
T e s t i n g can be formal, too

Made-Claude Gaudel

LRI, URA 410 du CNRS
Universit6 de Paris-Sud, Batiment 490

91405 Orsay, France

Abstract. The paper presents a theory of program testing based on formal
specifications. The formal semantics of the specifications is the basis for a
notion of an exhaustive test set. Under some minimal hypotheses on the
program under test, the success of this test set is equivalent to the
satisfaction of the specification.
The selection of a finite subset of the exhaustive test set can be seen as the
introduction of more hypotheses on the program, called selection
hypotheses. Several examples of commonly used selection hypotheses are
presented.
Another problem is the observability of the results of a program with
respect to its specification: contrary to some common belief, the use of a
formal specification is not always sufficient to decide whether a test
execution is a success. As soon as the specification deals with more abstract
entities than the program, program results may appear in a form which is
not obviously equivalent to the specified results. A solution to this
problem is proposed in the case of algebraic specifications.

1 Introduction

This paper is a survey of a research activity which has been led for several years in the
area o f program testing [5, 6, 7], and a presentation o f some recent results [2, 3, 22].

There has been surprisingly little research on the foundations of program testing.
Some notable exceptions are the early" paper by Goodenough and Gerhart [18] where
the notion o f testing criteria was first introduced and the work of Gourlay [19] who
proposed a formal definition o f a test method and pointed out the role o f specifications
in the testing process. More recently, the growing interest in the use of formal
methods has raised several works on testing based on formal specifications. It turns
out that formal specifications are quite fundamental to a rigourous and systematic
approach of program testing. For instance, an application area where testing has been
extensively studied is the area of communication protocols [8, 15, 27], etc: all these
works are based on formal models o f the protocol to be tested, generally finite state
machines or transition systems.

First, let us make more precise the background of the works reported here. The
aim of a testing activity is to detect some faults in a program. The use of the verb
detect is important here, since locating and correcting the faults are generally regarded
as out o f the scope of testing: they require different data and techniques.

83

Several approaches of testing are possible: in this work we consider dynamic
testing, i.e. the execution of the program under test on a finite subset of its input
domain and the interpretation of the obtained results. Other approaches are inspections
or analysis of the text of the program; they are often called static techniques.

Obviously, testing methods strongly depend on the nature of the faults which are
searched for. We consider here a large class of faults, namely discrepancies between
the behaviour of a program and some functional specification. It means that non
functional aspects such as performance or robustness are currently not considered in
our framework.

There exist numerous criteria and strategies to guide the choice of the test data,
i.e. the selection of a finite subset of the input domain called the test set. A test data
criterion is a predicate C(P, S, T) which characterises those test sets T which are
adequate for testing a program P with respect to a specification S according to the
criterion. An example of a common (and weak) criterion is that T must ensure the
execution of all the statements in P. When a criterion is only based on the text of the
program, as in this example, the corresponding testing strategy is said to be
structural. When the criterion is only based on the specification, the strategy is called
functional. The program is considered as a "black-box" and the way it is written does
not influence the test. Clearly, structural testing and black-box testing are
complementary: structural testing cannot detect omissions; black-box testing cannot
test every detail of the program. Currently, most research results on software testing
are related to structural testing for historical reasons: without formal specifications it
was difficult to study functional testing on theoretical grounds. It is this problem
which is addressed in this paper.

Most test methods, and the corresponding selection criteria, consist in dividing the
input domain of the program into subdomains and require the test set to include at
least one element from each subdomain (these subdomains are not always disjoint, it
is the case for the "all-statements" criterion mentioned above). Reasoning by cases on
a formal specification seems a very natural way to define such subdomains. The
approach presented here follows this idea. It is based on algebraic specifications and
has been experimented on several significant case studies. Some underlying ideas have
been reused for other kinds of formal specification or model: VDM in [13], finite state
automata and labelled transition systems in [26], and Lustre programs [21].

The interpretation of the results of a test is often very difficult. This difficulty is
known as the oracle problem: deciding whether the result of a test execution is
acceptable or not requires a procedure (manual, automated, or both) which relies upon
a knowledge of the expected results. For some problems, the expected results are not
known for the whole input domain (for instance, it happens in numerical analysis); in
some other cases the decision problem is undecidable (for instance the equivalence of
the source and object programs when testing a compiler).

But even in less extreme situations, the problem is difficult as soon as the
program yields the results in a way which may depend on some representation choices
and makes the comparison with the specified results difficult. This is an important
issue in the case of black-box testing, since the test is based on a specification which
is (normally) more abstract than the program. Thus program results may appear in a
form which is not obviously equivalent to the specificied results. This contradicts a
common belief that the existence of a formal specification is sufficient to directly
decide whether a test is a success: some more work is often needed. A solution to this

84

problem is proposed in the case of algebraic specifications. It is based on a notion of
observational equivalence of the specification and the program [28, 20].

The paper is organized as follows: part 2 presents a theory of black-box testing
based on formal specifications and both the test data selection problem and the oracle
problem are addressed in the case of algebraic specifications; part 3 reports briefly
several applications: some case studies in algebraic specifications and the use of some
aspects of the approach for other formalisms.

2 A Theory of Testing

2.1 Specifications and Programs

Algebraic specifications are characterized as usual by a signature z~ = (S, F), where S
is a finite set of sorts and F a finite set of operation names with arity in S, and some
axioms, i.e. a finite set A x of ~-formulas. We consider positive conditional axioms,
i.e. the following form of formulas:

(Vl = Wl A . . . A Vk = wk) ~ v = w

with k_>0, where vi , w i , v and w are]~-terms with S-variables.
A subset Sobs of observable sorts is distinguished among the sorts of S.
Let SP be such a specification and P be a program under test. Since we consider

dynamic testing, we are interested by the properties of the computations by P of the
operations mentioned in z~; P must provide some procedure or function for executing
these operations; the question is whether they satisfy the axioms of S P . Given a
ground ~]-term t, we note tp the result of its computation by P. We define now how
to test P against a]~-equation.

Definition 1: Given a Y~-equation e, and a program P which provides an
implementation for every operation name of z~,
�9 a test for e is any ground instantiation t = t' of ~,,
�9 a test exper iment of P against t = t' consists of the evaluation of tp and t 'p and the

comparison of the resulting values.
The generalization of this definition to posit ive conditional axioms is

straightforward. In the following, we say that a test experiment is successful if it
concludes to the satisfaction of the test by P, and we note it P / = F where jr- is the
test, i.e. a ground formula (deciding whether P / = F i s the oracle problem mentioned
in the introduction; we postpone the discussion on the way it can be realised to
section 2.3).

We can now introduce the definition of an exhaustive test of a program P against
a specification SP.

Definition 2: Given a specification SP = (~ , Ax) , the exhaus t ive test set for S P ,
noted Exhaus t sp is the set of all well-sorted ground instances of all the]~-axioms:

E x h a u s t s p = { ~ t y / ~ ~ Ax, t7 = {ffs : v a r (~) s --9 TXs / s E S } }

An exhaustive test of P against S P is the set of all the test experiments of P against
the formulas of E x h a u s t s p .

The definition of E x h a u s t s p is very close to (and is derived from) the notion of
satisfaction of a set of]~-equations by a]~-algebra as it has been defined for a long

85

time [17]. In particular, the fact that each axiom can be tested independently comes
from this definition. But several points prevent the success of an exhaustive test of P
against SP from being equivalent to the satisfaction of SP by P. This is true under
some conditions on P which are discussed below.

It seems natural and convenient to consider P as defining a]~-algebra, and we
assume it for the moment. But this is far from being a weak assumption. It means
that there is no influence of any internal state on the procedures which implement the
operations of]~: they behave as mathematical functions. As it has been pointed out in
[22], it is possible to weaken this hypothesis on P. This point is related to the oracle
problem and is discussed in section 2.3.

A second point is that in definition 2, the substitutions o assign ground]~-terms
to the variables. It means that Exhaustsp is exhaustive with respect to the
specification, not always with respect to the program. Thus, such a test ensures the
satisfaction of SP by P only if all the values computable by P are reachable by T~.
These two points define a class of programs for which the result of an exhaustive test
would be meaningful.

Definition 3: Given a signature ~, a program P is if-testable if it defines a finitely
generated Z-algebra Ap. The Z-testability of P is called the minimal hypothesis Hmin
of an exhaustive test of P against a specification of signature z~.

The definitions of Exhaustsp and Hmi n provide a framework for developing a
theory of black-box testing from algebraic specifications. Practical test criteria (i.e.
those which correspond to a finite test set) will be described as stronger hypotheses on
the program. Important properties such as unbias (correct programs are not rejected)
and validity (only correct programs are accepted) can be characterized. This is done in
the following subsections. Now, we list some remarks on these definitions where we
discuss their adequacy and suggest some variants.

Remark 1: Strictly speaking, definition 1 above defines a tester rather than a test
data: a test t = t' is nothing else than the abstract definition of a program which
evaluates t and t' via the relevant calls to the procedures of a program and compares
the results; a test experiment of P is an execution of this tester linked to P. There is
an interesting analogy with Brinksma's work on protocol testing [8]: there, from the
specification of the process under test is derived a specification of a "canonical tester
process"; the concurrent execution of the two processes performs the test experiment.
Remark 2: As said above, the definition of Exhaustsp comes from the notion of
satisfaction of [17]. However, it does not correspond exactly to initial semantics of
algebraic specifications since inequalities are not tested: it rather corresponds to loose
semantics. It is possible to choose another definition. For instance, as suggested in
[4] and applied by Dong and Frankl in the ASTOOT system [14], another possibility
is to consider the algebraic specification as a rewriting system, following a "normal-
form" semantics. Under the condition that the specification defines a ground-
convergent rewriting system, it leads to an alternative def'mition of the exhaustive test
set:

Exhaust'sp = { t = t~,/t E T~J
where t,~ is the unique normal form of t. In [14] a bigger exhaustive test set is
mentioned (but not used) which includes for every ground term the inequalities with
other normal forms, following the definition of initial semantics.

86

Remark 3: An open question is how to deal with the case of test experiments which
do not terminate (more precisely, the evaluation of tp or t 'p does not terminate).
Given the kind of specification that is considered here, where performance issues are
not addressed, there is no way to make a decision in such a case... In practice, it is
generally not a problem since more information is available on the expected
behaviour of the system.
R e m a r k 4: The generalization of the theory presented here to partial operations is
possible when the specification provides definition predicates which are completely
specified, i.e. they are defined for all the ground terms. In this case, it is possible to
define the exhaustive test set as the restriction of Exhaustsp to those formulas which
only contain equations with defined terms. This means that the exhaustive test checks
the axioms for all the terms which must be defined. Other definitions of Exhaustsp
are possible, depending on the considered semantics (for instance all partial algebras or
only minimally defined ones [9]) and on some conventions on what is a correct
behaviour of the program for undefined terms.

2.2 Selection and Hypotheses

Exhaustsp is obviously not usable in practice since it is generally infinite. One way
to make it finite is to introduce stronger hypotheses on the behaviour of P. These
selection hypotheses are the formal counterpart of some common test methods: for
instance, the subdomain-based selection criteria mentioned in the introduction
correspond to the determination of subdomains of the variables where the program is
supposed to have the same behaviour. Assuming that, it is no more necessary to have
all the ground instances of the variables but only one by subdomain. Such criteria are
modelled in our framework by uniformity hypotheses.

Definit ion 4: Given a formula cl)(X) where X is a variable, a uniformity
hypothesis on a subdomain D for a program P is the assumption:

(Vto~ D) (P/= ff)(tO) ~ (V t E O)(P/= O(t))
The generalization to several variables is straightforward.

In the framework of black-box testing, the determination of such subdomains is
guided by the specification, as we will see later. Other kinds of selection criterion
correspond to other forms of hypothesis. For instance regularity hypotheses express
the fact that it is sometimes enough to test a formula for terms under a certain "size".

Definition 5: Given a formula O(X) where X is a variable, and a function of
interest Itl from ground terms into natural numbers, a regularity hypothesis for a
program P is the assump.tion:

((V t e Tz~)(/ t /<_k~P/= (I)(t))) ~ (V t ~ Tz~)(P/= O(t))
Some other kinds of useful hypothesis will be mentioned in section 3. The choice

of the hypotheses is nothing else than the determination of a test strategy, of a test
selection criteria. But the advantage of the notion of hypothesis is that it makes
explicit the assumptions on the program which correspond to one strategy. A test set
T should never be presented independently of its selection hypotheses: thus we use the
notion of a testing context which is a pair (H, T) of a set of hypotheses and a set of
tests. Now, we define some important properties which are required for testing
contexts:

87

Definition 6: Given a specification SP = (~ Ax), a testing context (H, T) is valid
if, for all Z-testable programs P

H ~ (P /=T ~ P / = E x h a u s t s p)

Definition 7: Given a specification SP = (Z,, Ax), a testing context (H, T) is
unbiased if, for all]~-testable programs P,

H ~ (P / = Exhaustsp ~ P / = T)
Assuming H, validity ensures that any incorrect program is rejected and unbias

prevents the rejection of correct programs. By construction, the testing context
(Hmi n, Exhaustsp) is valid and unbiased. Another extreme valid and unbiased testing
context is (Hmin A P / = Exhaustsp, fZJ), which states that assuming that the program
is correct, an empty test set is sufficient.

An interesting fact is that any context (H, T) where T is a subset of Exhaustsp is
unbiased. Conversely, if T contains a test which is not a consequence of SP, or which
is in contradiction with it, any context (H, T) is biased.

It is clear that the interesting testing contexts are valid and unbiased and they are
compromises between the two extreme examples given above. Intuitively, weak
hypotheses correspond to large test sets and conversely. This naturally leads to the
definition of a preorder on testing contexts [2]:

Definition 8: Let TC1 = (H1, T1) and TC2 = (H2, T2) be two testing contexts.
TC1 _< TC2 (pronounce "'TC2 refines TCI"') iff:

(i) H2 ~ H1
(ii) H2 ~ (P /= T2 ~ P /= T1)

< means that in the refined testing context the hypotheses on the program are
stengthened, and, assuming these refined hypotheses, the refined test set reveals as
many faults as the original one. < is reflexive, transitive, but not anti-symmetric. It
makes it possible to build valid contexts since it preserves validity:

Proposition: If (Hmin, Exhaustsp) <- (H, T), then (H, T) is valid.
The proof results directly from the definitions. This proposition and the above

remarks on unbiased contexts provide the bases of a method to obtain valid and
unbiased testing contexts: the starting point is (Hmi n, Exhaustsp) and by successive
refinements, new hypotheses are added, and the test set is restricted to a subset of the
previous one (thus of Exhaustsp); for every step the property (ii) of definition 8 must
be verified.

The choice of the selection hypotheses can be guided by the specification. For
instance, given an axiom of the form: (v I = Wl A ... A V k = wk) ~ f(z(X)) = w,
where X is a list of variables also occuring in the v i, w i and w, the domain defined
by the precondition can be considered as a uniformity subdomain. This gives one test
for the axiom, and the instantiations of the variables are any solution of the set of
equations of the precondition. If this coverage of the axiom is considered not
sufficient, weaker uniformity hypotheses on subdomains can be obtained by unfolding
the axiom.

We just give an example of one unfolding step and send the reader to [3] for a
formal presentation. Assume that Vl is of the form g(#(X)), that there is no other
occurrence of g in the axiom, and that there is the following axiom somewhere in the
specification: cond(Y) ~ g(v(Y)) = w'; then it is possible to compose the
preconditions of the two axioms, and it will result in a more complicated axiom,

88

namely: cond(Y) A It(X) = v(Y) A W' = Wl A ... A Vk = Wn ~ f (v (X)) = w. Note that
this axiom is never explicitly constructed: the specification remains unchanged.
Unfolding is just used to build smaller uniformity subdomains by composition of the
preconditions of the axioms. There will be as many tests of the original axiom as
possible unfoldings and a set of weaker uniformity hypotheses. Now the problem of
choosing uniformity subdomains is transformed into the problem of deciding when to
stop unfolding, since it is well-known that unfolding recursive definitions of
functions on recursive domains results in the enumeration of the domain. One
possible way is to introduce some regularity hypothesis or some other uniformity
hypotheses.

This kind of symbolic manipulation of the specification is implemented by a
tool, the LOFT system [23]. The kernel of this system is an equational resolution
procedure since the implementation of uniformity hypotheses requires to solve
conjunctions of equations in the theory defmed by the specification.

2.3 The Oracle Problem

In definition 1, we have stated that a test experiment of P against t = t' consists of the
evaluation of tp and t'p and the comparison of the resulting values. This comparison
is obvious to perform when the sort s of t and t' corresponds exactly to a type of the
programming language. Under the (weak) hypothesis that this comparison is correctly
implemented by the compiler, we can use the equality of the programming language,
noted eqs, p as a valid and unbiased oracle, i.e. test whether P / = t = t' by computing
eqs, p (t p , t 'p).

We call such an hypothesis an orac le hypo thes i s . Some sorts for which it is
sound to assume that their equality is correctly implemented are the predefined sorts of
the programming languages (booleans, integers). We distinguish these sorts as
observable: as in [20] they will be used to observe the implementation of the other
sorts.

It is more problematic to have such an hypothesis on data types defined by the
programmer to represent more elaborated sorts of the specification. Even if an equality
function is available for these sorts, it is a part of the program under test and it is
possible for this function or the representation to be erroneous. The naive idea of
testing the equality of all the observable components of the representation is wrong:
the folk literature on abstract data types provide numerous examples where different
representations correspond to the same abstraction (see [3] for a nasty variant of the
good old stack example).

One solution is to refer to an observational equivalence for defining such
equalities: an observation is a computation which has a non observable value as
argument and returns an observable value. Clearly, if there is a way, using P, to get
different results from the same observation of two non observable values, these values
are different. Conversely, if there is no observable difference, they can be considered as
equal.

Definition 9: Given a signature z~, a Z - c o n t e x t is a Z-term which contains exac t l y
one variable. If the variable is of s sort, we say it is a Z - c o n t e x t over s. We call an
o b s e r v a b l e c o n t e x t a context of observable sort where the variable is of non
observable sort and we note O C z , [s] the set of observable contexts over s for a
signature z~.

89

Given the non observable test t = t ' where t and t' are of sort s, it can be
transformed into an (often infinite) set of observable tests:

[C(t) = C(t') / C ~ OCz[sl}
It is possible to only consider minimal observable contexts, i.e. those which do

not contain any observable context, assuming that the implementation of the
operations of the observable sorts preserves equality. It is a slightly stronger oracle
hypothesis than the correctness of the equality implementation, but even stronger
ones, such as the correctness of the implementation of observable sorts, are very
likely to be sound if, as suggested above, the observable sorts correspond to the
predefined types of the programming languages.

Anyway, the set of observable tests is very likely to be infinite. A natural way to
get finite observable test sets is to follow a similar approach as in the previous
section: we may introduce some hypotheses to reduce the infinite set of contexts to a
finite one. However, an erroneous decision in favor of equality has different
consequences depending on the position of the considered equation in the axiom:

�9 if the equation is the conclus ion of a positive conditional axiom, if the oracle
hypotheses are not satisfied by the program, the finite set of observable tests may
be successful for an incorrect program;
�9 if the equation occurs in the precond i t i on of an axiom, and if its test is erro-
neously decided successful, the conclusion of the axiom is required to be valid
despite the fact that it is not required by the specification, and there is a risk to
reject correct programs.

The first case is acceptable in our framework since there is no problem of bias,
and the validity of the testing context is preserved (remind that validity is defined by:
assuming the hypotheses, the success of the test set implies the satisfaction of the
specification). But the second one is not acceptable since it corresponds to a biased
testing context. This leads to a restriction on the kind of considered algebraic
specifications: it is possible to use observable contexts as oracle only for those
positive conditional specifications where all the equations in preconditions are of
observable sorts. Under this condition, we define an observable exhaustive test set for
a specification:

Definition 10: Given a positive conditional specification SP = (z~ Ax), where is
distinguished a subset So of observable sorts, where all the equations occuring in the
preconditions of the axioms of A x are of observable sort, the observable exhaust ive
test se t for SP, noted Obssp is:

O b s s e = [L ~ C(t) = C(u) / L ~ t = u ~ Exhaustsp ,

t and u o f sort s e~ So , C ~ O C z [s]]

[L ~ t = u / L ~ t = u ~ Exhaus tsp , t and u o f sort s E So]
An observable exhaustive test of P against SP is the set of all the test experiments of
P against the formulas of O b s s p .

The notion of]~-testability (definition 3) must be revised accordingly in order to
ensure that the success of an observable exhaustive test set is meaningful: the
conditions on the observable sorts must be added; Hrain can be weakened (the
definition given in [3] turned out to be too strong as pointed out in [22]). It must be
noted that stating definition 10, we have changed the notion of satisfaction of a
specification SP by a program P into a notion of behavioural satisfaction (more
precisely, the "behavioural satisfaction I" of [25]), and we have kept the fact that the
exhaustive test only considers those values which are finitely generated by z~. Thus

90

there is no more need that P defines a finitely generated Z-algebra: it is sufficient that
it can be observed as a f'mitely generated Z-algebra via the observable contexts.

Defini t ion 11: Given a signature z~ where is distinguished a subset So o f
observable sorts, a program P is O~,-testable if:

�9 for every observable sort so, P provides a correct implementation of equality;
�9 the behaviour of P is observationally equivalent via the observable contexts to a
finitely generated ~-algebra.

The O~-testability of P is called the minimal hypothesis OBSHmi n of an observable
exhaustive test of P.

We are now in the position of defining validity and unbias of testing contexts in
this new framework:

Definition 12: Given a positive conditional specification SP = (~ Ax), where is
distinguished a subset So of observable sorts, where all the equations occuring in the
preconditions of the axioms of Ax are of observable sort, a testing context (H, T) is
observationally valid if, for all O~-testable program P

H ~ (P /=T ~ P/=Obssp)

Definit ion 13: Given a specification SP = (z~, Ax), a testing context (H, T) is
observationaUy unbiased if, for all O~-testable programs P,

H =~ (P/= Obssp =:~ P/= T)
Similarly to the previous subsection, the testing context (OBSHmi n, Obssp) can

be used as a starting point to build observationally valid and unbiased testing contexts
by addition of new hypotheses and restriction of the test set in a way satisfying
requirement (ii) of definition 8: any testing context (H,T) where T is a subset of
Obssp is observationally unbiased, and the < preorder preserves observational
validity.

Remark 5" It has been suggested to choose the observable sorts among the
predefined types of the programming language. It is clear that other possibilities can
arise: it may be possible to correctly decide whether two values of a type are equal
even is there is not a built-in equality operation in the programming language.
Remark 6: It is interesting to note that the restriction on the form of the
specification introduced by definition 10 is mentioned in [25] as necessary to have a
sensible definition of behavioural satisfaction based on the concept of observable
consequence (our C(t) = C(t') are observable consequences of SP). It is clear that,
depending on the kind of considered program, other observable exhaustive test sets
could be defined, with some other kind of observation and thus a different notion of
behavioural satisfaction. In such cases, there is no reason to have the same restriction.
Remark 7: Another reasonable requirement on the specification is that it should be
hierarchically consistent with respect to the specification of the observable sorts.
However, in our theory, it is quite possible to test a program against an inconsistent
specification, but the observable exhaustive test fails as soon as the program satisfies
OBSHmin.
Remark 8: Practically, ~-testability requires that the program provides an
implementation of every operation of z~, which must behave as a function; moreover
the values computable by the program must be finitely generated by z~. One way to
ensure functional behaviours of the operations is to forbid the use of global variables

91

and any side effects in the program. One way to ensure the last point is to require, as
in [3], that the program exports exactly the operations of z~. These conditions are
sufficient but too strong to be realistic and it is important to look at more flexible
ones. OY~-testability slightly relaxes the constraint of a functional behaviour of the
operations into an "observational" functional behaviour. Besides, it is clearly possible
to allow the program to define the operations of ~ up to a renaming; it is also
possible to allow the program to export more operations, or less operations (if some
hidden operations are used in the specification). A first discussion of the conditions
under which it is possible can be found in [22].
Remark 9: These minimum hypotheses are static properties of the program. Some
of them are (or could be) checkable: currently the tools for static checking of
programs are often independent of the specifications. However, [16] reports some
promising experiments on the use of specifications for statically detecting violations
of abstraction barriers.

2.4 Equational test sets

When the specification is sufficiently complete with respect to the observable sorts, it
is possible to consider another exhaustive test set where all the elementary tests are
equations [2].
Definition 14: Given a positive conditional specification S P = (z~ Ax), where is
distinguished a subset So of observable sorts, where all the equations occuring in the
preconditions of the axioms of Ax are of observable sort, the exhaust ive observab le
equat ional test se t for SP, noted E q O b s s p is:

E q O b s s p = [t = u / t l = u 1 /x ... A t k = u k ~ t = u ~ O b s s p ,

Vi = 1 k, A x / - E Q ti = ui]

where I-EQ corresponds to the usual equational calculus.
The testing context (O B S H m i n, E q O b s s p) is observationally unbiased and valid

if S P is sufficiently complete. Thus it can be use as a starting point for the selection
of finite test sets by the addition of selection hypotheses as shown in section 2.2. It
is what is done by the LOFT system.

3 A p p l i c a t i o n s

This part of the paper briefly reports some case studies and experiments related to the
theory presented here. Some of them were performed at LRI, some of them elsewhere.
The first subsection is devoted to studies based on algebraic specifications. The second
one reports some interesting attempts to transport some aspects of the theory to other
formal approaches, namely VDM, automata, and Lustre.

3.1 Some Case Studies with Algebraic Specifications

A first experiment, performed at LRI by Pierre Dauchy and Bruno Marre, was on the
on-board part of the driving system of an automatic subway. An algebraic
specification was written [12]. Then two modules of the specification were used for
experiments with LOb-T. The experiment is reported in details in [11]. We just give
the conclusions here. It must be noted that this work was performed with the
certification agency (INRETS), not with the development team of the system.

92

The first module was the control of the door opening; there were 25 axioms, some
of them with rather long and complex preconditions. The choice of the uniformity
subdomains was done in a standard way: for instance unfolding _< into = and < and
stopping, unfolding false conjunctions and true disjunctions into three cases, but
forbidding any decomposition leading to meaningless enumerations. The total number
of tests turned out to be reasonable: 254. The good surprise was that 230 of these
tests were related to the emergency stop, and that some of them presented some
conjunctions of cases which were not yet considered in the certification process.

The second module was the overspeed control. There were 6 axioms in the main
module which used 4 other modules. A first experiment was performed with the same
choices as for the previous module, and reasonable test sets were selected for most of
the axioms (between 1 to 40); but some problems arose when trying to treat the
following axiom:

limspeed(S) = min4 (target-speed(S), stop-speed(S),
imposed-lim-speed(S), way-speed(S))

where S is the state of the train and min4 is the minimum of its four arguments.
A brute application of the same strategy as above to the four arguments of min4
would lead to 25920 tests... The point is that a lot of useless decompositions are
performed, for instance if target-speed(S) is the minimum, it is useless to test all the
possible orders on the three other speeds. Thus another testing strategy was tried: first
perform the decomposition of the target-speed operation, then add to the obtained
subdomains the three equations describing the comparisons with the other speeds and
return one value in this domain. This example demonstrates that the choice of a
testing context is an interactive process: the LOFT system aims at assisting this
process, by guiding the choice of the uniformity subdomains and yielding unbiased
and valid testing contexts.

A second experiment is reported in [24] and was performed within a collaboration
between LRI and the LAAS laboratory in Toulouse. Our colleagues from LAAS have
a good experience in evaluating the quality of test sets by mutation. The experiment
was performed on a rather small piece of software written in C, which was extracted
from a nuclear safety shutdown system. It was the filtering procedure which aims at
checking the validity of successive measures in order to eliminate doubtful ones. For
some previous work, 1345 mutants of this procedure have been built by the LAAS
team using classical fault injection methods.

The algebraic specification was written in a data-flow like style and contained 30
axioms. 5 different test sets of 282 tests were selected using the LOFT system, with
the same hypotheses: we were interested in studying both the quality and the stability
of the method with respect to the arbitrary choices in the uniformity subdomains. The
score, i.e. the rate of rejected mutants, turned out to be rather stable, from 0.9651 to
0.9784, and good for a black-box strategy. These results were better than the ones of
the all-paths structural strategy, which is supposed to be the most powerful structural
testing strategy.

The Software Engineering Laboratory at EPFL in Lausanne has developed and is
continually extending a library of components in Ada. The components are used for
teaching and in industry; most of them have been released as publicly available
software. A characteristic of this library is the existence of numerous variants (with
respect to parameter passing, storage properties, etc) of some components. Such a set
of variants is called a family. An experiment of "intensive" testing of a family have

93

been led by Didier Buchs and Strphane Barbey [1]. First an algebraic specification of
the component was reengineered: the signature was derived from the package
specifications of the family, and the axioms were written manually. Then the LOFT
system was used with a standard choice of hypotheses [23].

The ASTOOT approach has been developped by Phyllis Frankl and her team at the
Polytechnic University in New York [14]. The addressed problem is the test of object-
oriented programs: classes are tested against algebraic specifications. A set of tools
has been developed; we focus here on the test cases generation issues. As mentioned
in remark 2, a different choice has been made for the exhaustive test set, which is the
set of equalities of every closed term with its normal form. Thus, the specification
must define a convergent term rewriting system. Moreover, there is a restriction to
classes such that their operations have no side effects on their parameters and
functions have no side effects: it corresponds to a notion of testability. The oracle
problem is solved by introducing a notion of observational equivalence between
objects of user-defined classes, which is based on minimal observational contexts, and
by approximating it. The test case selection is guided by an analysis of the conditions
occuring in the axioms; the result is a set of constraints which must be solved
manually. It is encouraging to note that this project was led independently from our
research, but that it turned out, a posteriori, that the theory presented here nicely fits
to describe it, even when different basic choices were made.

3.2 Other Formalisms

In section 2 we followed several times the same procedure to build slightly different
formal bases for program testing against an algebraic specification: we stated a notion
of test, a notion of exhaustive test and some minimal hypotheses to ensure validity
and unbias. A reasonable conjecture is that this procedure is applicable to other kinds
of formal specification. In the case of VDM, a first interesting step has been
performed by Jeremy Dick and Alain Faivre within a project, led at Bull Corporate
Research Centre, on automating the generation of test cases from VDM-SL
specifications [13].

The formulae of the specification are relations on states deeribed by operations (in
the sense of VDM, i.e. state modifications). They are expressed in first-order predicate
calculus. These relations are reduced to a disjunctive normal form (DNF), creating a
set of disjoint sub-relations. Each sub-relation yields a set of constraints which
describe a single test domain. The reduction to DNF is the equivalent of the axioms
unfolding presented in section 2.2. Uniformity and regularity hypotheses appear in
relation with this partition analysis.

As VDM is state-based, it is not enough to partition the operations domains: thus
the authors give a method of extracting a finite state automaton from a specification.
This method uses the results of the partition analysis of the operations to perform a
partition analysis of the states. This led to a set of disjoint classes of states, each of
which corresponds either to a precondition or a postcondition of one of the above
subrelations. Thus, a finite state automaton can be defined, where the states are some
equivalence classes of states of the specifications. From this automaton, some t e s t

su i t e s are produced such that they ensure a certain coverage of the automaton paths.
The notion of test suites is strongly related to the state orientation of the
specification: it is necessary to test the state evolution in presence of sequences of
data, the order being important.

94

A tool has been developed to assist this process. However, since the kind of
considered formula is more general than in our case, it is not possible, in general, to
solve the returned constraints: the tool is more a test cases generator than a test data
generator.

This work makes numerous references to some of the important notions and
techniques presented in section 2: uniformity and regularity hypotheses, unfolding.
What is currently missing is a notion of exhaustive test set, and its connex concepts,
testability, validity and unbias. A very tentative idea is to consider that a specification
defines an infinite automaton, and to take the test suites which exercise all the paths
of this automaton as an exhaustive test set. Clearly, it deserves more investigation
and more thought about the kind of semantics to be considered.

In a thesis prepared at the France-Telecom CNET laboratory in Lannion [26], Marc
Phalippou has studied conformance testing of telecommunication systems with
respect to a formal model. His work is based on IOSM, as Input-Output State
Machines, which are a variant of labelled transition systems. He has systematically
studied the kinds of selection hypothesis which are used, or could be useful in this
framework. First he shows that most existing methods for generating test data from
automata are based on regularity hypotheses (more exactly, on the counterpart, in the
automata framework, of the definition presented here: its form is rather different).
Then he shows how uniformity hypotheses can be seen as congruence on automata,
and he introduces two variants, weak and strong uniformities. He suggests several
other kinds of hypothesis which provide a formal expression of some interesting
testing strategies. One of them, the fairness hypothesis is of quite general interest
since it corresponds to a notion of testability for non deterministic systems.

In another thesis, prepared jointly at CEA and LRI, the use the LOFT system to
assist the test of Lustre programs has been investigated [21]. Lustre is a description
language for reactive systems which is based on the synchronous approach [10]. An
algebraic semantics of Lustre has been stated and entered as a specification in LOFT.
A Lustre program is considered as an enrichment of this specification, just a specific
axiom to be tested. It is too early to decide of the practical interest of this work, but
this way of adapting new formalisms to the system is interesting.

Acknowledgements

The content of this article is directly indebted to joint work and many stimulating
discussions with Gilles Bemot, Bruno Marre and Pascale Le Gall. Bruno Marre has
been very helpful in the preparation of this paper. The discussions with Phyllis
Frankl during her visit to Orsay in June 94 influenced this presentation in a
significant way.

95

References

1. Barbey S., Buchs D., Testing Ada abstract data types using formal
specifications, in Ada in Europe, proc. 1st Int. Eurospece-Ada-Europe
Symposium, Copenhagen, Sept. 1994, LNCS n~ Springer-Vedag, 1994,
pp. 76-89.

2. Bernot G., Testing against formal specifications: a theoretical view,
TAPSObT'91 CCPSD proceedings, LNCS n ~ 494, Springer-Vedag, Brighton,
1991, pp. 99-119.

3. Bernot G., Gaudel M-C., Marre B., Software testing based on formal
specifications : a theory and a tool, Software Engineering Journal, vol. 6, n ~ 6,
Nov. 1991.

4. Bernot G., Gaudel M-C, Marre B., A Formal Approach to Software Testing,
2nd International Conference on Algebraic Methodology and Software
Technology (AMAST), Iowa City, May 1991, Workshops in Computing
Series, Springer-Verlag, 1992.

5. Boug6 L., A contribution to the theory of program testing, Theoretical
Computer Science, vol. 37, 1985, pp. 151-181.

6. Boug6 L., Choquet N., Fribourg L., Gaudel M.-C., Application of PROLOG to
test sets generation from algebraic specifications, TAPSOFT'85 proceedings,
LNCS n~ Springer-Verlag, Berlin, 1985, pp. 246-260.

7. Boug6 L., Choquet N., Fribourg L., Gaudel M.-C., Test set generation from
algebraic specifications using logic programming, Journal of Systems and
Software, vol. 6, n~ pp. 343-360, 1986.

8. Brinksma E., A theory for the derivation of tests, 8th International Conference
on Protocol Specification, Testing and Verification, Atlantic City, North-
Holland, 1988.

9. Broy M., Wirsing M., Partial Abstract Types. Acta Informatica, 3, 1982, pp.
47-64.

10. Caspi P., Halbwachs N., Pilaud D., Plaice J., Lustre: a declarative language for
programming synchronous systems, 14th ACM symposium on Principle of
Programming Languages, Munich, 1987, pp. 178-188.

11. Dauchy P., Gaudel M-C, Marre B., Using Algebraic Specifications in Software
Testing : a case study on the software of an automatic subway, Journal of
Systems and Software, vol. 21, n ~ 3, June 1993, pp. 229-244.

12. Dauchy P., Ozello P., Experiments with Formal Specifications on MAGGALY,
Second International Conference on Applications of Advanced Technologies in
Transportation Engineering, Minneapolis, Aug. 1991.

13. Dick J., Faivre A., Automating the generation and sequencing of test cases from
model-based specifications, FME'93, LNCS n~ Springer-Verlag, 1993, pp.
268-284.

14. Dong R. K., Frankl Ph. G., The ASTOOT approach to testing object-oriented
programs, ACM Transactions on Software Engineering and Methodology, vol.
3, n ~ 2, Apr. 1994.

15. Dssouli R., Bochmann G., Conformance testing with multiple observers, in
Protocol Specification Testing and Verification VI, North-Holland 1987, pp.
217-229.

16. Evans D., Using specifications to check source code, Master thesis, MIT
Laboratory for Computer Science, 1994.

96

17. Goguen, J.A., Thatcher, J.W. and Wagner E.G., An initial algebra approach to
the specification, correctness and implementation of abstract data types, in
Current Trends in Programming Methodology, Vol.4: Data Structuring, edited
by R.T. Yeh, pp. 80-149, Prentice-Hall, 1978.

18. Goodenough J. B., Gerhart S., Towards a theory of test data selection, IEEE
Transactions on Software Engineering, vol. SE-1, n ~ 2, June 1975.

19. Gourlay J., A mathematical framework for the investigation of testing, IEEE
Transactions on Software Engineering, vol. SE-9, n ~ 6, pp. 686-709, Nov.
1983.

20. Hennicker R., Observational implementations of algebraic specifications, Acta
Informatica, vol. 28, n ~ 3, pp. 187-230, 1991.

21. Hsiao N. C., S61ection de test de propri6t6s de sfiret6 ~ partir d'une mod61isation
alg6brique de programme Lustre, Th~se de l'Universit6 de Paris-Sud, Orsay,
1994.

22. Le Gall P., Les Alg~bres &iquet6es : une s6mantique pour les sp6cifications
alg6briques fond6e sur une utilisation syst6matique des termes. Application au
test de logiciel avec traitement d'exceptions, Th~se de l'universit6 de Paris-Sud,
LRI, Orsay, 1993.

23. Marre B., LOFT, a tool for assisting test data selection from algebraic
specifications, in these proceedings.

24. Marre B., Th6venod-Fosse P., Waeselink H., Le Gall P., Crouzet Y., An
experimental evaluation of formal testing and statistical testing,
SAFECOMP'92, Ziarich, Oct. 1992.

25. Orejas F., Implementation and behavioural equivalence: a survey, 8th
WADT/3rd COMPASS Workshop, Doudan, 1991, LNCS n ~ 655, Springer-
Verlag, 1993, pp. 93-125.

26. Phalippou M., Relations d'implantation et hypotheses de test sur des automates
entr6es et sorties, Th~se de l'universit6 de Bordeaux 1, Sept. 1994.

27. Pitt D.H., Freestone D., " The derivation of conformance tests from LOTOS
specifications", IEEE Transactions on Software Engineering, vol. 16, n~
Dec. 1990, pp. 1337-1343.

28. Sannella D. T., Tarlecki A., On observational equivalence of algebraic
specifications, J.C.S.S., vol.34, pp. 150-178, 1987.

