
Decidabi l i ty of Equivalence for
Determini s t i c Synchronized Tree A u t o m a t a

Kai Salomaa

Department of Mathematics, University of Turku
FIN-20500 Turku, Finland

E-mall: ksalomaa~sar a.cc.utu.fi

Abstract. Synchronized tree automata allow limited communication
between computations in independent subtrees of the input. This en-
ables them to verify, for instance, the equality of two unary subtrees of
unlimited size. The class of tree languages recognized by synchronized
tree automata is strictly included in the context-free tree languages. As
our main result we show that equivalence of tree languages recognized
by deterministic synchronized tree automata can be effectively decided.
This contrasts the earlier undecidability result for the equivalence prob-
lem for nondeterministic synchronized tree automata.

1 Introduction

The recognition capability of finite tree automata is restricted by the fact that
computations in independent subtrees of the input are not allowed to commu-
nicate with each other. The restriction is especially severe for deterministic top-
down tree automata which recognize a proper subfamily of the regular tree lan-
guages. Because of this handicap, various extensions of the finite tree automaton
model have been proposed. Top-down tree automata augmented with different
types of look-ahead capabilities are considered in [4,5,6,16,17]. Other naturM
extensions of the finite tree automaton model are the automata with constraints
and encompassment automata studied in [1,2,3].

A top-down synchronized tree automaton allows a simple limited form of
communication between independent computations. Some states of the automa-
ton contain synchronizing symbols, these are called synchronizing states. The
synchronization condition requires that the sequences of synchronization sym-
bols produced along any two paths of the input are in the prefix relation, i.e,
one is a prefix of the other. In the equality-synchronized computation mode we
require that the synchronization sequences corresponding to all paths of the in-
put are the same. Intuitively, the synchronization condition can be interpreted
by saying that when the automaton enters a synchronizing state, it must stop
and wait until all other computations in independent subtrees either terminate
successfully or enter a synchronizing state containing the same synchronizing
symbol.

The above notion of synchronization was originally introduced for alternating
machines by Hromkovi~ [9]. Synchronization has turned out to be a very useful

141

notion in the study of parallel computations, see [10,11,12] and the references
listed there. Synchronized tree automata were first considered in [14]. In spite
of the similarity of the definitions, the notion of synchronization is essentially
different, respectively, for alternating machines and for tree automata. In the
former case one synchronizes parallel computations on the same input but in
the case of tree automata synchronization represents communication between
different parts of the input. Alternating tree automata [13,15] combine these
two notions of parallelism. It is not clear what would be the right way to define
synchronization for alternating tree automata.

The inclusion relations between the families of tree languages defined by
deterministic and nondeterministic prefix- and equality-synchronized tree au-
tomata were established in [14]. Furthermore, it was shown that all synchronized
tree language families are properly included in the context-free tree languages.
This implies that emptiness is decidable for synchronized tree languages. On the
other hand, equivalence turns out to be undecidable for nondeterministic syn-
chronized tree automata. Contrasting this result it was established in [14] that
equivalence of deterministic equality-synchronized automata can be decided ef-
fectively. This question was reduced to the equivalence problem for deterministic
multitape finite automata which is known to be decidable [8]. An essential part
of the proof was the so called normalization property for equality-synchronized
automata. A normalized automaton recognizes as its extended tree language ex-
actly the set of prefix-trees of the tree language defined by the automaton. A
similar property could not be established for prefix-synchronized computations.

As our main result here we show that equivalence of deterministic prefix-
synchronized automata is decidable. As a tool for our proof we consider so called
globally deterministic synchronized tree automata. Globally deterministic syn-
chronized alternating machines are considered in [11]. We use slightly weaker
conditions to define the notion of global determinism than the conditions of the
definition of [11].

Globally deterministic automata can recognize the set of so called two-pruned
prefix-trees of a deterministic synchronized tree automaton. The (nontrivial part
of the) equivalence problem for deterministic synchronized automata can be re-
duced to the question of equivalence of the corresponding sets of two-pruned
prefix-trees. Although we do not know whether equivalence of globally deter-
ministic tree automata in general is decidable, we can effectively decide the
equivalence of the specific automata used in our proof.

The tree language families defined, respectively, by the deterministic prefix-
synchronized and equality-synchronized automata are incomparable. However,
a prefix-synchronized automaton can simulate arbitrary equality-synchronized
computations provided that we allow the use of end-markers at the leaves of the
input. This means that the decidability of equivalence for deterministic prefix-
synchronized automata gives as an immediate corollary the corresponding de-
cidability result for equality-synchronized automata.

The synchronized tree automata recognize only a small subfamily of the
context-free tree languages. However, even a deterministic synchronized automa-

142

ton can, for instance, determine the equality of unary subtrees of unlimited
height. In view of this fact the above decidability results seem to be of some in-
terest. Note tha t the au toma ta with constraints considered in [1,2,3] can verify
much more general properties of the inputs, but for them equivalence is undecid-
able. Wi thout certain restrictions even the question of emptiness is undecidable
for these au tomata .

2 Prel iminaries

Here we fix some notat ions and briefly recall definitions concerning trees tha t
will be used in the later sections.

The set of positive integers is denoted by lN and ~10 - 1%I U {0}. Let A be
a set. The power set of A is 7~(A). If A is finite we denote its cardinality by
A . The set of finite words over A is denoted by A* and ~ is the empty word.
Also, A + - A* - {~}. For w E A* and L C A*, the quotient of L by w is
w - l L = {v e A* I wv E L}. The length of a word w is denoted by Iwl.

I f w2 = WlU, Wl, w2, u �9 A*, we say that wl is a prefix of w2 and denote
wl -4 w2. The prefix relation ~_pr C - A* x A* is defined by setting wl --pr w~.
if and only if Wl -4 w2 or w2 -4 wl. Let W be a finite subset of A* such tha t
Wl --pr w~ for all wl, w2 6 W. Then max___(W) denotes the unique word w 6 W
such tha t w' -4 w for all w' 6 W.

A tree domain D is a nonempty finite subset of 1N* tha t satisfies the following
two conditions: (i) I f u -4 v 6 D, then u 6 D. (ii) For every u 6 D there exists
rankD(u) 6 lNo such tha t ui 6 D for i = 1 , . . . , r a n k D (u) and ui r D for
i > rankD(u).

Let A be a set. An A-labeled tree is a mapping t : dom(t) ~ A, where dom(t)
is a tree domain. A node u 6 dom(t) is said to be labeled by t(u) 6 A. A node
v is a child of a node u (u, v �9 dom(t)) if v = uj, j �9 ~I.

We use symbols S and $2 to denote finite ranked alphabets. The set of
symbols of 22 of rank m, m > 0, is denoted by 2:m. Let Y be a set of auxiliary
symbols. The set of SY- t rees (or 57Y-terms), F~,(Y), is the smallest set such
tha t 22oUY C_ Fz (Y) and a(t l , . . . , tm) �9 Fz (Y) for all m > 1, ~r �9 57m,
t l , . . . , tm �9 Fz(Y) . By choosing above Y = $ we obtain the definition of the set
of E-trees F z .

In the natural way, a given ZY- t ree can be viewed as a (Z U Y)-labeled tree
t : dom(t) --~ E IJ Y tha t satisfies the condition that every node of rank m is
labeled by an m-ary symbol. In the following, we use interchangeably the above
algebraic definition of a tree and the notion of a labeled tree defined using a tree
domain.

We denote by X = {zl, z2 , . . . } a fixed countably infinite set of variables.
We assume tha t notions such as the height, the root, a leaf and a subtree of a
/~X-tree t are known. The set of leaves of t is denoted leaf(t) C_ dom(t) . The set
of leaves of t labeled by elements of Z~0 is leafz (t) and leafx(t) is the set of leaves
labeled by variables of X. The set of variables appearing in a tree t �9 F z (X) is
var(t) and we say that t is linear (in variables X) if t has only one occurrence

143

of any variable of X. The set of linear ~TX-trees is denoted lin(27, X). For our
purposes the names of the variables of a 57X-tree are irrelevant and we identify
trees that are obtained from each other by renaming variables.

Let t, t l , . . . , trn E F~(X) and X l , . . . , xrn e vat(t). Then t(xl ~-- t l , . . . , x,n ~-
trn) denotes the ~TX-tree obtained from t by replacing each occurrence of the
variable xi with ti, i = 1 , . . . , m.

Let t E F2. We define the set of prefix-trees of t , pref(t), to consist of all r E
lin(E, X) with vat(r) = { x l , . . . , xm}, m >_ 0, such that there exist r l , . . . , rrn e
F~: such that r(xl ~-- r l , . . . , xrn ~ rrn) = t. The set pref(t) consists of all linear
27X-trees that are obtained from t by replacing a set of independent subtrees
by distinct variables.

To conclude this section we define notations concerning paths in trees that
will be used when considering synchronization conditions for tree automata. Let
t be an A-labeled tree for some set A. A path of t from the root to a node
urn E dom(t) is a word

t(ul).. .t(urn) C A +, (1)

where ul = A, and Ui+l is a child of ui, i = 1 , . . . , m - 1. A path (1) is denoted
path(t, urn). The set of paths of the tree t consists of all paths from the root of
t to a leaf and we denote

path(t) = {path(t, u) [u E leaf(t)}.

The domain of path(t, urn) as in (1) is defined by PATH(t, u,,,) = { u l , . . . , urn}.
Let t e F~:(X) and u e leaf(t). The set of variable nodes corresponding to

the path path(t, u), varnd-path(t, u), consists of all nodes v E leafx(t) such that
v is a child of a node of PATH(t, u) and v • PATH(t, u). Thus varnd-path(t, u)
consists of all nodes "branching out" from the path that are labeled by variables.

Let t E F2: and ul , u2 be two distinct leaves of t. Denote P(Ul,U2) =
PATH(t, Ul) U PATH(t, u2). The two-pruned tree 2pr(t, Ul, u2) is the linear s
tree r determined by the below conditions (i) and (ii).

(i) dom(r) is the subset of dom(t) containing the set P(ul, u2) and all children
of the nodes of P(ul, u2).

(ii) If u e P(ul, u2), then r(u) = t(u). If u is a child of a node of P(ul, u2) not
belonging to P(ul, u2), then u is labeled by a variable.

Intuitively, 2pr(t, ul, u2) is obtained from t by cutting off all subtrees branching
out from the paths leading to ul and u2 and replacing each subtree by a distinct
variable. The tree 2pr(t, ul, us) is defined uniquely by the above conditions be-
cause we consider trees obtained from each other by a renaming of variables to
be identical. Note that, in general, the paths from the root to the leaves ul and
us may contain a common prefix.

The set of two-pruned trees corresponding to t E F.~ is 2pr(t) =
{2pr(t, ul, u2) I ul, u2 C leaf(t), ul • u2}, and,

2pr(E) = [.J pr(t). (2)
tEF•

144

3 S y n c h r o n i z e d T r e e A u t o m a t a

We recall the definition of synchronized tree automata from [14]. Roughly speak-
ing, they are top-down finite tree automata where the computations correspond-
ing to independent subtrees of the input can communicate by way of so called
synchronizing symbols. IIere we give only the definitions that are needed for
the decidability results in the last section. For more details and examples of
synchronized tree automata see [14].

A nondeterministic top-down tree automaton, nta, is a four-tuple ,4 =
(Z, Q, Q0,g), where ~' is a ranked alphabet of input symbols, Q is a finite set
of states, Q0 c_C_ Q is a set of initial states, and g determines the state transitions
by associating to each ~ E Z m , m _> 0, a mapping erg : Q --~ •(Qm). The
automaton ,4 is deterministic, dta, if Q0 = {q0} is a singleton set and for all
q E Q, a e ,Urn, m ~ 1, #~g(q) _< 1. The class of nondeterministic (respectively,
deterministic) top-down tree automata is denoted nt (respectively, dr.)

We make the notational convention that m-tuples q l , . . . , qm belonging to
at(q), ~ E ,Urn, m >_ 1, q E Q, are denoted using square brackets: [ql , . . . , qm] E
at(q). This is done for easier readability because synchronized automata will
have states with several components. By a computation step we mean a pair
(q, ~r), q E Q, ~ E ~U. A computation step (q, ~) is said to be deterministic if
#crg(q) < 1, and otherwise it is a nondcterministic computation step.

Defini t ion 3.1 Let ,4 = (S , Q, Q0, g) E nt and t E F~. A (successful) com-
putation of A on the input t is a Q-labeled tree r : dora(t) --~ Q satisfying the
following three conditions:

(i) r(~) E Qo.
(ii) Let u e dora(t), t (u) = ~ E Sin, m > 1, and let u l , . . . , u,~ be the children

of the node u. Then [r(ul) ,.. . ,r(urn)] e o'g(r(u)).
(iii) If u e leaf(t) and t(u) = ~ e So, then r(u) e ~g.

The set of computations of ,4 on a tree t is denoted comet(t). If ,4 is deter-
ministic, then #eom.a(t) < 1 for every t E F~. The tree language recognized
by A is L(A) = {t e F2 I comA(t) # 0}. We denote the tree language fami-
lies recognized by nondeterministic and deterministic (top-down) tree automata,
respectively, NT and DT. It is well known that DT is strictly included in NT [7].

Defini t ion 3.2 [1.~] A nondeterministic synchronized tree automaton, nsta, is
a top-down tree automaton .4 = (Z , Q , Qo,g) where the state set is of the form

Q = Q1 u (Q2 x S). (3)

The set S is the synchronization alphabet and elements of S are called synchro-
nizing symbols, (sync-symbols for short). States belonging to Q2 • S are said
to be the synchronizing states of the automaton. When referring to an nsta `4,
unless otherwise mentioned, we always assume that the state set of`4 is as in (3)
and S denotes the synchronization alphabet.

145

The above automaton ,4 is a deterministic synchronized tree automaton,
dsta, if it is a deterministic top-down tree automaton. We denote the class of
nondeterministic (respectively, deterministic) synchronized tree automata by nst
(respectively, dst).

We define a morphism hA : Q* --* S* by setting h.a(ql) = A and hA((q2, s)) =
s for all qi E Qi, i = 1,2, s E S. Let t E F~. The set of synchronized computa-
tions (or prefix-synchronized computations) of ,4 on t E F~ is

scom.a(t) = {r E coma(t) I(Vu, v E path(r)) ha(u) ~-pr ha(v)}. (4)

The set of equality-synchronized computations of A on the tree t is defined as

s~com.a(t) = {r E com.a(t) I(Vu, v E path(r)) h.a(u) = h.a(v)).

The tree language (prefix-)synchronized recognized by `4 is defined as

L,(`4) = {t e F~ t scomA(t) • 0},

and the tree language equality-synchronized recognized by .4 is

Le(,4) = {t e F.v I secoma(t) r 0).

The families of tree languages synchronized recognized by nondeterministic and
deterministic automata are denoted, respectively, NST and DST. The corre-
sponding families defined by the equality-synchronized computation mode are
NeST and DeST. Here we are mainly concerned with the prefix-synchronized
computation mode and we call prefix-synchronized computations simply syn-
chronized computations.

We will need the following result concerning string languages defined as syn-
chronizing sequences of computations of tree automata. Let ,4 = (Z:, Q, Q0, g) E
nst, t E F2 and r E scom.a(t) be a synchronized computation on t. The (maxi-
mal) synchronizing sequence of the computation r is seq(r) = max_~(ha (path(r)).
The right side exists by the definition of synchronized computations. The set of
synchronizing sequences corresponding to the input t is seq(A, t) = {seq(r) I r E
stoma(t)} and the synchronization language of`4 is sync(`4) = UteF~ seq(,4, t).

T h e o r e m 3.1 [14] The language sync(,4) is a regular word language for every
,4 E nst.

For our decidability results it turns out to be useful to consider automata
that locally allow nondeterministic choices in the computation, but where the
global computation on any given input is deterministic via the synchronization
condition. We define these automata similarly as the globally deterministic syn-
chronized alternating machines of [11].

D e f i n i t i o n 3 .3 Let A = (E ,Q, Qo, g) E nst, t E Fs and let r E scom a(t) be
a synchronized computation of A on t. For each i e {1 , . . . , I seq(r) l } , the ith
synch ron i za t i on cut of r is the set scut(r,i) consisting of all nodes u E dora(r)
such that u is labeled by a synchronizing state of`4 and Iha(path(r, u))[= i.

146

The set scut(r, i) consists of exactly all nodes where the computation reaches
the ith synchronizing state in different branches of the input. From the definition
of synchronized computations it follows that every node of a given synchroniza-
tion cut scut(r, i) contains the same sync-symbol.

Defini t ion 3.4 An automaton A = (~U, Q, Qo, g) E nst, Q = Q1 u (Q2 x S) , is
globally deterministic, gdsta, /f it has a unique initial state Q0 = {q0} and the
following conditions hold.

(i) For every nondeterministic computation step (q,a), q E Q, a E Sin, m >_ 1,
the set aa(q) consists of m-tuples of synchronizing states, ~' 9(q) =
{ [(q~ , s i) , . . . , (q i , s i)] I i = 1 , . . . , k , k > 2}, and sl ~ sj when i ~ j ,
l < i , j < k .

(il) Let t E Fs and r E scom.a(t). Let scut(r,i) be a synchronization cut of
r and let s be the sync-symbol appearing in the nodes of scut(r,i). Then
s is the only sync.symbol that can be produced by all the nondeterministic
computation steps at the parent nodes of the synchronization cut scut(r,i).

The condition (i) requires that in all nondeterministic computation steps of
,4 the different nondeterministic decisions must be connected with a choice of
different sync-symbols. Thus all computation steps producing nonsynchronizing
states are deterministic. Condition (ii) guarantees that, for every synchroniza-
tion cut among all the nondeterministic choices, there is only one that does not
immediately violate the synchronization condition. This means that the global
computation is in fact deterministic. Note that (ii) above is weaker than the
corresponding condition in the definition of globally deterministic synchronized
computations in [11]. There it is required that every synchronization cut of a
successful computation contains a node where the corresponding sync-symbol is
enforced deterministically. Our condition (ii) requires only that the sync-symbol
is enforced deterministically as the only common choice for all the nondeter-
ministic steps in question. The automaton we use in the construction for the
decidability proof will have only this weaker property.

Combining the above observations it is easy to prove the following lemma.
An analogous result for synchronized alternating machines appears in [11].

L e m m a 3.1 Let .4 = (S , Q, qo, g) be a gdsta and t E F:v. Then scom.a(t) con-
sists of a unique computation or is empty.

Condition (ii) of Definition 3.4 requires that a certain property has to be
satisfied for all synchronization cuts of all successful computations of .4. Given
an automaton .4, it is not immediately obvious whether .4 satisfies the condition
(ii). It can be shown that we can effectively decide whether a given nst .4 is
globally deterministic. In any case, for the globally deterministic automata that
we use in the constructions of the next section the conditions of Definition 3.4
can be immediately verified.

The class of globally deterministic automata as given in Definition 3.4 is de-
noted gdst and the corresponding tree language family is denoted GDST. The

147

above definition of a gdsta ,4 uses explicitly the prefix-synchronized computa-
tion mode. Similarly, by considering equality-synchronized computations of the
automaton we can define globally deterministic equality-synchronized tree au-
tomata, gd~sta's. Again, the corresponding family of tree languages is denoted
GDeST.

Note that if a given nsta A is globally deterministic in the sense of Defini-
tion 3.4 (a gdsta), then A is always a globally deterministic equality-synchronized
automaton, gd~sta. This follows from the observation that for every tree t,
s~com.4(t) C_ scom.4(t). However, it is easy to see (using similar examples as
in [14]) that GDST is not a subfamily of GD~ST. This is because of course
usually Le(A) # L, (,4).

The inclusions between the tree language families defined by the various
classes of synchronized tree automata are depicted in Figure 1. In the figure a
line indicates strict inclusion and unconnected classes are incomparable. CFT
denotes the family of context-free tree languages and REC is the family of rec-
ognizable tree languages. All relations of the figure not involving the families
defined by globally deterministic automata are proved in [14]. We leave the re-
maining relations as an exercise.

REC = NT

CFT

NST

N~ST

Fig. 1

GD~ST]

DT

GDST

DST

4 D e c i d a b i l i t y o f E q u i v a l e n c e

The equivalence problem for nondeterministic prefix- and equality-synchronized
tree automata is undecidable [14]. Here we will prove that equivalence is decid-
able for DST. It was established in [14] that equivalence is decidable for D~ST.
This result follows now as a corollary of the decidability result for DST since
a prefix-synchronized automaton can simulate arbitrary equality-synchronized
computations provided that the input trees are augmented with end-markers on
each path before the leaf node [14].

148

A central tool for proving the decidability of equivalence for DeST was the
so called normalization condition. A synchronized tree automaton ,4 is said to
be normalized if any synchronized partial computation ending at leaves labeled
by variables can be completed successfully, assuming that one substitutes suit-
ably chosen ~-trees for the variables. Intuitively, we can say that a normalized
automaton does not produce synchronizing sequences that do not appear in any
successful computation. Given a dst `4 we can effectively construct a normalized
dst B such that Le(B) = Le(`4) [14], that is, equality-synchronized automata
can be assumed to be normalized. A normalized automaton .4 recognizes as its
extended tree language exactly the set of prefix-trees of the tree language defined
by `4. Using this observation we can reduce the equivalence problem for deter-
ministic normalized automata to deciding equivalence of deterministic multitape
finite automata. However, an analogous normalization result does not hold for
prefix-synchronized tree automata, see [14].

Here we will show that the set of two-pruned prefix-trees of a tree language de-
fined by a prefix-synchronized deterministic automaton can be recognized using a
globally deterministic synchronized tree automaton. This "quasi-normalization"
condition turns out to be sufficient for carrying out the rest of the decidability
proof. The crucial observation is that the automaton operating on prefix-trees
does not need to be deterministic, the weaker requirement of global determinism
suffices.

We view a computation of`4 = (Z ,Q,Qo ,g) E nst on a tree having vari-
ables as an intermediate stage of a computation that is to be continued from the
nodes labeled by variables. The set of synchronized computations of .A E nst on
t e F ~ (X) , scom~(t), is defined to consist of all labeled trees r : dom(t) ~ Q
that satisfy the three conditions of Definition 3.1 and the synchronization con-
dition given by (4). Thus, at leaves of t labeled by variables, the computations
of scomA(t) can end in an arbitrary state and it is only required that the syn-
chronization condition has not been violated up to that point.

The extended tree language synchronized recognized by ,4 is denoted

M , (A) = {t E F ~ (X) O lin(,U,X)] scoma(t) # 0}.

We restrict the SX-trees that .4 receives as inputs to be linear and we do
not distinguish between trees that differ only in the names of the variables.
The automaton .4 treats every leaf labeled by a variable identically. Clearly,
L,(.4) = M,(.4) M F2 and pref(L,(.4)) C Ms(.4). Note that this inclusion is, in
general, strict since there is no guarantee that the computations from variables
of t E Ms (.4) can be continued without violating the synchronization condition.

Let ~U be a ranked alphabet. We denote by un(E) the set of all unary ,U-
trees, that is, trees containing only symbols of rank at most one. The decision
algorithm for the equivalence problem will be based on the following lemma.

L e m m a 4.1 Let Ai -- (~ , Qi, qio, gi) E dst, i = 1, 2. Denote Yi - preJ~L,(A~))M
(,ee (2)) and Zi = L , (`4 i) n i = 1,2.

Then L, (A1) = L,(A2) if and only if Y1 = Y2 and Z 1 " - - Z 2.

149

Proof . The proof is similar to the proof of Lemma 5.5 of [14]. []
We want to show that for arbitrary dst's ,4i, i - 1,2, we can construct

globally deterministic automata that are equivalent if and only if Y1 = Y2, where
Yi = pref(/ , (Ai)) n 2pr(E). We still need some technical lemmas.

We say that `4 = (E,Q, q0,g) E dst has the end-marker property if there
exists $ E ,Ut such that for every t E L, (`4) the following holds.

(EM1) Every subtree of t of height one is of the form $(a), (r E ~U0, and the
symbol $ does not appear in t except in subtrees of height one.

(EM2) The unique computation of scom~t(t) enters each of the leaves of t in a
synchronizing state.

If ,4 has the end-marker property, then ,4 ends the computation in each branch
of the input by producing a synchronizing symbol. The following lemma states
that, when considering the equivalence problem for DST, without restriction we
can assume that the given automata have the end-marker property.

L e m m a 4.2 Let ,4i = (S, Q, qio, gi) E dst, i -- 1, 2. We can effectively construct
automata Bi = (12, P, Pio, hi) E dst having the end-marker property, i = 1, 2, such
that Ls(B1) = L,(B2) if and only ilLs(,41) = Ls(,42).

Proof . Define 12 by setting/21 = S1 O {$} and 12m = S,,~ when m # 1. Here
$ r ,U. Let c~ : F~ --* Fa be the tree homomorphism that replaces every leaf
labeled by a E E0 with the subtree $(cr). We construct Bi such that L,(Bi) =
a(L,(,4/)) , i = 1, 2. The tree language a(L,(,4/)) clearly satisfies the condition
(EM1) so it is sufficient to show that the automaton Bi, 1 < i < 2, can be made
to satisfy (EM2).

Without restriction we can assume that the initial state qio of,4i is a synchro-
nizing state. Thus we can write qio = (to,So) where so is a sync-symbol. On an
input t E Fa the automaton B/exactly simulates the computation of,4i except
that along each path of t it delays the production of the synchronizing sequence
by one step. Thus the initial state of Bi is not synchronizing and Bi produces the
sync-symbol so when ,4i would produce the next sync-symbol st on a given path.
BI then stores Sl in its finite-state memory (the nonsynchronizing component of
the states) and produces sl when ,41 would produce the following sync-symbol.
When 13i reaches a unary symbol $ it produces the previous sync-symbol of the
computation of ,4i that it is simulating. Finally, Bi simulates the computation
step of ,4i on the leaf below. The operation of Bi is completely deterministic.
For every t E Fs the unique computation of I3i on a(t) is synchronized if and
only if the computation of ,4i on t is synchronized. []

We want to develop a criterion for deciding whether a given two-pruned tree
is a prefix-tree of the tree language recognized by a dsta. In the following let
,4 = (2Y, Q, q0, g) E dst. For q E Q we denote

A(q) = (,U, Q, q, g).

`4(q) is the dsta obtained from ,4 by changing the initial state to be q.

150

Let t E M,(.4) O 2pr(S) and let r E scoma(t) be the unique synchronized
computation of .4 on t. Let ul and u2 be the two nodes o f t labeled by elements
of So and denote wi = ha(path(r , ui)), i = 1, 2. Thus wi is the synchronization
sequence corresponding to the node ul. Let v E varnd-path(t, ui), 1 < i < 2, that
is, v is a node labeled by a variable "corresponding" to the path determined by
ui. Denote v = vlj, j E I~I. Assume that, in the computation r, ,4 reaches the
node v in state qv, that is, r(v) = q,. Denote w,, = ha(path(r , v')). Then clearly
wv, ~ wi. We define the residue o f v with respect to ui in the computation r by
setting

res(v, ui) = w;,lwi.

Let WM = max={wl, w2}. The word WM is just the longer one of the two syn-
chronization sequences corresponding to the nodes ul and u2. Clearly, the syn-
chronization sequence corresponding to v ~ is a prefix of WM, Wv, ~_ WM. We
define the residue of v (with respect to both ul and u2) as

res(v) = w~,lwM.

The computation continuing from the variable at node v can be completed
successfully (with a suitable choice of the subtree to be substituted there) if and
only if res(v) is in the prefix-relation with some word w, E sync(.4(q~)). The
tree t is a prefix-tree of L~(.4) if and only if the words w~ can be chosen so
that, additionally, they are all pairwise in the prefix-relation. We note that if
we choose w. E sync(.A(q~)) to be a prefix of the word res(v) then w, does not
affect the possible choices for the computations beginning from the remaining
variables of t. We say that a node v E leafx(t) is relevant with respect to the
computation r if sync(.A(q,)) does not contain any prefix of res(v). Recall that
qv is the state where .4 reaches the node v. Combining the above observations,
we have proved the following lemma.

L e m m a 4.3 Let .4 = (S , Q , qo,g) e dst and t E M , (A) n 2pr(S). Let r be the
unique computation in scoma(t). Denote by REL the set of all relevant variable
nodes o f t in the computation r. Then t E preJ(L,(.4)) if and only if there exist
words

wv E res(v)-lsync(.4(r(v))), v e REL, (5)

such that the words w, are pairwise in the prefix-relation.

Note that if for some relevant variable node v, res(v)-lsync(.A(r(v))) = 0,
then t ~ pref(Ls(.A)), i.e., the computation cannot be continued successfully
from t. By Theorem 3.1 the languages sync(.4(q)), q E Q, are regular. Denote

~(.4) -- {w-lsync(.4(q)) [w E S*, q E Q}.

Here S is the synchronization alphabet of the automaton .4. Then all the lan-
guages belonging to ~(.4) are regular and ~(.4) contains only finitely many
different languages.

151

Let Z: be a ranked alphabet. The look-ahead alphabet corresponding to 27 is
the ranked alphabet ~ L A defined by setting

(~LA)rn = {ff[Zl, . . . , Zrn] I o" E z~rn, Z l , . . . , Zrn C ,~ U {*}},

m > 0. We define the mapping j~ : 27LA __. ~ by setting f l (a [z l , . . . , zm]) = ~,
e 27,~, m >_ 0. The relabeling F~LA (X) ~ F~(X) induced by ~ is denoted

also simply by ft.
A tree t E FSLA(X) is said to be well-formed if it satisfies the following

condition. Let u e dom(t) be a node of rank m > 1. Then t(u) = a [z l , . . . , zm],
where for j = 1 , . . . , m ,

fl(t(uj)) if t(uj) e S LA,
zj = �9 i f t (u j) E X.

The set of well-formed zLAX-trees is denoted by F~fa (X). Intuitively, in a well-
formed SLAX-tree the label of each node contains the "look-ahead one" infor-
mation about the labels of the children. Clearly for every t E F2(X) there exists

wf a unique tree r e F~La(X) such that fl(r) = t. We denote by flwf the restriction

of fl to the set of well-formed trees. Then flwf is a bijection wf F~La(X) --* r 2 (x) .
The set of well-formed two-pruned trees F~fa (X)fq 2pr(27 LA) can obviously

be recognized by a deterministic top-down tree automaton .4. Also, the tree
language families DT and GDST are closed with respect to intersection with a
tree language belonging to DT. Thus in the below Lemmas 4.4 and 4.5, without
further mention, we assume that the input belongs to F wf tY~ M2pr(27LA) and ~LA k ~L)
the automata need not verify this property.

L e m m a 4.4 Let .4 = (27, Q, qo, g) be a dsta. Then there exists a deterministic
Fwf top-down tree automaton B = (S I~A, P, po, h) such that for every t G ~LA (X) fq

2pr(S LA) the automaton B reaches the two nonvariable leaves u of t in a state
that contains (as its second component) a set A(u) C_ ~(.4) defined as follows.
Denote flwf(t) = t', t ' C Fz(X) . Since flwf is a relabelin9 we can identify the
nodes of t and t'. Let r be the unique computation of.4 on t'.

Then A(u) contains all elements

r s(v, u)- 1 syn c(`4(r(v))),

where v E varnd-path(t, u) and

sync(.4(r(v))) does not contain any prefi of (6)

Proof . The states of B contain two components. When reading an input sym-
bol a E ~ L A , the first component simulates directly the computation step of
.4 on fl(cr). The second component is a subset of ~(.4). When the simulated
computation of .4 enters a variable node v in a state q, the automaton B ads the
element sync(.4(q)) to the second component of the state in the brother node
of v that belongs to the path leading to a nonvariable leaf. Note that since t is
well-formed, the look-ahead capability enables B to know which child nodes are

152

labeled by variables. On the paths labeled by symbols of z~ L A , always when the
simulated computation of .4 produces a sync-symbol s, B updates the elements
of the second component by replacing a language L with s - l L . If some language
L contains the empty word, it means that the negation of the condition (6) holds
for the variable nodes whose synchronization language is represented by L. Such
languages will be discarded from the subset of ~(A) appearing in the second
component. It is clear that at the leaves u corresponding to the nonvariable
paths of t the second component of B will contain exactly the set A(u). [:]

In the above proof, note that .~(`4) consists of a finite number of regular
languages, and thus each subset of ~(`4) can be presented using, for instance,
a constant number of finite automata. These can be stored in the finite-state
memory of B. Also, for each L E ~(A) the operations s - l L , where s is a sync-
symbol, can be finitely specified.

Lemma 4.5 Let A = (Z ,Q ,qo ,g) E dst. Then there exists a gdsta C --
(~LA, p, Po, h) such that

M,(C) = n 2p (zLA).

Proof. The states of C have two components. On an input tree t the first compo-
nent simulates the computation of A on flwf(t) and verifies that flwf(t) e M,(`4).
Let B be the dta constructed corresponding to .4 as in Lemma 4.4. The second
component of C simulates the computation of B. Since B is just a finite tree
automaton, the two components-of C can operate independently in parallel.

The second component reaches the two nonvariable nodes ul and u2 of t in
states containing the subsets of ~(.4), A(u l) and A(u2), as defined in Lemma 4.4.
Assume that in the computation r of .4 on flwf(t) the synchronization sequence
corresponding to Ul is a prefix of the synchronization sequence corresponding to
u2. If we assume that the automaton can transfer the state A(ul) to the corre-
sponding position in the computation on the path to u2, then it can reach the leaf
u2 with a subset of ~(.4) consisting of all the languages res(v)- lsync(.4(r(v))) ,
where v is a relevant node of t in the computation r. This means that the au-
tomaton can decide whether the condition (5) of Lemma 4.3 holds and, thus, it
can decide whether t E flw~(pref(Ls(.4))). Since the languages of ~(.4) are reg-
ular, given an arbitrary subset {/zl,... ,/tk} C_ ~(.4), we can decide effectively
whether there exist words wi E #i, i = 1 , . . . , k, that are all pairwise in the prefix
relation. The answer for each of the finitely many subsets of ~(.4) can then be
stored in the states of C.

Thus it is sufficient to show that when simulating the synchronized compu-
tation of .4, the gdsta C can transfer a finite amount of information from the
node ul to u2, where ul is the leaf corresponding to the shorter synchronization
sequence. By Lemma 4.2, we can assume that .4 has the end-marker property.
Thus the computation of.4 produces a sync-symbol when entering the node ul.

The automaton C can take care of the transfer of information by allowing
nondeterministic guesses always when .4 produces a sync-symbol s. In the left
path of t the guesses are defined as follows. If the input symbol is not the end-
marker, the possibilities are: (i) s (representing the guess that also the right path

153

is not yet at the end-marker), (ii) (s, X, right) for all X C_ -=(.4) (representing the
guess that the right path is at the end-marker with A(u) = X). If the input
is the end-marker, the sync-symbol produced will be (s, x,left) where X is the
corresponding state of the automaton B. In the right path, if the input is not
the end-marker the possibilities are (i) s and (ii) (s, X, left) for all X C_ _=(.4). At
the end-marker of the right path one has also two possibilities: (i) (s, X, right)
where X is the corresponding state of B, and (ii) (s, X, left) for all X C_ -=(.4). The
last choice corresponds to the guess that the left path is simultaneously at the
end-marker. It is easy to verify that in all cases there is exactly one global choice
for the two paths that does not violate the synchronization condition. Thus C is
globally deterministic. []

Now we can prove our main result.

T h e o r e m 4.1 Given A1, `42 E dst we can effectively decide whether Ls(`41) =

L,(A2).

P r o o f . Without loss of generality we can assume that the automata .41 and .42
have the same input alphabet S . By Lemma 4.1, to prove the claim it is suffient
to show that the condition

pref(L, (A1)) N 2pr(22) = pref(L,(A2)) N 2pr(E) (7)

can be decided effectively. The other condition appearing in Lemma 4.1 concern-
ing unary trees is clearly decidable. By Lemma 4.5, there exist globally deter-
ministic automata el, i = 1, 2, such that

M~ (Ci) = flw~ (pref(Ls (`4i))) fl 2pr(SLA).

By coding two-pruned trees into two strings we can simulate the computations
of gi using a deterministic two-tape finite automaton :Di. This is done simi-
larly as in the proof of Lemma 5.6 of [14]. The only difference is that instead of
deterministic synchronized automata we are considering globally deterministic
automata. However, this does not change anything because the finite control of
:Di has reading heads on both tapes (representing the paths of a two-pruned
tree), and thus corresponding to an arbitrary synchronization cut, from the non-
deterministic choices of g~ on the two paths, :Di can deterministically make the
unique possible global choice. Thus 7)1 and :D2 accept the same inputs if and
only if M,(C1) = M,(C2).

Since equivalence of deterministic multitape automata is decidable [8], it fol-
lows that we can effectively decide whether M8 (C1) = M8 (C2). Since the mapping
flwf is bijective, it follows that also the condition (7) is decidable. []

Using the easy Lemma 3.3 of [14], we see that the above theorem implies also
the decidability of equivalence for DeST. This result was established differently
in [14].

C o r o l l a r y 4.1 Equivalence is decidable for deterministic equality-synchronized
tree automata.

154

We have established that for deterministic prefix- and equality-synchronized
au toma ta equivalence is decidable and it is undecidable in the nondeterministic
cases. The family of tree languages defined by globally deterministic synchro-
nized au toma ta lies strictly between the corresponding nondeterministic and
deterministic families. I t is an open question whether equivalence of globally
deterministic tree au toma ta can be decided effectively.

References

1. B. Bogaert and S. Tison, Equality and disequality constraints on direct subterms
in tree automata, in: Proe. of the 9th Symposium on Theoretical Aspects of Com-
puter Scienoe, Lect. Notes Comput. Sci. 577, Springer-Verlag, 1992, pp. 161-171.

2. A.-C. Caron, J.-L. Coquidd and M. Dauchet, Encompassment properties and au-
tomata with constraints, in: Proc. of 5th RTA, Lect. Notes Comput. Sci. 690,
Springer-Verlag, 1993, pp. 328-342.

3. A.-C. Caxon, H. Comon, J.-L. Coquidd, M. Dauchet and F. Jacquemard, Pump-
ing, cleaning and symbolic constraints solving, in: Proc. of ~lst ICALP, Lect.
Notes Comput. Sci. 820, Springer-Verlag, 1994, pp. 436-449.

4. Z. Ffil6p and S. V~gvSlgyi, Variants of top-down tree transducers with look-ahead,
Math. Systems Theory 21 (1989) 125-145.

5. Z. Fftlfp and S. V~gv51gyi, Iterated deterministic top-down look-ahead, in: Proc.
o~ 7th FCT, Lect. Notes Comput. Sci. 380, Springer-Verlag, 1989, pp. 175-184.

6. Z. FfilSp and S. V~gvflgyi, A characterization of irreducible sets modulo left-
linear term rewriting systems by tree automata, Fundam. Inf. 13 (1990) 211-226.

7. F. Gdcseg and M. Steinby, Tree automata, Akad6miai Kind6, Budapest, 1984.
8. T. Harju and J. KarhumSki, The equivalence problem of multitape finite au-

tomata, Theoret. Comput. Sci. 78 (1991) 347-355.
9. J. Hromkovi~, How to organize the communication among parallel processes

in alternating computations, unpublished manuscript, Comenius University,
Bratislava, 1986.

10. J. Hromkovi~, J. Karhums B. Rovan and A. Slobodovs On the power of syn-
chronization in parallel computations, Discrete Appl. Math. 32 (1991) 155-182.

11. J. Hromkovi~, B. Rovan, A. Slobodovs Deterministic versus nondeterministic
space in terms of synchronized alternating machines, Theoret. Comput. Sci. 132
(1994) 319-336.

12. O. Ibarra and N. Trs Synchronized finite automata and 2DFA reductions, The-
oret. Comput. Sci. 115 (1993) 261-275.

13. K. Salomaa, Yield-languages recognized by alternating tree recognizers, RAIRO
Inform. Thdor. 22 (1988) 319-339.

14. K. Saiomaa, Synchronized tree automata, Theoret. Comput. SeL 127 (1994) 25-
51.

15. G. Slutzki, Alternating tree automata, Theoret. Comput. Sci. 41 (1985) 305-318.
16. G. Slutzki and S. Vs A hierarchy of deterministic top-down tree transfor-

mations, in: Proe. of 9th FCT, Lect. Notes Comput. Sci. 710, Springer-Verlag,
1993, pp. 440-451.

17. S. Vs Top-down tree transducers with two-way tree walking look-ahead,
Theoret. Comput. Sci. 93 (1992) 43-74.

