax.Q2 and by an output action to a process
functional Af.~cl...c~. (fQ1 I Q3), where, as above, Q1 is the t ransmit ted process,
Q3 is the continuation, and cl , c~ are shared local channels. The result of a
communication is simply computed by applying the process functional to the
process function:

(Af.~,c~...c,~.(fQ~ I Q3))(Ax.Q2) - vc~...c,,([Q~/x]Q.2 I Q3)

The standard rules for substitution avoid clashes between local channels. Also
note that in this formulation Plain Chocs actions coincide with standard CCS
actions. Of course one has to pay a price for this, namely one has to lift the notion
of bisimulation higher-order by introducing a suitable notion of exponentiation.
Section 2 will show that this can be achieved in an elegant and simple way.
It should be remarked that the resulting bisimulation coincides with the one
considered in [2, 14], which in turn has been shown to be compatible with the
~-calculus semantics.

Logical Characterization. Having found a suitable way to specify properties of
Chocs processes we pursue our programme of relating logical equivalence to
bisimulation equivalence. In the CCS case, this is achieved by means of a co-
inductive view of bisimulation. Roughly, the bisimulation relation, say ~, can be
seen as the limit of a descending sequence of equivalence relations ~ . Equiva-
lence in ,-,~ is then related to logical equivalence w.r.t, formulas having modal
depth bound by k. In the higher-order case the task is complicated by the con-
travariance of the constructive implication in its first argument. This is discussed
in more detail in section 2 once some notat ion has been introduced. We obtain
a logical characterization of Chocs bisinmlation modulo a technical lemma that
relates the approximation ~k to a sharpened approximation ~ .

Towards a Proof System. As a second contribution, we address the problem of
developing a sound and complete proof system to verify tha t a process meets (or
realizes) a specification. We found a simple and clean solution for the restriction-
free fragment of the calculus. The basic j udgmen t / " F- P : ~b states that the pro-
cess P realizes the specification r under the hypothesis / ' . Hypotheses state
assumptions on the parameters of P . The system thus allows for reasoning
about open processes. A rather rough completeness result for the system can
be achieved by the introduction of an w-rule and by the hypothesis tha t there is
only a finite number of channels. To give a more accurate picture of the power
of our logical system we also exhibit a fmitary system which is complete on a

205

particular collection of well-described specifications. Concerning the restriction
operator it appears this may require considerable complication of the proof sys-
tem as one has to represent the dependencies among functional variables and
dynamically generated channels. We leave this problem for further investigation.

2 T h e C a l c u l u s a n d i t s B i s i m u l a t i o n B a s e d S e m a n t i c s

Language. The expressions of the language are classified in two kinds: channels
and processes. Channels are variables and ranged over by c, d,.... Actions have
one of the forms T, c? or c! and they are ranged over by a, a ' , To each
process is associated a unique order among the orders: 0 (processes), 1 (process
functions), and 2 (process functionals). We use x, x' , ..., f , f ' . . . , and F, F ' . . . , for
variables of order 0, 1,2, respectively. We use z, z'... as generic variables. Open
processes of order 0 are then generated by the following grammar:

P: :=o lx l / e lP + PI P t PI.c.PIc,P.PIcTx.P

Whenever we write P[z] we intend that z is the only variable that can be free in
P and moreover we identify P with the function Az.P. Thus alpha-conversion
applies to identify P[z] with ([z'/z]P)[z'] whenever z' does not occur freely in
Az.P, and to identify, e.g., t~c.(P[z]) with (vc.P)[z]. We also write P(z) for an
open process in which z is the only variable that can occur free. If z is free then
P(z) is identified with P[z]. If z is not free then P(z) can ambiguously represent
either a closed process or the constant function Az.P. The context will allow us
to disambiguate this situation.

Operational semantics. The labelled transition system is based on three kinds of
c? c!

judgments: P Z_~ Q, p __. Q'[x], and P --. Q"[f], where P, Q are closed processes.
We assume that sum and parallel composition are associative and commutative
operators, and that restriction commutes with parallel composition according to
the standard law (~c.P) I P' = t,c.(P I P') whenever c is not free in P ' . Then

c!
it can be showed that whenever P ~ Q"[f] in the transition system specified
below then Q"[f] has the form ~cl . ' " vc~.(fP' I P")[f] . Finally, note tha t in
the rule (!?) a second-order substitution is employed. That is, one replaces first
Qr[x] for f , and then the argument of f for x.

c! c? (!) c!P'.P ~ (fP ' l P)[f] (?) c?x.P --. P[x]
(!?) if P -~ P'[f] and Q cA Q'[x] then P I Q -~ [Q'[x]/f]P'[f]
(+) i f P - % P ' t h e n P + Q - % P ' (I) i f P - % P ' t h e n P I Q - % P ' I Q
(•) if P -% P' and a r c!, c? then ,c .P -% ,c.P'

Bisimulation. Let Pro be the collection of closed processes, Pri be the collection
of P[x] processes, and Pr2 be the collection of P[f] processes. Because of the
input-output actions a notion of bisimulation over Pro needs to be lifted to

206

Prl and Pr2. For this purpose the following general notion of exponentiation is
introduced:

P[z] [S =~ S'] P'[z] if Q(w) S Q'(w) implies [Q(w) /z]p S' [Q~(w)/z]P ~

Given a relation S over Pr~ and an action a we define the relations S[a] as
follows, where Ido = {(P, P) [P e Pro}, and Idl = {(P[x], P[x]) [P[x] e P r l} :

S[~-] = S S[c?]. = [Ido =ez S] S[c!] = lid1 =v S]

D ef in i t i on 1 B i s i m u l a t i o n . A bisimulation S is a relation over Pro such that
whenever P S Q and P -% P ' (z) then for some Q'(z) , Q -% Q'(z) and P'(z)S[a]Q'(z);
and symmetrically. We denote with ,~ the largest bisimulation.

Up to some notational conventions ,-, is the bisimulation studied in [2, 14].
The relation ~ is extended to process functionals by considering their equivalence
on all closed instances, e.g. P[f] ,~ Q[f] if any R[x], [R[x]/f]P ~ [R[x]/f]Q.
Define now the function F : Pr'~ --* P r 2 by P F (S) Q if whenever P -% P ' (z)
then Q -% Q'(z) for some Q'(z) and P' (z) S[a] Q'(z); and symmetrically. Also,
let ,,~o= Pr~, ~,~+1= F(~,~), and ~,~= N~<x ~'~. The relations ~ are extended
to functionals following the convention for ~,. We obtain the following standard
properties:

P r o p o s i t i o n 2 P r o p e r t i e s o f F. The set 2 Pr~ is a complete lattice when or-
dered by set inclusion. Then:
(1) F is monotone.
(2) S is a bisimulation iff S C_ F(S) .
(3) I f {X i} ie i is a codirected set, then F (A i e I Xi) = ~ i c I F (X i) .
(4) The greatest bisimulation ~ exists and coincides with ~ . [3

P r o p o s i t i o n 3 C o n g r u e n c e . The relations ~ , for k < w, are congruences
with respect to all the calculus operators. That is,

Pi ~ Qi, i = 1, 2 ~ P~ + P'2 ~ Q1 + Q2, P1] P2 ~ Q1] Q2, c!P1.P2 ~'~ c!Q1.Q~
P ,-.,~ Q ~ uc.P ..,~ uc.Q
P[x] ~,,~ Q[x] ~ c?x.P k c?x.Q

P r o o f . The only difficulty arises with parallel composition. For instance, in the
case k = w one shows that {(VCl.... ~cn.(P I Q), VCl. . . . ~c,~.(P ~ I Q)) I p "" P ' }
is a bisimulation. []

We give an alternative characterisation of the ,~k relations in terms of "sharp-
ened" approximations, ~ . These will be important when it comes to relating

the logical and bisimulation based equivalences. These sharpened relations ~
are defined as follows:

P ~~ Q ~lw~ys
p .~+1 Q if P -~ P'(z) then Q -~ QP(z) for some Q'(z)

such that Pt(z) ,'.,~ Q'(z); and symmetrically
[~~ ~~~] Oil] P[xl H i Q[X] if P[x] ~ k
[[~~~~1 ~~~1 Q[f] P[f] ~ Q[f] if P[f] ~ k

207

We can now show that the sharpened approximation relations coincide with
the approximations ..~k. This result relies on the congruence properties of k .

P r o p o s i t i o n 4. For any k < ~, ~ coincides with ~ .

P r o o f . By induction on k and the order. []

3 Logical Characterization

Modal Formulas. Process properties are specified by the modal formulas which
are generated by the following grammar, where X is a countable set. As in the
case of processes, specifications also have an order. A specification of a certain
order can only be predicated of a process of the same order. Conjunction and
disjunction apply to formulas of the same order.

A V
x E X x E X

The truth- and falsehood constants T and _k are defined as usual: T = A ~ and
_L = V 0. These formulas are overloaded as they may have order 0, 1, and 2. We
sometimes use (.) as a meta-connective ranging over {(.), [.]}.

Realizability. We specify when a process P(z) realizes a formula 0, writ ten as
P(z) : r by induction on the structure of r Note that a realizer of a formula

r ::~ ~ is always a function, and a realizer of a modali ty is always a ground
process.

P(z) : V ~ x r
if for ~ll x �9 X ~ P (z) : r
if for some x �9 X ~ P (z) : r
if for all Q(z'), ~ Q(z ') : r implies ~ [Q(z')/z]P: r
if for some P'(z), P -% P'(z) and ~ P ' (z) : r

if whenever P -% P'(z), ~ P ' (z) : r

The modal depth Ir of a formula r is defined as follows:

I A . ~ r = I V . ~ 0~1 = ~ p ~ l r

Ir ~ r = I01 I(~)r = I[~]r = 1 + 101

D e f i n i t i o n 5 Logica l equ iva lences . We define the family of equivalence rela-
tions on process (functionals) , ,~ by P(z) ~ Q(z') if for all r such that Ir -< a,

P (z) : r if and only if ~ Q(z') : r Also set: P(z) "~L Q(z') if P(z) ~ Q(z') ,
for any a.

P r o p o s i t i o n 6. (1) For any ,c, if P(z) ..~ Q(z') then P(z) ~ Q(z'). (2) If
P(z) ~ Q(z') then P(z) ~L Q(z').

208

Proof . (1) We show that if P(z) .~ Q(z'), 1r -< a, and ~ P(z) : r then
Q(z') : r by induction on the structure of r The only non-standard case is

when r has the form r ~ r Suppose ~ Pi(zi) : r Then ~ [Pl(zi)/z]P : r
By congruence of --~, [Pi (zl)/z]P ..~ [P1 (zi)/z']Q. By the induction hypothesis,

[Pi(zl)/z']Q: r as desired.
(2) Immediate from (i). []

Definition 7 Characteristic formula. For any process functional P(z), and
ordinal k _< w we inductively define a formula C~(P(z)):

c ~ = T

A A V
P&P'(z) c~EAct PLP'(z)

c ~ + l (p [z l) = A ~ c~+i([R(z')/z]P)
R(~')

C ' ~ (P (z)) = A
k<w

Observe that for any k <_ w, ICk(P(z))l <_ k.

Proposition 8. For any k < w,
(1) For all P(z), ~ P(z) : C~(P(z)).
(2) For all P(z),Q(z'), ~ P(z) : C~(Q(z')) iff P(z) ~ Q(z').

Proof . One proves (1) and (2) at the same time, by induction on k and the
order. We present the function case.
(1) We have to show: ~ P[x] : AR C~+l(R) =~ Ck+Z([R/x]P) �9 Suppose that
R' : C~+Z(R). By the induction hypothesis and (2): R' ~k+l R. By congruence:
[R'/x]P ~ + i [R/x]P. By ind. hyp. and (2): ~ [R'/x]P: C~+I([R/x]P).
(2) Suppose ~ P[x]: C~+Z(Q[x]). That is, ~ P[x]: Ck+i(R) ~ c~+i([R/x]Q),
any R. By ind. hyp and (1): ~ R : Ck+I(R). Hence: ~ [R/x]P: Ck+i([R/x]Q).
That is: [R/x]P ~k+i [R/x]Q. Vice versa, suppose P[x] ~k+i Q[x]. Given any
R, let ~ R ' : c~+i(R). Then R' ~k+i R, so [R'/x]P ~ + 1 [R/x]P "~+i [R/x]Q
as desired. []

T h e o r e m 9 Logical character izat ion. For any processes P, Q,

P"~Q iffP"~L Q.

Proof. Follows immediately from previous results. []

209

A Characterization of Chocs Bisimulation. There is an alternative and natural
definition of bisimulation, which resembles the definition of sharpened approx-
imation. Given a relation S over Pr~ and an action a we define the relations
S{a} as follows:

= s s{c?} = IS s] s{c!} = [IS s] s]

D e f i n i t i o n 10 M o d i f i e d b i s imu la t i on . A modified bisimulation S is a rela-
tion over Pro such that whenever PSQ and P -% P'(z) then for some Q'(z),
Q -% Q'(z) and P'(z)S{a}Q'(z); and symmetrically.

P r o p o s i t i o n 11. Among the modified bisimulations S such that Ido ca S and
IS ~ S] C__ Idl there is a largest one and it coincides with the largest bisimula-
tion.

4 T o w a r d s a P r o o f S y s t e m

As a second contribution we present a sound proof system to prove properties of
processes stated in the finitary fragment of the Hennessy-Milner logic previously
introduced. The following results are of a preliminary nature as they are obtained
under the following strong assumptions: (1) We drop restriction. (2) We suppose
that the calculus has a finite number of channels.

The restriction to finite label alphabets has two important corollaries. First,
the rule PAR-BOX-'/- for introducing the M-operator for parallel compositions
becomes finitary. This condition could be lifted if, for instance, a channel quan-
tifier was introduced into the specification language. Indeed this appears to be
a natural extension. Note for example that the property that a process can per-
form no actions could be stated as: Vc.([c!]_L A [~-]_L A [c?]_L). Second, the k-th
characteristic formula of any process becomes finite, for k < w. This is quite
useful in arguing about the completeness of the system. We regard (1) as the
main limitation of our system as in most applications one may assume a finite
number of global channels.

4.1 S y n t a c t i c C o n v e n t i o n s

Judgments. A context F is a set zl : r ..., z~ : ~ where all zl are pairwise
distinct. The basic judgments are sequents of the following shape: /" F P : r
The process P and the context F might contain variables of order 0, 1, 2. There
can be at most one variable which is free in P and does not occur in F. Following
our conventions this variable should be intended as A-abstracted (note that in
our specific case this variable can be of order 0,1). The grammars of processes
P0, P1, P2 of orders 0,1, 2, respectively, in a context F can be given as follows:

P1 ::= P0[x] P2 ::= P0[f]

In the following P will denote a generic process and r a generic formula.

210

Eta-expansions. By convention we eta-expand functional variables so that: f =
fx[x], F = Ff[f]. This allows to fit functional variables in the grammar for
P1 and P2. In the following we will write zl I P0. If Zl -= f l then zl [P0 -
(f ix [P0)[x], and, similarly, i f z l -- F1 then zl [P0 - (Fl f[Po)[f] (x , f fresh
variables).

Interpretation. We write zl : 01 z~ : r ~ P : r if for all closed P~ such that
P i : ~b~ (i = 1,.. . ,n) we have ~ [P1/z 1 ,P,~/z,]P: r

4.2 P r o o f S y s t e m

We divide the rules of the proof system (fig. 1) into three groups: general rules
for the manipulation of the sequents, sequent calculus rules which allow for the
(right and left) introduction of logical operators, and, finally, rules which exploit
the process structure. Note that we have omitted the rules symmetric to AND-
L, OR-R, SUM-DIA, PAR-DIA, and PAR-DIA-'r. Really, A, V, +, and [should be
understood as commutative operators.

Most rules should be self-explanatory. The essential idea is that in general the
holding of F ~- P : r depends on the structure of both P and r In all cases, but
for the modal operators, P can be dealt with uniformly - - these are the logical
rules, and they can be seen as coming straight from proof theory. For the modal
operators, however, the structure of P is essential, and its transition behaviour
is exposed by the operational semantics from which the rules for the modal
operators are derived in a quite systematic fashion. In formulating this last set
of rules we follow to some extent previous work by Colin Stifling [15] on proof
systems for CCS. The rules for parallel composition are, however, somewhat
different. The rules reflect very closely the operational semantics. The most
involved rules are those for parallel composition. To prove a property r of a
parallel composition, say, P [Q, one needs in general to: (1) guess properties of
the parallel constituents P and Q, (2) show that they hold, and (3) show that
the holding of these properties for the constituents entails the holding of r for
their parallel composition. We regard this as quite natural and reflecting closely
the compositional nature of the proof system.

Example. In fig. 2 we give an example proof of the judgment }- al(b!O).b?y.c!O [
a?x.x : (r)(T)(c!)T where we have adopted the abbreviations r = r ~ r
r = (5!)(r ~ (c!)T), and r = T ~ (c!)T. Typically, proofs are constructed
bottom up. It is useful to consider successive refinements of the formulas involved
in the PAR-DIA-~- rule in fig. 2. In practice one introduces formula variables which
are incrementally resolved as the proof goes on. For instance the instantiations
of r r and r in fig. 2 have been arrived at in this way.

5 S o u n d n e s s a n d (I n f i n i t a r y) C o m p l e t e n e s s

In this section we extend the system (fig. 3) by an infinitary w-rule which reduces
the provability of open terms to the provability of their closed instances, and by

211

Sequent Structure Rules.

HYP F, 2 : : r 1 6 2

Logical Rules.

F b - P ' : r F , z : r 1 6 2
CUT

F F [P' /z]P: r

BOT-L
F , z : • P : r

TOP-K
F t - P : T

AND-L /'~ 2: : r l- P : ~b AND-R
F,z : r ACe I- P :

F ~ - P : r F F P : r
r k P : ~ b l A O e

OR-L F,z : ~bl F- P : r F , z : r l- P : r
F , z : r VCe I - P : r

OmR
FI - P : r

F I - P : r 1 6 2

~ - L
F F P ' : r F , x : r 1 6 2
F, 2: : r ~ Ce F- [zP' /x]P : r

Process Structure Rules.

OUT-1
V F- (f P ' l P)[f] : ~b
F F" d P ' . P : (c!)r

OUT-2

F , 2 : : r P : r
~ - R

F I- P[2:] : r # r

F l- c!P' .P: [~]r (c! # a)

IN-1
v v- P [x] : r

P ~ c?x.P : (c?)r
IN-2 F l- c?x .P : [a le (c? :fi a)

SUM-DIA
/ ' I - P : (~) r

V F P + P ' : (~)r
SUM-BOX

F l- P : [a]~b F l- P ' : [a le
F F P + P ' : [c~]r

NIL
v e o : [~]r

PAR-DIA
s ~- P1 : <~>r v, 2:1 : r ~- 2:1 I Re : r

V e P 1 IRe : <~>r

PAR-DIA-T
s e 1='1 : (d!>r F l- P2 : (d?}r z l : r ze : Ce ~- z12:e : r

V F- P1] Re: (r} r

PAR-BOX

v l- P1 : [~]r c e P2:[~]r
F, Z l : ~ h F 2 : I B P 2 : r n 2 : 2 : r 1 6 2 (~ # ~)

v ~ pl I Re: [~]r

PAR-BOX-T

v e Pl : [qr v l- P2:[~]r
v, x l : r ~- x l [/ '2 : r v , x2 : r ~- P1 I x2 : r

v ~- P1 : [d?]r ^ [d!]r (all d) V ~- Pe : [d?]r ^ [d!]r (all d)
2;1 : r 2:2 : r ~ 2:22:1 : ~b (all d) 2:1 : r z2 : r F z]2:2 : r (all d)

F l - P ~ [P, : [r]r

Fig. 1. Basic Proof System

212

I- O: T x : (c !)T I.- x : {c !)T
g : r k gO : (c!)T

~- go[g] : r ~ (d)T
k b!0 : r x : r k x : r

f : r k f(b!O) : r

1- g0[g] : T
y : T k c ! 0 : (e!)T

k c!0M : r
f- b?y.c!0 : (b?)r

f : r I- f(b]O) I b?y.~!0 : ('T)(e!)T
I- a!(b!O).b?y.e!O: (a!)(r =>. ("r){c!)T)

~- a!(b!0).b?y.~!0 I aT~.~ : ('T) {T) (e !)T

k x : r 1 6 2

a?x.x : (a?}r

Fig. 2. Proof example

a rule stat ing the monotonici ty of the modal operators. 3 The OMEGA rule
is needed to establish a completeness result for the full specification language
whereas the MON rule is needed to prove the completeness of the finitary system
for a special class of so-called well-described specifications (to be described in the
next section). First, however, we prove the soundness of the extended system.

OMEGA
For all P ' such that ~ P' : r F ~- [P'/z]P : r

F , z : r P : r

MON F,z : r162
r , x : (~)r ~- x : (~)r

Fig. 3. AdditionM Rules for Completeness Results.

P r o p o s i t i o n 12 S o u n d n e s s . If 1" k P : r then F ~ P : r

P r o o f . Proofs are well-founded, countably branching trees. To every proof one
can associate a (transfinite) ordinal which measures its depth. Proceed by trans-
finite induction on the proof depth. []

P r o p o s i t i o n 13. Suppose that there are a finite number of channels. Then, for
any process P and number k < w: (1) C~(P) is a finite formula, (2) {C~(P) I
P process} is a finite set (up to identification of r with r A r

P r o o f . Prove 1 and 2 together by induction on k and P order. []

T h e o r e m 14 C o m p l e t e n e s s for c losed p r o c e s s e s . If ~ P : r then k P : r

3 Note that in fact HYP is derivable using MON. This can be seen using a little struc-
tural induction.

213

Proof . Induction on the lexicographic order (1r order(C), struct(P), struct(r
One proceeds by case analysis on the structure of P and r

1. r ::= T I _L: Direct.

2. r ::= ~bl A r I r Y r struct(r decreases.
3. r ::= r ~ ~b2: order(C) decreases, use w-rule.
4. r ::= (a)r We analyse the structure of the process P (which has order 0).

(a) P ::= 0: Direct.
(b) e ::= c!P.P I c?x.P: 1r decreases.
(c) P ::= P + P: struct(P) decreases.
(d) P ::= P [P: There are two subeases.

i. r ::= (a}r We give this case in some detail.

�9 Suppose ~ P1 [P2: (a) r because P1 -~ P~ and ~ P~ [P2: r Let
k =]r a n d r = C~(P~). We know: ~ P~: r Hence: ~ P1 : (a)~bl.
We can conclude F P1 : (a}r by ind. hyp. on P.
Next we show: zl : r ~ zl [P2 : r Suppose ~ P~' : r then P~' ~
P~, which implies P~'[P2 ~ P~ [P2. Conclude: ~ P~'[P2 : r By
induction on [r we have: F P~' [P'2 : r By the w-rule and PAR-D~A
we prove: F P1]P2: (a}r

d~
�9 Otherwise suppose a - T and ~ P1 [P2: (~-)~b because P1 :-* P~ [f],

d?
P2 --* P~[x], and ~ [P.~[x]/f]P~ : r Let k = Ir r = ck(P~[f]),
and r = C~(P.~[x]), Clearly: ~ P1 : (d!)r and ~ P2 : (d?)r
Conclude: F P1 : (d!)r and F P2 : (d?)r by ind. hyp. on P.
It remains to show zl : ~bl, z2 : r ~ zlz2 : r Apply again the
logical characterization of the , ~ relation. Then apply twice the w
rule to get: Zl : ~bl, z2 : r F zlz2 : r Conclude F P1 I P2 : (~-)r by
P A R - D I A - T .

ii. r ::= [c~]r This behaves as the previous case w.r.t, the induction
hypothesis. []

Remark. Note that this proof never uses the left introduction rules (as hypothe-
ses on the left of the sequent are eliminated by means of the w-rule). Of course
a finitary system makes essential use of the left introduction rules, as in fig. 2.

C o r o l l a r y 15 C o m p l e t e n e s s . If 1" ~ P : r then F F P : r []

6 F i n i t a r y C o m p l e t e n e s s f o r W e l l - d e s c r i b e d S p e c i f i c a t i o n s

In this section we seek a finer evaluation of the power and weakness of the finitary
system, i.e. the basic proof system in fig. 1 plus the MON rule. The guiding idea is
that the system is complete provided specifications are presented in an "explicit"
way. We intend to capture this idea by the concepts of k-determinedness, and
well-describedness.

214

Def in i t ion 16. A formula r is k-determined (k < w) if there are P1 (z), .o., P~(z),
n _> 1, such that r --- Ck(Pl (z)) V ... V Ck(Pn(z)) .

Def in i t ion 17. The class of well-described formulas is determined as follows:

T, _L are well-described.
r V r r A •2 are well-described if r r are.
(a)r is well-described if r is well-described.
r ~ r is well-described if r well-described and r is k-determined, 1r -< k.

Remarks.

1. The intention is to show that the proof system is complete on all well-formed
judgments Zl : ~bl,..., z~ : r ~- P : r such that r ~ ... =~ r ~ r is well-
described. By convention we will call these judgments well-described.

2. Every k-determined formula is well-described (easy induction). However,
there are well-described formulas which are not k-determined, for instance:

3. The notion of k-determined formula (and therefore also the notion of well-
described formula) is not invariant under interpretation equivalent formulas.
For instance, T and Vv Cl(p) are equivalent formulas but in general the
former is not 1-determined (note that the second formula is finite modulo
identification of r V lb with r

4. Note that a k-determined formula is always realizable.

On well-described judgments the validity of a disjunction of formulas can al-
ways be reduced to the validity of one of the formulas. This property plays an
important role in the following completeness proof.

P r o p o s i t i o n 18. I f 1" ~ P : r V r then 1" ~ P : r or 1" ~ P : r

Proof . Suppose [r V r = k. W.l.o.g we may assume (the disjunction on the
left can be eliminated): zl : C~(PI(z)) , ...,z~ : Ck(P~(z)) ~ P : r V r
This implies: ~ [P i (z) /z i]P : r for j = 1 or j = 2. Say j = 1, then:
Zl : Ck(Pl (z)) ,z~ : Ck(P~(z)) ~ P : r as if ~ Qi(z) : Ck(Pl (z)) , i = 1, . . . ,n
then [Qi(z) /z i]P ~k [pi(z) /zi] P and therefore ~ [Qi(z) /z i]P : r []

T h e o r e m 19 C o m p l e t e n e s s on we l l -desc r ibed j u d g m e n t s . Suppose 1"
P : r and the judgment is well-described. Then 1" ~- P : r is provable without
the w-rule.

Proof . Suppose zl : r : Cn ~ P : r As in Theorem 14 proceed by
induction on the lexicographic order: (l r162162 and
by case analysis on the structure of P and r We only discuss cases which differ
in some important way from the corresponding case in the proof of Theorem 14.

1. r ::= r V r s truct (r decreases. By the disjunctive property follows F
P : r say for i = 1. By ind. hyp. 1" F- P : r Conclude by OR-R.

215

2. "r ::= r =~ r 1" k P[z] : r =~ r iff F,z : r k P : r and order(C)
decreases.

3. r ::= (a) r We analyse the structure of the process P (which has order 0).

(a) P ::= x: This case and the next one do not arise in the completeness
proof for the infinitary system. W.l.o.g suppose x : Ck(q) ~ x : (a)r
Then ~ q : (a) r Distinguish two cases:

i. (a) = {a). Then q -~ q' and ~ q': r Hence Ck(q) = (a)C~-l(q ') A
Ct, for some r It follows: x : C~- l (q ') ~ x : r By ind. hyp.
x : Ck- l (q ') F x : ~b. Conclude by MoN plus AND-R.

ii. (a) = [a]. If q can make no a transition then C~(q) =_ [c~]• Ar for
some r Conclude from z : _L F z : ~b. Otherwise, suppose q -% q*
then x : Ck- l (q ') ~ x : ~b. Conclude as in the previous case.

(b) P ::= zP: W.l.o.g. suppose F,z : Ck(q[z']) ~ zP : (a) r where F _~
Zl : C~(ql(z')), ...,zn : Ck(q~(z')). Note that z does not occur in P. Let
r - [q /z]P . Then ~ q[r] : (a) r Hence: x : Ck(q[r]) ~ x : (a)~b and
1" ~ P : Ck(r). By ind. hyp. (struct(P) decreases) x : C~(q[r]) F x :
(a) r and F F P : Ck(r). By ::~-L 1",z: Ck(r) ::~ C~(q[r]) F z P : (a)r
By AND-L 1",Z : Ck(q[z']) F zP : (a) r D

7 R e s e a r c h D i r e c t i o n s

The issue of finitary completeness, and the a t tempt to expand the finitary com-
pleteness result to richer types of sequent is worth further investigation. We
discuss this through a couple of examples.

Example 1. Consider the following valid judgment:

x : T k x : { ' r)T V [' r] •

It is easy to see that this judgment cannot be proved in the finitary proof system
as it stands. One solution could be the inclusion of a rule of consequence allowing
the inference of F, x : r F x : ~b whenever r D r is a a theorem of the modal logic
K (c.f. [16]). Note that K-theoremhood is decidable. This would allow inference of
a number of distribution-like properties such as A-V distribution and distribution
of V through (a} which are not presently derivable. However we have currently
no completeness result for this inference system.

Example 2. Next let us consider a more subtle valid judgment:

f : (17 ~ 2,) A (2, ~ 1T) F f : •

where 1T - C(7-) and 2~ _= C(~-.~-) (C is the characteristic formula). Proving
this judgment amounts to realise that there is no process function p[x] which
can separate the processes z and ~-.~- without trying to execute them. A proof of
this fact should rely on the structure of closed processes. For instance, one may
consider adding an induction principle which analyses the structure of process
(functionals).

216

Finally, yet another interesting problem which remains to be settled is that of
developing a proof system which can handle restriction. In order to appreciate
the difficulties, one may try to develop rules to prove the following valid fact,
where Nil is a formula stating that a process can do no action:

~a.(b!(a?x.O).a?x.O) : (a!)(Nil ::~ Ni l) =v Ni l .

Acknowledgments. We are indebted to L. Leth, S. Prasad, and B. Thomsen for
several discussions on the topics presented here.

References

1. S. Abramsky. A domain equation for bisimulation. Information and Computation,
92:161-218, 1991.

2. R. Amadio. On the reduction of chocs bisimulation to ~r-calculus bisimulation. In
Proc. CONCUR 93, Hildesheim, pages 112-126. SLNCS 715, 1993. Also appeared
as Research Report Inria-Lorraine 1786, October 1992.

3. G. Boudol. Towards a lambda calculus for concurrent and communicating systems.
SLNCS, 351, 1989. In Proc. TAPSOFT.

4. M. Dam. Model checking mobile processes. In Proc. CONCUR'93, Lecture Notes
in Computer Science, 715:22-36, 1993. Full version in SICS report RR94:l, 1994.

5. A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concur-
rent and functional programming. International Journal of Parallel Programming,
18(2):121-160, 1989.

6. M. Hennessy. A denotational model for higher-order processes. In Proc. IEEE-
LICS, 1993.

7. M. Hennessy and X. Liu. A modal logic for message passing processes. Dept. of
Computer Science, University of Sussex, Report 3/93, 1993.

8. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32:137-162, 1985.

9. R. Milner. Communication and Concurrency. Prentice Hail, 1989.
10. R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. TCS,

114:149-171, 1993.
11. F. Nielsen. The typed laxnbda calculus with first class processes. Springer Lecture

Notes in Computer Science, 366, 1989. In Proc. PARLE.
12. A. Pitts and I. Stark. What's new? In Proc. Mathematical Foundations of Com-

puter Science, Gdar~sk, Poland. SLNCS 711, 1993.
13. J. Reppy. Cmh A higher-order concurrent language. In Proc. ACM-SIGPLAN 91,

Conf. on Prog. Lang. Design and Impl., 1991.
14. D. Sangiorgi. Expressing mobility in process algebras: first-order and higher order

paradigms. PhD thesis, University of Edinburgh, September 1992.
15. C. Stifling. Modal logics for communicating systems. Theoretical Computer Sci-

ence, 49:311-347, 1987.
16. C. Stirling. Modal and temporal logics. In Handbook of Logic in Computer Science

Vol. 2, Oxford University Press, 1992.
17. B. Thomsen. A calculus of higher order communicating systems. PhD thesis,

Imperial College, London, 1990.
18. B. Thomsen. Plain chocs. Acta Informatica, 30:1-59, 1993. Also appeared as TR

89/4, Imperial College, London.

