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Abst rac t .  Set constraints are inclusions between expressions denoting 
sets of ground terms. They have been used extensively in program analy- 
sis and type inference. In this paper we investigate the topological struc- 
ture of the spaces of solutions to systems of set constraints. We identify 
a family of topological spaces called rational spaces, which formalize the 
notion of a topological space with a regular or self-similar structure, such 
as the Cantor discontinuum or the space of runs of a finite automaton. 
We develop the basic theory of rational spaces and derive generalizations 
and proofs from topological principles of some results in the literature 
on set constraints. 

1 I n t r o d u c t i o n  

Set constraints are inclusions between expressions denoting sets of ground terms. 
They have been used extensively in program analysis and type inference for many 
years [3, 4, 12, 14, 15, 22, 23, 24, 26]. Considerable recent effort has focussed on 
the complexity of the satisfiability problem [1, 2, 5, 6, 7, 8, 10, 11, 13, 25]. Set 
constraints have also recently been used to define a constraint logic programming 
language over sets of ground terms that  generalizes ordinary logic programming 
over an Herbrand domain [19]. 

Set constraints exhibit a rich mathematical  structure. There are strong con- 
nections to automata theory [10, 11], type theory [20, 21], first-order monadic 
logic [6, 7], Boolean algebras with operators [16, 17], and modal logic [18]. There 
are algebraic and topological formulations, corresponding roughly to "soft" and 
"hard" typing respectively, which are related by Stone duality [18]. 

Many results in the literature on set constraints are topological in flavor. For 
example, Aiken et al. [2] prove that  mixed positive and negative set constraints 
are strictly more expressive than positive constraints alone. The proof of this 
result is based on a compactness lemma whichsta tes  that  a system of positive 
constraints is satisfiable if and only if all finite subsets are satisfiable. It is well 
known that  the compactness of classical propositional and predicate logic is es- 
sentially a topological result: logical compactness is equivalent to the topological 
compactness of a dual space. This is also the case here. 

In [10], Gilleron et al. introduce tree set automata. Among other results, 
they establish various closure properties of these automata and show that  every 
satisfiable finite system of set constraints has a regular solution. The space of 
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runs of a tree set automaton can be viewed as a topological space, and analogs 
of these results hold in a more general context. 

One might wish to incorporate these observations into a theory from which 
such results can be derived from general topological principles. This quest leads 
us to the definition of rational spaces. This defni t ion is meant to capture the 
idea of a topological space with a regular or self-similar structure. The Cantor 
discontinuum is a simple example of such a space. Another example is provided 
by the space of runs of a Bfichi automaton or tree set automaton. Sets of solutions 
to (finite) systems of set constraints can also be represented as (finitary) rational 
spaces. 

Once this definition has been made and the basic theory developed, it is 
possible to rederive some of the results mentioned above from general principles, 
and in some cases give generalizations. For example, the result of [10] that  every 
satisfiable finite system of set constraints has a regular solution is tantamount  
to the fact that  every nonempty finitary rational space contains a rational point. 
(A rational point is a finitary singleton rational subspace.) In fact, every finitary 
rational space is a complete metric space, and is the completion of its rational 
points. The significance of this statement in terms of set constraints is that  every 
finite system of set constraints is determined by its regular solutions. 

This paper is organized as follows. In w we review the basic definitions 
of set constraints, termset algebras, regular sets, hypergraphs, and tree set au- 
tomata.  In w we introduce rational spaces, give several examples, and develop 
their basic theory, including the notions of rational maps, rational subspaces, 
rational products, and rational equivalence. In w we prove our main theorem, 
which characterizes the spaces of solutions of systems of set constraints in terms 
of rational spaces. In w we give several applications. Finally, in w we draw 
conclusions and discuss future work. 

2 P r e l i m i n a r y  D e f i n i t i o n s  

2.1 Set Expressions and Set Constraints 

Let ~ be a finite ranked alphabet consisting of symbols f ,  each with an associated 
finite arity. Symbols in Z of arity 0, 1, 2, and n are called nullary, unary, binary, 
and n-ary, respectively. Nullary elements are called constants. To avoid trivial 
special cases, we assume throughout that  ~ contains at least one constant and 
at least one nonconstant. The use of the expression f ( x l , . . . ,  x,~) carries the 
implicit assumption that  f is of arity n. 

The set of ground terms over E is denoted T~. If X = {x, y , . . . }  is a set of 
variables, then TE(X) denotes the set of terms over ~U and X,  considering the 
elements of X as symbols of arity 0. 

Let B = (U, n, ,,~, 0, 1) be the usual signature of Boolean algebra. Other 
Boolean operators such as - (set difference) and @ (symmetric difference) are 
defined as usual. Let Z § B denote the signature consisting of the disjoint union 
of Z and B. A set expression over variables X is any element of T~+B(X). 
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A positive set constraint is a formal inclusion T c r  where ~ and r are 
set expressions. We also allow equational constraints ~ = r  although inclusions 
and equations axe interdefinable. A negative set constraint is the negation of a 
positive set constraint: r ~ r or T r r 

We interpret set expressions ~ over the powerset 2 T~ of TE. This forms an 
algebra of signature E + B, where the Boolean operators have their usual set- 
theoretic interpretations and elements f E E are interpreted as functions 

: :  (2 T~)~ -~ : ~  
f ( A 1 , . . . ,  A~) = { f ( t l , . . . , t n )  I ti e Ai, 1 < i < n} . (1) 

A set valuation is a map a : X --~ 2 TE assigning a subset of TE to each 
variable in X. Any set valuation ~r extends uniquely to a ( ~  + B)-homomorphism 

or: TE+B(X) --* 2 T~ 

by induction on the structure of set expressions. We say that  the set valuation 
a satisfies the positive constraint ~o C r if a(~o) C a ( r  and satisfies the 
negative constraint ~ ~ r if a(qo) ~ ~(r  We write a ~ a if the set valuation 
a satisfies the constraint a. A system ,S of set constraints is satisfiable if there 
is a set valuation ~ that  satisfies all the constraints in S; in this case we write 
a ~= ,S and say a is a solution of ,.% We write ,.q ~ a if a ~ a whenever a ~ 8,  
and say a is a logical consequence of ~q. We write S ~ ,.q~ ff 8 ~ a for all a E ,-q~. 
We say S and S / are logically equivalent if ~q ~ ,.qr and S ~ ~ 8.  

2.2 T e r m s e t  A l g e b r a s  

Termset algebras were introduced in [18]. These are structures of signature E + B 
satisfying axioms (2)-(6): 

axioms of Boolean algebra 

: ( . . . ,  x u y, . . . )  = f ( . . . ,  x, . . . )  u : ( . . . ,  y, . . .)  

f(...,~ - y, . . . )  

U f ( 1 , . . - , 1 )  
SE _5:. 

f ( 1 , . . . , 1 )  N g ( 1 , . . . , 1 )  

A termset a.lgebra is called entire 1 if 

= f ( . . . , m , . . . )  -- f ( . . . , y , . . . )  

= 1  

= 0 ,  f # g .  

it satisfies (7). 

(2) 
(3) 
(4) 

(5) 

(6) 

n 

f ( X l , . . . , X n )  = 0 -'~ V ( X i  = 0) . (7) 
i-----1 

The ellipses in (3) and (4) indicate that  the explicitly given arguments occur in 
corresponding places, and that  implicit arguments in corresponding places agree. 

1 The term closed was used in [18]. This terminology will be unsuitable in the present 
context because of the potential of confusion with topological closure. 
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The algebra 2 T= discussed in w forms a model of these axioms. Another 
model is given by the subalgebra Regs  of regular subsets of T s  described in w 
below. 

Some immediate consequences 

f(. . . ,o, . . .)  
f ( . . . , ~ x , . . . )  

f ( . . . ,xey,. . . )  
f ( . . - , x  n y , . . . )  

f (Xl  N Y l , - . . , x n  n Yn) 
x C y  

'-.~f(Xl,... ,Xn) 

of (2)-(6) are 

= 0 (S) 

= f ( .  .. ,1, .  ..) - f ( . . . , x , . . . )  (9) 

= �9 (lO) 

= f ( . . .  , x , . . . )  r-l f ( . . .  ,y, . . . )  (11) 

= f ( x l , . . . ,  x,,) n f ( y l , . . . ,  y,,) (12) 

f ( . . . , x , . . . )  _c f ( . . . , y , . . . )  ( la) 

= U g ( l ' " " l )  
g#Y 

n 

U U f ( ~ ,  , ' , - , z i , ~  . (14) 
i = l  

i --1 n - - i  

Proper ty  (14) is called the generalized DeMorgan taw. 
Let X be a fixed set of variables. Let F be a subset of T~+B(X) closed under 

subexpressions. Let F' denote the set of conjunctions of elements of F and their 
negations. A literal is a variable or a negation of a variable. 

P r o p o s i t i o n  1. Any set constraint all of whose subexpressions are in ]'" is equiv- 
alent under the termset algebra axioms (2)-(6) to a finite system of constraints 
of the form ~ofq f (~ol , . . .  ,~on) = 0, where f E E, ~o, io l , . . .  ,io,~ C F', and io is a 
conjunction of literals. 

Proof. If the constraint is an equation, write it as two inclusions. Write an in- 
clusion ~o C r as ~oCl ~ r = 0. Use the DeMorgan laws and the law ~ - ,  ~ = io of 
Boolean algebra to push negations occurring outside the scope of any f C X7 dowI~ 
until any such negation is applied to a variable or an expression f (~o l , . . . ,  ion)- 
Use the generalized DeMorgan law (14) at the outermost level only to transform 
the expression ,,~ f ( ~ o l , . . .  ,ion) to a disjunction of expressions g ( ~ b l , . . .  , ~brn), 
where each lbi is either ..~ ioj or 1. Note both of these expressions are in F '  
(1 is the null conjunction). The expression is now a monotone Boolean com- 
bination of literals and expressions f ( i o l , - - - ,  ion), where io l , . - . ,  qon ~ F ~. Use 
the distributive laws of Boolean algebra outside the scope of any f E ~ only 
to transform the expression to disjunctive normal form. Break the res~t ing 
disjunction up into several constraints, one for each disjunct, using the rule 
~o U ~b = 0 r io = 0 A r : 0. Discard any constraint containing f ( i o l , . . . ,  ion) 
and g ( r  r f # g, because the constraint is automatically true by (6). In 
each of the remaining constraints, combine all non-literals into one expression us- 
ing (12); i.e., replace f ( io l , .  �9 �9 ion) M f ( r  �9 �9 -, r with f(~ol M r �9 �9 ~o,~ (10,~). 
Replace any constraint io = 0, where io is a conjunction of literals alone, with the 
constraints qo fq f ( 1 , . . . ,  1) : 0 for all f E ~ ,  as justified by (5). The resulting 
constraints are of the desired form. 
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2.3 R e g u l a r  Sets  

A subset of T$ is regular if it is described by a finite bottom-up tree automaton 
[9]; equivalently: if it is some set xl  described by a system of simultaneous set 
equations of the form 

x i - - - ~ i ( x l , . . . , x , ~ ) ,  l < i < n  (15) 

in which each variable xi occurs on the left hand side of exactly one equation and 
each right hand side is a disjunction of set expressions of the form f ( Y l , . . . ,  yn),  
where f E Z and y, E { x l , . . . , x m ) ,  1 < i < n. It can be proved by induction 
on the depth of terms that  any such system has a unique solution. The family 
of regular sets over E is denoted Regz.  For example, the system 

x -~ a U g(y)  y = g(x)  (16) 

has the unique regular solution 

a(x )  = {gn(a) In  even) a(y)  = {g~(a) I n o d d ) .  

2.4 Tree Set Automata  and Hypergraphs 

Tree set  automata were introduced in [10]. They are strongly related to the 
hypergraphs introduced in [1], the only essential difference being the inclusion of 
an acceptance condition in the former. The relation of finite tree set automata 
and finite hypergraphs to set constraints has been well studied [1, 2, 10, 11, 19, 
25]. 

D e f i n i t i o n 2 .  Let ~ be a finite ranked alphabet. A ~-hypergraph is a pair 
(D, E), where D is a set (not necessarily finite) and E is an indexed collection 
of hyperedges 

E f  : D n --~ 2 ~ , n = ari ty(f)  , 

one for each f e ~ .  

Thus Ea gives a subset of D for constants a, Eg is an ordinary binary edge 
relation for unary g, etc. 

Def in i t i on  3. A hypergraph (D, E) is said to be entire 2 if every E y ( d l , . . . ,  dn) 
is nonempty, determinis t ic  if every EI  (dl, �9 �9 dn) is a singleton, and unrestricted 
if every E l ( d 1 , . . . ,  dn) = D. 

Def in i t i on  4. A run of the hypergraph (D, E) is a map 0 : T~ --* D such that  
for all f ( t l , . . . , t n )  e T~, 

0 ( f ( t l , . . .  , t n )  ) e E f ( 0 ( t l ) , . . . ,  0 ( t n ) )  �9 (17) 

2 The term closed was used in [1, 2, 18, 19, 25]. This also corresponds to the condition 
COND~ of [10]. 
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There exists a run in (D, E) if and only if (D, E) has an entire induced 
subhypergraph: an entire induced subhypergraph on D' C D allows the defini- 
tion of a run 8 : Tz  ~ D' by induction; conversely, for any run 8, the induced 
subhypergraph on the image ~?(T~) is entire. 

De f in i t i on  5. Let X be a set of variables. A ~ ,  X-tree set automaton AJ is a 
tuple (D, E, A), where (D, E) is a Z-hypergraph and A is an indexed family 
Ax, x C X of subsets of D, called accept sets. A tuple L=, x E X of subsets of 
Tz  is accepted by AA if there exists a run 8 such that  Lx = {t [ 8(t) e Az}, 
x E X .  

In previous work [1, 2, 10, 11, 19, 25], D and X are assumed to be finite, but 
we will find it convenient not impose these restrictions. 

3 R a t i o n a l  S p a c e s  

3.1 Def ini t ion of  Rational  Spaces 

Let E: be a fixed finite ranked alphabet. 

De f in i t i on  6. A topological E-hypergraph is a ~-hypergraph (D, E), finite or 
infinite, endowed with a topology on D whose hyperedges 

{(d, d l , . . . ,d~)  l d e E$(dl , . . . ,dn)}  

are closed in the product topology on D n+l. 

Definit ion 7. A space of runs over ~ is the space T~(7)) of runs of a topological 
~U-hypergraph 7), where the topology on 7~(7)) is inherited from the product 
topology on 7)T~. The space ~(7)) is called finitary if 7) is finite. 

Recall that  the product topology o n  ~)Tz is the smallest topology such that  
all projections rt : 8 ~-* 8(t) are continuous. In other words, it is generated by 
subbasic open sets 

{8 18(t) e x } ,  t C T ~ ,  x o p e n i n T ) .  (18) 

The space ~(7)) of runs of 7), being a space of functions Tm -~ l), is a subspace of 
this space. The topology is thus generated by subbasic open sets (18) restricted 
to n (D) .  

Definit ion 8. A rational space is a space of runs 7~(7)) such that  7) is compact 
and Hausdorff. 

We remark here that  rational spaces are more than just Cantor spaces; the 
representation in terms of 1) is germane. Formally, this will be reflected in the 
restricted class of morphisms defined below, called rational maps. First, however, 
let us look at some examples of rational spaces. 
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Example 1. A simple but  revealing example is the Cantor discontinuum. This 
space can be constructed by starting from the closed real unit interval [0, 1] 
and applying the following operation: delete the "middle third", i.e., the open 
interval (�89 2); then delete the middle thirds of the remaining intervals; and so 
on. The Cantor discontinuum consists of points that  are never deleted. 

Equivalently, these are all real numbers in the unit interval whose ternary (base 
3) expansion does not contain the digit 1. This is a classical example of an 
uncountable nowhere dense set of reals. 

The topology on the Cantor discontinuum is inherited from the usual topol- 
ogy on ' the real line. With  that  topology, it is homeomorphic to the topological 
product 2 ~, or the space of infinite paths of the infinite binary tree with the 
intervals as basic open sets, where in this context an interval is a set consisting 
of all extensions of some finite prefix. 

The Cantor discontinuum has a representation as a finitary rational space 
over ~ = {a, g}, where a is a constant and g is unary. For 7) we take the discrete 
space {0, 1,2} with Eg(d) = Ea( ) = {0, 2}. Corresponding to each point x we 
take the run whose value on g'~(a) is the n th digit in the ternary expansion of x. 

Example 2. Consider an infinite tree that  is binary branching at even levels and 
ternary branching at odd levels. The basic open sets are the intervals. Equiv- 
alently, take the subspace of the real unit interval consisting of all numbers 
whose ternary expansion contains no 2 in an even position. This space has a 
representation as a finitary rational space with E = {a, g}, 1) the discrete space 
{0, 1, 2} • {0, 1}, and 

Ea()  = Eg((d, 1)) ---- {(0,0), (1,0)} 

Eg((d, 0)) = {(0, 1), (1, 1), (2, 1)} .  

The value on g~(a) of the run corresponding to x is (d, n mod 2), where d is the 
n th  digit in the ternary expansion of x. 

Examples (1) and (2) exhibit a treelike structure, because there is only one 
nonconstant symbol and it is unary. Already with two unary symbols, this intu- 
itive picture is no longer accurate. 

Example 3. The following is an example of a non-finitary rational space. Let X 
be a set of variables ranging over subsets of T~, and consider the family of set 
valuations a : X -~ 2 TE . Endow this set with smallest topology whose closed 
sets include all sets of the form {a ] a ~ S} for S a system of set constraints 
over X. One can show that  the topology on this space is generated by subbasic 
clopen (closed and open) sets {a I a ~ t C_ x} and {a I a ~ t C_ ~ x} for t E T~ 
and x E X. It was shown in [2] that  this space is compact. 
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We will show in w below that  this space has the following representation as 
a rational space. Take 7:) to be the topological product 2 X with E / (d l ,  �9 . . ,  d,~) = 
/). (If X is countable, :D is just the Cantor discontinuum.) Associate with every 
set valuation a the run 

1 ,  i f t  E a(x)  (19) 
At.)~x. 0 ,  otherwise. 

This space is not finitary unless X is finite. However, it is a product of finitary 
spaces, one for each x E X, as can be seen by reversing the binding order of t 
and x in the A-expression (19). 

Example 4. Every termset algebra has a set-theoretic representation as a topo- 
logical term automaton whose topology is Stone [18]. These automata were intro- 
duced in [20, 21]. They differ from tree set automata in that  they are top-down 
instead of bottom-up, but they have a naturally defined hypergraph structure 
in which the hyperedges are closed, giving rational spaces. 

3.2 Basic  P r o p e r t i e s  

P r o p o s i t i o n  9. Let 7r be a space of runs. 

(i) I f  7) is Hausdorff, then so is 7~(7)). 
(ii) I f  D is compact, then so is T~(TP). 

(iii) I f  D is finite and discrete (all sets are open), then 7~(D) is a complete 
metric space (all Cauchy sequences converge) under the metric 

d(0, ~/) = 2 -depth(t) , (20) 

where t is a term of minimal depth on which 0 and 71 differ, or 0 if no 
such term exists. 

Proof. (i) Any product of Hausdorff spaces is Hausdorff and any subspace of a 
Hausdorff space is Hausdorff, and 7~(D) is a subspace of the product D T~ . 

(ii) Regarding E l  as an (n + 1)-ary relation, we can write 

Try(D) =- (-] {0 e :D T~ l (O(f(tl,...,tn)),O(tl),...,O(tn)) e El}. 
f ( Q  ..... t . ) c T n  

The set in this conjunction corresponding to f ( t l , . . . , t ~ )  is the continuous 
preimage of the closed set E f  under the projection (ry(tl ..... t .) ,Trtl ,-- . ,~-t .)  : 

, T ~  ~)T~ __4 Dn+l, thus is closed. By Tychonoff s Theorem, /) is compact, and 
any closed subspace of a compact space is compact, therefore 7r is compact. 

(iii) It is easily verified that  d(O, 7) = 0 iff 0 = r/, d(0, 7/) = d(y, 0), and the 
triangle inequality holds. The two topologies coincide: every basic open neigh- 
borhood in the metric topology is open in the product topology, since 

N (e) = I < 4 --  I = e ( t ) } ,  
d e p t h ( t ) ~ -  log e 
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and vice-versa, since if 8(t) = u, then 

{~ I ~/(t) = u} _~ {7/I d(~/,0 ) < 2 -depth(t)} ----- N2-depth(~)(0 ) . 

The space 7~(7)) is complete because it is compact by (ii), and any compact 
metric space is complete. 

C o r o l l a r y  10. Every rational space is compact and Hausdorff. Every finitary 
rational space is a complete metric space under the metric (20). 

3.3 R a t i o n a l  M a p s  

The spaces of Examples 1 and 2 are homeomorphic, since both  spaces are com- 
pact Hausdorff spaces with countable clopen bases and no isolated points, and 
all such spaces are homeomorphic. This is a consequence under Stone duality 
of the fact that  all countable atomless Boolean algebras are isomorphic. Indeed, 
the space of paths in a tree that is binary branching at prime levels and ternary 
branching at nonprime levels is also homeomorphic to the Cantor space, but  it 
is not clear at all how to assign a finitary rational space structure to it. 

The homeomorphisms relating these spaces apparently do not preserve the 
structure inherent in the representation as spaces of runs. Thus the relation of 
homeomorphism is too coarse. Reflecting on this observation, one is led to the 
realization that  rational spaces cannot be defined independent of some represen- 
tation; i.e., there is no purely topological definition. 

These observations motivate the definition of a restricted class of maps called 
rational maps, which are continuous maps preserving the rational structure. We 
take these maps as our morphisms in the category of rational spaces. 

D e f i n i t i o n  11. Let T~(7)) and 7~(C) be rational spaces over ~ .  A rational map 
7~(7)) ~ 7~(C) is a function h : 0 ~-* ho0  defined by a continuous map h : 7) -~ 
such that  

h(E~(dl , . . . ,  dn)) C_ E~(h(dl), . . . ,  h(d~)). (21) 

A rational map 7~(7)) --~ 7~(C) is called a rational embedding if it is injective, 
and a refinement if it is bijective. 

Note that  the terms "injective" and "bijective" in this definition refer to h, not to 
h. There exist rational embeddings and refinements in which h is not one-to-one. 

Any rational embedding or refinement is a homeomorphism between its do- 
main and image, since any continuous bijection from a compact space to a Haus- 
dorff space is a homeomorphism. 

We mention in particular two special kinds of rational embeddings: 

Narrowing If 7) = (D, E)  and 7)' --- (D, E ' )  are two hypergraphs on the same 
set of vertices D, and if all h(Ef(dl , . . . ,  d,~)) C E~(h(dl),. . . ,  h(d,~)), then the 
identity map D --* D induces an embedding 7~(7)) -* T~(7)'). Such an T~(7)) is 
called a narrowing of ~ (D ' ) .  
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Induced Subspaces If 7) = (D, E) is the induced subhypergraph of 7)' = 
(D', E')  on some subset D C_ D', i.e. if E l (d1 , . . .  ,dn) = E}(dl , . . .  ,dn) n D 
for all d l , . . .  ,dn 6 D, then the inclusion map D ~ D' induces an embedding 
7~(7)) --~ T~(7)'). Such an n(7)) is called an induced subspace of 7~(7)'). 

Example 5. The map h((d, 0)) -- 0, h((d, 1)) = 2 gives a rational map from the 
space of Example 2 into the space of Example 1. The image consists of the single 
point .020202.... This is not a rational embedding, since it is not injective. 

Example 6. The hypergraph with vertices {0, 1, 2} and hyperedges 

Ea( ) = Eg((d, 1)) = {(0, 0)} 

Eg((d, 0)) = {(0, 1), (2, 1)} 

constitutes a narrowing of the space of Example 2. This is the subspace consisting 
of all numbers whose ternary expansion contains no 1 or 2 in an even position 
or 1 in an odd position. 

Example 7. The induced subhypergraph of {0, 1, 2} on {0, 1} generates an in- 
duced subspace of the space of Example 2. This is the subspace of all numbers 
whose ternary expansion contains no 2. 

Example 8. Here is an example of a rational embedding which is neither a nar- 
rowing nor an induced subspace. Let Z -- {a, g}, where a is a constant and g is 
unary. Consider the following hypergraph: 

g 

g g g 

Map the first three vertices to 0 and the last vertex to 2. This gives a rational 
embedding of a singleton finitary rational space into the Cantor discontinuum. 
The image is the rational number .000200020002-... 

Example 9. The induced subspace on the subhypergraph {0, 2} is a refinement 
of the Cantor discontinuum, as is the subspace of Example 7 under the map 
d ~  2d. 

3.4 Rat iona l  P r o d u c t s  

Def in i t ion  12. The rational product of any indexed family T~(D~) of rational 
spaces is the space ~(//xT)x), where 

ETuDe(d1,... ,dn) : IIxE?~(Trx(di),... ,Trx(dn)) . 

Intuitively, the runs in each factor space can develop independently. The topo- 
logical product //~7)~ is Hausdorff and compact by Tychonoff's Theorem, and 
E 7  ~vx is closed in the product topology, thus ~(H~7)x) is a rational space. 
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Strictly speaking, the rational product T~(II~7)~:) is not the same as the set- 
theoretic (Cartesian) product / / J~(7)~) ,  although the two are in one-to-one 
correspondence, as can be seen by exchanging the order of A-bindings as in 
Example 3. 

The projections ~r v : H~7)~ --* /)y induce projections ~v : 7~(H~7)~) --* 
7~(/)y), which are rational maps. 

A finite rational product  of finitary spaces is finitary. 

3.5 Rational Subspaces and Rational Points 

Definition 13. A rational subspace of a rational space is any embedded image of 
another rational space. In other words, a subspace 7~ of a rational space ~ ( g )  is a 
rational subspace if there exists a rational space T~(7)) and a rational embedding 

h :  n ( V )  --* :R(~) such that  n = h(n(T))) .  
A rational subspace is entire if it is the embedded image of a rational space 

defined on an entire hypergraph. 

D e f i n i t i o n  14. A rational point of a rational space is a finitary singleton rational 
subspace. 

Example 10. The rational points of the Cantor discontinuum are the rational 
numbers, i.e., real numbers whose ternary expansion is ult imately periodic. 

Proposit ion 15. Let T~(7)) be any rational space. For any closed set x C 7) 
and t e T~, the closed set ~r~l(x) = (0 I O(t) E x} is a rational subspace of 
n(7)). Moreover, if n ( V )  is finitary, then so is 7rt-l(x). 
Proof. Let F be the set of subterms of t. Let * be a new element not in F,  and 
let D. = F U {*}. Let 7). be the discrete hypergraph on this set with hyperedges 

{ f ( t l , . . . ,  tn)} , if f ( t l , - - - ,  tn) is a subterm of t 
E f ( t l , . . .  ,t~) -- * , otherwise. 

Now take the rational product T~(7),) x T~(7)), then take the induced subspaee 
obtained by discarding the open set consisting all vertices of the form (t, d) for 
dg~x. 

Proposit ion 16. The intersection of two (finitary) rational subspaees is again 
a (finitary) rational subspace. 

Proof. Let hi : 7)1 --* E, h2 : 7)2 --~ ~ be maps inducing rational maps h i  : 
T~(7)1) -~ ?Z(g), h2 : T~(7)2) --~ 7~(g). Construct the rational product n(7)1) x 
T~(7)2) with projections r~ : 7)1 • -~ :P,, i �9 {1, 2}, and restrict to the diagonal 
set C = {(dl, d2) I h l (d l )  = h2(d2)}. Let 7~(C) be the induced rational subspace. 
The map h((dl,  d2)) = hl(dl) = h2(d2) gives the desired intersection. 

D e f i n i t i o n  17. The essential subspace of a rational space T~(iD) is the induced 
subspace on the set U0en(v)  O(T~). 

In other words, we discard vertices not appearing in any rim. The essential 
subspace of 7~(7)) is a refinement of T~(7)). 
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3.6 Rational  Equivalence 

D e f i n i t i o n  18. Two spaces are 
refinement. 

rationally equivalent if they have a common 

P r o p o s i t i o n  19. Rational  equivalence is transitive. 

Proof. It suffices to show the following Di amond  Lemma: if ~(~)1) and TC(:DA) 
are both refinements of 7r then 7r and 7~(~)2) have a common refinement. 
Let 7~(C) be the space constructed in the proof of Proposition 16. The rational 
maps TO(C) --+ 7r and n(C)  --~ 7r induced by the restriction of r I and 
1r2 to domain C are bijective, thus 7~(C) is the desired common refinement. 

4 A Characterizat ion of Set Constraints  

In this section we give a complete characterization of the sets of solutions to sys- 
tems of set constraints in terms of rational spaces. Our main result is a one-to-one 
correspondence, up to logical equivalence on one side and rational equivalence 
preserving X on the other, between (finite) systems of set constraints over vari- 
ables X and certain (finitary) subspaces of a certain rational space (Theorem 
21). 

Let Z be a fixed finite ranked alphabet and let X be a fixed set of variables 
(finite or infinite). Let S be a finite system of set constraints over ~ and X.  In 
[1] it was shown how to construct a finite hypergraph (D, E)  whose runs are 
in one-to-one correspondence with the solutions a : X -~ 2 T~ of S, where X is 
the set of variables occurring in S. This result is also implicit in [10]. One can 
construct (D, E)  by various alternative methods [2, 18, 19]. Here is yet another 
method. 

Let F be any subset of TE+B(X) (finite or infinite) containing X and closed 
under subexpressions. Let 2 F be the topological product of F copies of the 
discrete space 2 -=- {0, 1}. 

The space of all unrestricted runs ~ : T~ --~ 2 F is homeomorphic to the space 
of all functions a : F --~ 2 T~ , taking the product topology on each. This can be 
seen by writing 

8 :  T~ --* F --* 2 (22) 
a :  F - * T ~ - - *  2 

and exchanging the order of A-binding. Their  respective topologies are generated 
by subbasic clopen sets 

{e  I = b} I = b} 

for b E {0, 1}, t C TE and ~ C F.  
Note that  the set of all functions a : F --~ 2 T~ includes some that  are not 

partial set valuations. In order to be a partial set valuation, a must be a ( Z  + B)- 
homomorphism on its domain, i.e., must satisfy the following requirements for 
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expressions in F: 

a (~  U r = a(~) U a(r  (23) 

~ (~~)  = ~~(~ )  (24) 

~7(f(~l , . . .  ,~On)) : { f ( t l , . . .  , t n ) [ t i  e a(Vn), 1 < i < n } .  (25) 

Likewise, the set of functions 0 : T~ --~ 2 F is the unrestricted rational space 
~q~(2F). Let us narrow this space as follows. 

Let S be any system of set constraints all of whose subexpressions are in 
F.  Let F '  denote the set of conjunctions of elements of F and their negations. 
For each d E 2 F, let d r _C F r be the smallest set of expressions including d 
and {~ ~o [ ~o E F - d} and closed under conjunction. Call a set expression ~o 
S-consistent if ~o = 0 is not a logical consequence of S and the equational axioms 
(2)-(6) of termset algebra. Define the hyperedges 

E ~ ( d l , . . . ,  dn) = {d I for every ~o E d' and ~o~ E d~, 1 < i < n, 
~o D f (~o l , . . . ,  ~o~) is S-consistent} . 

The (n + 1)-cry relation E~ is closed, as is any set 

{u I for all basic open neighborhoods x of u, P(x)} 

in any topological space for any property P of open sets whatsoever. Denote the 
resulting rational space by 7~(2 F, S). 

T h e o r e m  20. Let the function a : F --~ 2 T~ correspond to the unrestricted 
run 0 : T~ ~ 2F under the correspondence (22). Let S be any system of set 
constraints all of whose subexpressions are in F. Then a is a partial set valuation 
satisfying S if and only i] O is a run o]7"~(2F,s). 

Proof. If ~ is a partial set valuation on F,  then it extends uniquely by induc- 
tion to a total  set valuation a' : TV+B(X) --* 2 TE. Such a map is a (E + B)- 
homomorphism and its image is a subalgebra .4 of the set-theoretic termset 
algebra 2 T~: . Moreover, since a ~ S, .4 satisfies the equations and inequalities 
in S. 

Let f ( t l , . . . ,  t~) be any ground term. For any ~o E O( f ( t l , . . . ,  t~))' and ~oi E 
O(ti)', 1 < i < n, by (22) we have f ( t l , . . . , t ,~ )  e a ' (~)  and t~ e a'(~o~), 1 < 
i < n, thus f ( t l , . . . , t ~ )  E a'(~oOf(~ot,...,r Then ~o M f(~ol,.. . ,~o~) is S- 
consistent, since it is nonzero in the termset algebra ,4. Since the ~o, T1, . - - ,  ~o~ 
were arbitrary, O ( f ( t l , . . . , t , ) )  E Z~(O(tl), . . . ,O(t,~)),  and since f ( t l , . . . , t ~ )  
was arbitrary, 0 is a run of 7~(2F,S). 

Conversely, suppose 0 is a run of 7~(2 F, S). Under the correspondence (22), 
the properties (23)-(25) become 

u r c O(t) c O(t) or r e O(t) (26) 
e O(t) r o(t) (27) 

f(~ol,. . . ,~on) C 0(t) r 3 t l , . . . , t n  t = f ( Q , . . . , t ~ )  
a n d ~ o i E 0 ( t i ) ,  l < i < n  (28) 
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for expressions ~a U r ~ ,  and f(~o~,... ,~a~) ~ F.  The first two of these follow 
immediately from fact that  O(t) ~ is consistent with the laws of Boolean algebra 
(2). For (28), suppose first that  f(~a~,. . . ,  ~ )  E t~(t). For any g G Z,  

t = g ( t l , . . .  ,tin) ~ O(t) E E~(0( t~) , . . . ,  ~(t,~)) 

f(~a~, . . . ,  ~a~) M g ( 1 , . . . ,  1) is S-consistent 

m = n and f = g by (6). 

Thus t = f ( t l , . . .  , tn) and ~?(t) E E~(O(t l ) , . . .  ,t?(tn)). Now each O(ti)' contains 
some r E { ~ ,  ~ ~i }, and f ( ~ l , . . . ,  ~ ) M f ( r  r must be S-consistent. By 
properties (8) and (12), the only S-consistent possibility is ~oi = r 1 < i < n, 
thus ~ai C ~(ti), 1 < i < n. 

For the other direction of (28), suppose ~i E 8(ti), 1 ~_ i ~_ n. Since 8 
is a run, for any r E 9( f ( t~ , . . . , t~ ) )  ~, r M f(iPl, .-- ,~an) is S-consistent. But  
8 ( f ( t l , . . . ,  tu))' contains at least one of f ( ~ l , - - . ,  ~ ) ,  ~ f ( ~ l , . . . ,  ~n), and the 
former is the only S-consistent choice. Therefore f ( ~ l , - - - ,  ~n) E 8 ( f ( t l , . . . ,  t~)). 

Finally we show that a ~ S. If not, then by Proposition 1, there exists a 
logical consequence ~o M f ( ~ , . . . ,  ~ )  = 0 of S, 9, tal, . . .  , ~n E F ~, such that 
a~(~a M f ( ~ , . . . ,  !an)) ~ 0. No term with head symbol g ~ f can be in a'(ga M 
f (~a l , . . . ,  (fin)), thus there must be a term f ( t ~ , . . . ,  t~) e a'(~a M f ( ~ , . . . ,  ~a~)). 
Then f ( t ~ , . . . , t ~ )  ~ a'(~a) and ti ~ a ' ( ~ ) ,  1 < i < n, and by the correspon- 
dence (22), ~a ~ 0 ( f ( t~ , . . .  ,t,~))' and ~ai e t?(ti)', 1 < i < n. But since t? is 
a run, t?(f( t~, . . . ,  t~)) E E ~ ( 0 ( t l ) , . . . ,  0(tn)), therefore ~ M f(~a~,. . . ,  ~n) is S- 
consistent. This is a contradiction. 

Theorem 20 implies that if F1 _C F2, where F1 and F2 axe subexpression- 
closed families of set expressions over X, and if S is any system of set constraints 
over F1, then T~(2F~,s) is a refinement of ~ ( 2 F 1 , s )  under the natural projec- 
tion 2 F2 -~ 2 El. In particular, for every subexpression-closed family F of set 
expressions over X,  •(2 F, O) is a refinement of n ( 2  X, 0). 

Similarly, if $1 and $2 are systems of set constraints over F and $1 ~ $2, then 
any logical consequence of $2 is a logical consequence of $1, therefore ~ (2  F, $1) 
is a narrowing of 72~(2F, 32). 

Combining these observations, we see that  every ~ (2  F, S)  is a rational sub- 
space of T~(2 X, 0), since T~(2 F, S) is a narrowing of 7~(2 F, 0), which in turn is a 
refinement of 7~(2 X, ~). 

For x E X,  let us denote also by x the clopen set {d I x E d} of any 
hypergraph 2 F. Let us say that  a rational embedding between spaces 77~(2 F, S) 
preserves X if the map h on the underlying hypergraphs satisfies x = h - l ( x )  
for all x e X.  Note that  both the refmement 7~(2F2,s) --~ ~(2F1,S)  and the 
narrowing 7"~(2F,s1) --+ 7~(2F,32) preserve X in this sense. Let us say that  a 
rational equivalence preserves X if the functions hi : C -* 2 F1 and h2 : C -~ 
2 F2 from the hypergraph underlying the common refinement 7~(C) satisfy the 
property that  h~l(x)  = h21(x) for all x E Z .  

The following is our main theorem. 
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T h e o r e m  21. Let X be any set of variables. Up to logical equivalence on one 
side and rational equivalence preserving X on the other, the systems 8 of set 
constraints over X are in one-to-one correspondence with the rational subspaces 
n ( 2 F , 8 )  Of T~(2 X, O). I f  X is finite, then the finite systems of set constraints 
correspond to the finitary subspaces of T~(2x,0). The correspondence preserves 
the partial orders of logical entailment on one side and X-preserving rational 
embedding on the other. 

Proof. For any system of set constraints 8,  let Fs be the smallest subexpression- 
closed subset of T~+B(X) containing X and all expressions occurring in 8. Con- 
sider the map # : ,S ~-* Tr Fs , 8).  

First we show that up to X-preserving rational equivalence on the right hand 
side, the map p is well-defined on logical equivalence classes on the left hand 
side. Suppose 81 ~ 82 and S 2 ~ 81. Let F1 = Fs~, F2 : Fs2, and F = F1 t3 F2. 
Then TC(2F,81) is a refinement of TC(2F~,81) and T~(2F,82) is a refinement 
of 7~(2F2,$2). But  since 81 and 82 have the same logical consequences, the 
two spaces ~ ( 2  F, 81) and Tc(2F,82) coincide, thus form a common refinement 
of 7r and 7r Moreover, the natural refinements 7~(2F,81) --* 
7r f~ , 81) and 7r F, 82) --* 7r f~, $2) preserve X.  

To show that the map # is one-to-one, suppose T~(2F',81) and 7r 
have a common refinement T~(:D) with underlying maps hi : 7) ~ 2 F~ , h2 : 7) 
2 F2 such that h ~ ( x )  = h2~(x), x e X .  It follows that for any run ~ of T~(:D), 
t E T~, and x E X ,  

Thus under the correspondence (22), the runs of Tr F1 , 81) and ~ (2  F2, 82) cor- 
respond to the same family of set valuations. By Theorem 20, 81 and $2 have 
the same set of solutions, thus are logically equivalent. 

Suppose X is finite. If S is finite, then 7r Fs, S) is finitary. Conversely, if 
T~(2 Fs , S )  is finitary, then by Proposition 1, 8 is logically equivalent to a finite 
system. 

Finally, let 81 and 82 be two systems of set constraints, and let F1 = Fsl, 
F2 = Fs~, and F = F1 U F2. As argued above, if 81 ~ $2 then T2~(2F,81) is 
a narrowing of T~(2 F, 82), therefore gives a rational embedding preserving X. 
Conversely, if h : Tr F1 , 81) --* Tr F~, 82) is a rational embedding preserving X 
induced by h :  2 F1 -~ 2 F~, then for any run ~ of T~(2F1,81) and t E T~, 

8(t) e x r h(~(t)) e h(x) r h(~)(t) e x .  

Thus under the correspondence (22), the set valuation corresponding to the run 
0 of Tr F1 , 81) also corresponds to the run h(0) of Tr F2 , 82). By Theorem 20, 
every solution of 81 is also a solution of 82, thus 81 ~ 82. 

We remark that  the Stone dual S t ( F x / S )  of the free termset algebra on 
generators X modulo 8 [18], embedded in 2 TE+B(X) in the natural way, gives 
rise to an induced subspace 7 ~ ( S t ( F x / S ) )  of ~(2 T~+B(X), 8). 
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5 Applications 

In this section we apply the theory of rational spaces to set constraints. We 
rederive several results in the literature on set constraints and tree set automata 
in terms of rational spaces. In many cases we are able to generalize the results 
and give shorter proofs that  reveal the topological principles at work. 

5.1 Pos i t ive  a n d  N e g a t i v e  C o n s t r a i n t s  

In [2], Aiken et al. prove that  mixed positive and negative set constraints are 
strictly more expressive than positive constraints alone. The proof of this result 
is based on a compactness lemma which states that  a system of positive con- 
straints is satisfiable if and only if all finite subsets are satisfiable. Under the 
correspondence of Theorem 21, the compactness lemma of [2] is equivalent to 
the compactness of the space R(2 x ,  0). 

However, the fact that  negative constraints can express something that  posi- 
tive constraints alone cannot is a simple consequence of the observation that  all 
systems of positive set constraints define closed sets, whereas the set of solutions 
of x ~ 0 is not closed: if an(x) = {t I depth(t) > n}, then a ,  is a Cauchy 
sequence, each of whose elements satisfies x ~ 0 but whose limit does not. 

5.2 E n t i r e  Subspaces  

In w we argued that  a hypergraph has a run iff it has an entire induced 
subhypergraph. This essential fact is used in several algorithms for satisfiability 
of set constraints [1, 2, 10, 11, 25]. Similarly, a rational space is nonempty if and 
only if it contains an entire subspace. This can be generalized as follows. 

T h e o r e m  22. Every (finitary) rational space is a (finite) union of entire sub- 
spaces. Over a language with only constants and unary function symbols, every 
rational space is essentially entire. 

Proof. The essential subspace of T~(/9) is 

u( U U n(e(TE)), (29) 

and 8(T~) is entire. This union is finite if I9 is, since there are only finitely many 
induced subspaces. Any entire subspace of T~(/)) is a rational subspace of an 
entire induced subspace of T~(D). 

Over a language with only constants and unary function symbols, the union 
U~ T)x of any family Dx of entire induced subhypergraphs of 7) is an entire 
induced subhypergraph of T). (Note, however, that  in general ~([.J~ T)x) 
Ux 7~(/)~)! A counterexample is given below in w Applied to (29), this says 
that  the essential subspace of T~(/)) is entire. 
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5.3 Dens i ty  of  Ra t iona l  Po in ts  

Gilleron et al. [10] prove that every satisfiable finite system of set constraints 
has a regular solution. Under the correspondence of Theorem 21, this reduces to 
the following fact about finitary rational spaces: 

Proposit ion 23. Every nonempty finitary rational space contains a rational 
point. 

Proof. If 7~(/)) is nonempty, then 7) has an entire induced subspace T~(:D'). In 
turn, 7~(:D') has a deterministic narrowing T~(:D"), which is a rational point. 

A rational point corresponds to a deterministic tree set automaton, which has a 
unique run. Such automata accept regular sets, as can be seen by writing down 
a system of regular equations of the form (15), one variable for each state. 

However, there are more rational points in a finitary rational subspace than 
just those obtained by narrowings of entire induced subspaces. Indeed, there are 
only finitely many narrowings of entire induced subspaces, whereas the number 
of rational points is infinite in general. For example, the Cantor discontinuum 
contains countably many rational numbers. An example of a rational point of 
the Cantor discontinuum that is not a narrowing of an entire induced subspace 
is given in Example 8. This subspace cannot be represented on a hypergraph of 
fewer than four vertices. 

The following result says that the rational points of any nonempty finitary 
rational space are dense. In terms of set constraints, the significance of this 
theorem is that every finite system of positive set constraints is determined by 
its regular solutions. 

T h e o r e m 2 4 .  Every finitary rational space is the completion of its rational 
points. 

Proof. Let T~(:D) be a finitary rational space. Recall that T~(:D) is a complete 
metric space. For any x C_ :D and t E T~, by Proposition 15 the subbasic open 
set {0 I ~(t) e x} is a finitary rational subspace of T~(:D). Any basic open set A 
of T~(:D) is a finite intersection of subbasic open sets, and A is a finitary rational 
subspace of T~(:D) by Proposition 16. By Proposition 23, any nonempty such A 
contains a rational point. Thus the set of rational points is dense in T~(:D), and 
its closure is T~(T~). 

5.4 Closure Properties of Tree Set Automata  

In [10], it is claimed without proof that the family of languages accepted by tree 
set automata is closed under (finite) union, intersection, and cylindrification. 

Closure under intersection can be shown as follows. Let T)~ be an indexed 
family of tree set automata with tuples Ax of accept sets. The tuple A~ is an 
indexed family A~ of subsets of :D~. Take the induced subspace of the product 
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H~/)~ consisting of points Ai H~A~i. The resulting automaton gives the desired 
intersection. 

Cylindrification is effected as follows. If 79 is a tree set automaton,  take the 
rational product  79 • {0, 1} of 79 with a two-element unrestricted hypergraph. 
For A an accept set in :D, take A' = ~ - I (A) ,  and add the new accept set ~r21(1). 

Contrary to the claim of [10], the family of languages accepted by tree set 
au tomata  is only closed under union for signatures E containing at most one 
constant or at least one symbol of arity two or greater. In those cases, a marked 
union (_J~ D~ • {x} of the hypergraphs with the naturally induced hyperedges 
will give the desired union of sets of runs: in the case of one constant symbol a, 
if 6(a) E :Dr then the entire image of ~ must be contained in T)~; and in the case 
of at least one symbol f of arity two or greater, there can be no run ~ taking 
a value d C / ) x  and e E / )~  for x ~ y, since Ey(d, e) = 0, so the run cannot be 
completed. 

For Z containing at least two constants a, b and no symbol of arity greater 
than  one, the family of languages accepted by tree set automata  is not closed 
under union. Consider the two systems of set constraints {x = 1} and {x = 0}. 
Let A4 be any tree set automaton accepting at least the union of the two sets of 
solutions. Because J~4 accepts the solutions of the first system, it must admit  a 
run ~ with O(T$) C A~. Because A4 accepts the solutions of the second system, 
it must admit a run y with y(TE) C_ A~~. Let H denote any composition of 
unary functions. Then the function 

0(t) , if t = H(a) for some H,  
At. y ( t ) ,  if t = H(b) for some g 

is a legal run of J~4, but does not satisfy either of the constraints x = 1 or x -- 0. 

6 C o n c l u s i o n  

In this paper we have investigated the topological structure of the spaces of 
solutions of systems of set constraints. We have identified a family of topological 
spaces called rational spaces, which formalize the notion of a topological space 
with a regular or self-similar structure, such as the Cantor discontinuum. We 
have developed the basic theory of rational spaces and applied this theory to 
understand more fully the structure of set constraints. 

In a subsequent paper, we will apply these results further to provide a 
Gentzen-style axiomatization involving sequents �9 ~- ~P, where ~5 and ~ are 
finite sets of set constraints, and give completeness and incompleteness results 
for this system. 
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