
Analogical Logic Program Synthesis 
from Examples 

Ken Sadohara and Makoto Haxaguchi 

Depa~'tment of Systems Science Tokyo Institute of Technology 
4259 Nagatsuta, Midori-ku, Yokohama 227, Japan 

E-maihsadohara@sys.titech.ac.jp and makoto@sys.titech.ac.jp 

A b s t r a c t .  The purpose of this paper is to present a theory and an al- 
gorithm for analogical logic program synthesis from examples. Given a 
source program and examples, the task of our algorithm is to find a pro- 
gram which explains the examples correctly and is similar to the source 
program. Although we can define a notion of shnila~:ity in various ways, 
we consider a class of similarities from the viewpoint of how examples 
are explained by a program. In a word, two programs are said to be sim- 
ilar if they share a common explanation structure at an abstract level. 
Using this notion of similarity, we formalize an analogical logic program 
synthesis and show that our algorithm based on a framework of model 
inference can identify a desired program. 

1 Introduction 

This paper  is concerned with Logic Program Synthesis from examples (LPS). 
LPS is generally regarded as one of the frameworks of learning from examples, 
and has been widely studied by many  authors [5, 11, 9]. Any LPS system receives 
an example set f rom a target  program, and tries to find the target  program in 
a huge search space. Some researchers [13, 10] have pointed out tha t  the use 
of analogy might  be helpful in LPS. Such Analo~cal  Logic Program Synthesis 
(ALPS) systems t ry  to find a correct prograrn 1 which is similar to a source pro- 
gram. They  have considered tha t  analogy is useful for reducing the search space 
to a space of "similar programs".  However, no studies have established or proved 
tha t  the use of analogy really makes such a contribution. Furthermore,  there ex- 
ists a criticism tha t  analogy makes LPS more difficult. Because the ALPS system 
must  find not only a correct program but  also a similarity; that  is, the system 
must  find which program is appropr ia te  as a source program and how the correct 
p rogram is similar to the source program. Even if we admit  such a disadvantage, 
we think t ha t  ALPS is worth investigating because of another  role of analogy 
which is pointed out in [2]. I t  is the role as a device to shift a bias. The bias is 
a tendency to select a class of programs from the correct programs. Therefore, 
an ALPS system inheriting the role of analogy enables us to lead the system to 
identify a desired program , depending on which program we give the system 
as a source program. For example, let us consider programs for sorting lists. An 

1 A correct program means a program which can explain given examples correctly. 



233 

ALPS system might be able to identify insert-sort program rather  than naive- 
sort program, provided we give the system a source program to which insert-sort 
is similar, such as natural-number 2. To borrow from Michalski's word [4], we can 
change a preference criterion of programs dynamically. This aspect of ALPS 
seems to be important  from a viewpoint of the change of representation (the 
program transformation).  In the last section, we briefly discuss this viewpoint. 
These reasons mentioned above motivate us to investigate ALPS. 

In ALPS, a notion of similarities between logic programs plays a crucial role. 
In the literatures [7, 10], the authors have precisely defined that  notion from 
which only small classes of similarities are derived. On the other hand, in the 
l i terature [13], the authors have considered a wider class of similarities that  has 
no firm theoretical basis. Because of the lack of an appropriate theoretical basis 
on similarities between programs, we have not been able to evaluate ALPS's 
usefulness. A purpose of this paper is to present a class of non-trivial similarities 
between programs with a firm theoretical basis. 

There may exist various kinds of similarities between logic programs. Ac- 
cording to [7] and [10], a source program is regarded as a second-order schema. 
A program is considered to be similar to the source program, provided it is an 
instance of the schema. For example, a program 

ances to r (X,Y)  *-- p a r e n t  (X,Y) } 
Q = ( a n c e s t o r ( x , Y )  +- a n c e s t o r ( x , z ) , p a r e n t  (z,Y) 

is similar to a source program 

p = { r ~-- link (X,Y) } 
connected(X,Y) ~ connected(X, Z), link(Z,Y) 

because Q is an instance of P, where connected and link are instantiated 
to ancestor and parent, respectively. This kind of similarity can be thus de- 
fined as a symbol-to-symbol mapping, and is therefore too much dependent on 
their surface syntax. On the other hand, we can observe a more internal simi- 
larity between the above programs. In fact, they share a common explanation 
structure. If any ground atom ancestor(x,y) corresponds to the ground atom 
connected(x, y) and any ground atom paren~ (x, y) corresponds to the ground 
atom link (x, y), then any proof of any ground atom ancestor (x, y) is similar 
to a proof of the ground atom connected(x,y). Considering in this way, we 
justify our intuition that a logic program 

r e v  ( [ ] ,  [] ) *-- } 
reverse = [ rev( [AIX] ,Y) +- rev(X,Z), append(Z, [A] ,Y) 

is similar to a logic program 

natural-number={ nn(O) e- } 
nn(s (X) )  +-- nn(X) 

2 These programs are similar because they have a similar recursive structure. The 
programs mentioned here are in [12]. 



234 

although reverse is not an instance of natura l -number .  Because examples of re. 

verse are explained in the similar way (not in the same way) as examples of 
n a t u r a l - n u m b e r  under the foUowing correspondence between rev and rm. Any 
ground atom r e v ( x , y )  corresponds to the ground atom nn(s n (0)), where x is 
a list whose length is n > 0 and sn(0) is an abbreviation o f s ( s ( [ . ,  s (0)  . . .  )). 

n 

In this paper, we formalize such a non-trivial similarity from the viewpoint of 
how the examples are explained. Although the paper [13] has considered this 
kind of similarit~5 it has not formalized the similarity completely: 

The ALPS problem which we consider here is stated informally as follows. 

Given 
a source program P and 
a set of positive examples E + and a set of negative examples E - ,  where 
the examples axe ground atoms, 

F ind  a target program Q such that Q ~- E +, Q ~ E -  and Q is similar to P. 

Firstly we present a formal theory on ALPS, especially a theory on similarities 
between logic programs. Secondly we show an algorithm for ALPS which is 
obtained by extending Shapiro's incremental model inference algorithm [11], 
and prove that the algorithm identifies a solution in the limit. 

2 Pre l iminaries  

In this paper, concepts for logic programs are based on [3], unless stated oth- 
erwise. For any clause C and D, we define pre-order C k D, which is called 
0-subsumption~ iff there exists a substitution 0 such that CO C D. In addi- 
tion, for any set of clauses S and T, we define S k T i f f  for any clause C 
in T, there exists a clause D in S such that D >_ C. For any definite clause 
C = A ~ B1 . . . .  , B n ,  He(C) denotes the positive literal A and Bo(C) de- 
notes the set of atoms { B 1 , . . . , B n } .  A ground goal is a clause of the form 
*-- B1 , . . . ,Bn ,  where each Bi(1 < i < n) is a ground atom. The symbol _k 
denotes the empty clause. In the remainder of this paper, we consider a logic 
program as a finite set of definite clauses whose lengths are finite. 

For any function symbol or any predicate symbol s, ~s denotes the arity 
of s. For any set of function symbols S and ai\u set of predicate s3nnbols H, 
we call the pair ( ~ , / / )  a vocabulary. For any logic program P, V(P) denotes 
a vocabulary (~ , / / ) ,  where Z is a set of function symbols including function 
symbols occurring in P and H a set of predicate symbols including predicate 
symbols occurring in P. Moreover we assume that S and /7 are finite sets. 
When we consider several logic programs, we assume that their vocabularies are 
disjoint. 

Throughout this paper, we assume a set of variables W, and a set of special 
constants C whose elements never appear in any program. We also assume that 
]2 and C contain enough elements. 



235 

For any set of function symbols Z and any set of predicate symbols T/, 
Trm(Z) denotes the set of terms constructed from ~7, 1) and C. Likewise, Sub(Z), 
A tm(Z , / / )  and Cls(S~H) denote the set of substitutions constructed from 
Trm(Z), the set of atoms constructed from Tral(Z) and H, and the set of 
clauses constructed from Atm(~ , / / )  respectively. Exp(Z, i / )  denotes Trm(S) U 
Sub(~) U A t m ( ~ , / / )  U Cls(Z, H) and we call each elements of this set an ex- 
pression. In addition, Trm(P), Sub(P), Atm(P) and Cts(P) denote Trm(S), 
Sub(Z), Atm(Z, H)  and Cls(Z, / / )  respectively for any logic program P,  where 
V(P) = <Z, H). 

For any logic program P,  B(P) denotes the Herbrand base which is the set 
of ground atoms constructed from V(P) and C. A mapping Tp : 2 B(P) --~ 2 B(P) 
is defined as follows. For any I _C B(P), 

{ T ere  ro,n  ins  ,co A 
of a clause in P such that {B1,...,Bn} "~"I Bn } Tp(I)  

Then, 
T p ? 0  = 0  
Tp ]" n = Tp(Tp  T (n - 1)) for any positive integer n 
Tp T w = [Jn<x Tp t" n for the first transfinite ordinal a3 

M(P) denotes the least Herbrand model of P. It is known that M(P) = Tp T w. 
For any mapping r 7)(r denotes the domain of r and r Is denotes the 

restriction of r whose domain is S V1/)(r 
For any substitution {X1/tl,... ,X,/tn}, if each ti(1 < i < n) is a special 

constant then we call it a special substitution. In addition, a ground substitution 
is grounding substitution of a clause C if C0 is a ground clause. 

3 S i m i l a r i t i e s  b e t w e e n  L o g i c  P r o g r a m s  

There may exist various kinds of similarities between logic programs. In this 
section, we consider a class of similarities from the viewpoint of how examples 
are explained. This is because we think that programming can be viewed as 
fixing the way of explanation of examples. Formally, it can be viewed as giving 
a Primitive Explanation Structure defined as follows. 

Def ini t ion 1. Let P be a logic program. The following relation R C_ B(P) x 
2 B(P) is caUed Primitive Explanation Structure (PES) of P. 

R = { (A's) l A ~-{B1,...,Bl"'"B" is a gr~ instance ~ a clause in P' C_ S C_ B(P) 

Because generalizing this possibly infinite PES, we get a finite expression of 
the structure and this is a program. Therefore, we consider similarities between 
programs based on this PES as follows: a target logic program Q is similar to a 
source logic program P if we can abstract the PES of Q into that of P. So, we 
first define a notion of abstraction relation between the PESs (the programs). 

A partial mapping defined as follows enables to abstract the PES of the target 
program. 



236 

Defini t ion 2. Let P and Q be logic programs. A partial mapping 
r : B(Q) -~ B(P) is called an abstraction mapping from Q to P. For J C_ B(Q), 
r  = {r I B 6 J M ~)(r 

The following proposition shows properties of abstraction mappings. 

P ropos i t i on  3. Let P and Q be logic programs. Let r be an abstraction mapping 
from Q to P. For any I, J C_ B(Q), 

I c J =~ r c_ r r  (2 J) = 0(I) U r  

Now~ using the abstraction mappings, we define a class of abstraction rela- 
tions between programs. The following definition says that for any logic programs 
P and Q, if we can abstract the PES of Q into that of P then P is more abstract 
than Q. That is, P is more abstract than Q when there exists an abstraction 
mapping r from Q to P such that for any (A, S) in PES of Q, (r r is in 
PES of P. 

Defini t ion 4. Let P and Q be logic programs. Let r be an abstraction mapping 
from Q to P. P is more abstract than Q w.r.t. r iff 

Wp(r _D r 

for any x c B(Q). 

From the definition, we have the following theorem. 

T h e o r e m  5. Let P and Q be logic programs. Let r be an abstraction mapping 
from Q to P. If  P is more abstract than Q w.r.t. r then M(P) 2 r 

The following proposition shows an equivalence condition of the abstraction 
relation. This is useful for decision whether there exists an abstraction relation 
w.r.t a given abstraction mapping. 

P ropos i t ion  6. Let P and Q be logic programs. P is more abstract than Q w.r.t. 
an abstraction mapping r iff .for any ground instance C of any clause in Q such 
that He(C) 6 7)(0), there exists a ground instance D of a clause in P such that 
He(D) = r and Bo(D) C_ r 

Example 1. Using Proposition 6, we can confirm the following abstraction rela- 
tions. 

For programs 

{append([],X,X) ~-- } 
append-- append( [A I X] ,Y, [AIZ]) ~- append(X,Y,Z) 

and 
[ plus (O,X,X) ~- } 

plus = [ plus(s(X) ,Y,s(Z)) ~-- plus(X,Y,Z) 



237 

Let r be an abstraction mapping such that  

51 (append (z ,  y, z) ) = p lus  (s n (0 ) ,  s m (0) ,  s ~+m (0))  

where x, ff and z are lists whose lengths are n _> 0, m _> 0 and n + m  respectively. 
Then, plus is more abstract  than append w.r.t. 51. 

For natural-number and reverse in the introduction, Let 52 be an abstraction 
mapping such that  

5 2 ( r e v ( x , y ) )  = nn(sn (0))  

where x is a list whose length is n _> 0. Then, natural-number is more abstract  
than reverse w.r.t. 52. 

For natural-number and 

parity = odd(s(X))  ~- even(X) 
even(s (X))  ~ odd(X) 

if we define an abstraction mapping 53 as 

53(even(x) )  -=- nn(x ) ,  53(odd(x))  ---- nn(x)  

then natural-number is more abstract than parity w.r.t. 53. 

Now, let us consider how the abstractions defined above affect a proof tree. 
The consideration amplifies abstraction of the explanation structure mentioned 
in introduction. 

D e f i n i t i o n  7. Let P be a logic program. Ground refutation node in P is a pair 
(G, C), where G C_ B(P)  and C is a ground instance of a clause in P such that  
He(C) a. 

D e f i n i t i o n  8. Let P be a logic program and G a ground goal. Ground refutation 
of G in P is a finite sequence (G1, C 1 ) ' "  (Gn, Cn) of ground refutation nodes 
in P ,  where 

1. G1 = Bo(G). 
2. For all i (1 < i < n - 1), Gi+l = Gi \ {He(C/)} U Bo(Ci). 
3. G~ = {A} and Cn = A ~ ,  where A e B(P) .  

The following theorem describes how the abstractions affect ground refutations 
in a target  program. For any given ground refutation in a target program, the 
procedure in the theorem abstracts it into a ground refutation in a source pro- 
gram. 

T h e o r e m  9. Let P and Q be logic programs. Assume P is more abstract than 
Q w.r.t, an abstraction mapping 5. For any ground goal G and any ground 
refutation GR of G in Q, any sequence GR I obtained by the following proce- 
dure is a ground refutation of 5(G) in P, where 5(G) denotes ~ B I , . . . , B n  
( {B 1 , . . . ,  Bn} = 5(Bo(G)))  and 5(G) ik _l_. 



238 

. 

2. 

Assume GR = (G1, C1}. . .  (G,~, C,~}. Let GR' be the empty sequence e and 
Grl be G1. 
For all 1 < i < n, if He(C/) e ~)(r N G~ then 
(a) non-deterministieally choose a ground instance D of a clause in P such 

that He(D) = r and Bo(D) C_ r where there always 
exists such a clause because of Proposition 6~ 

(b) a~+ 1 *-- G i \ r U { d e  Bo(Ci) I r  e Bo(D)}, and 
(c) let GR' be the concatenation of GR' and (r D). 
else let G}+ 1 be G}. 

In the procedure, r is defined as r = {B I r = A} and for any 
ground clause C such that He(C) e l)(r r denotes r ~- B~, . . . .  B~ 
({B1, . . . ,  Bn} = r 

There exist three types of abstraction of resolution by the above procedure. The 
following example shows them. 

Example 2. Let a target program Q and a source program P as follows. 

c2 = 

81 e-- 
82 ~-- 
t~-- 

p ~  q,r 
q ~-- 81~82~t 

8 t ~-- } 
t t ~-. 

P = pl ~ ql 

ql +_ s I 

Let an abstraction mapping r be r = r = s', r = t', r = p' and 
r = qq Then P is more abstract than Q w.r.t. r 

In the Fig. 1, GR is a ground refutation of a goal ~ p in Q and GR ~ is a 
ground refutation of a goal ~-- p~ in P obtained by the procedure stated above, 
where GR and GR ~ are represented by ordered binary tree. There exist three 
types of abstraction of resolution. The first one stems from the partiality of the 
abstraction mapping 6: the resolution (a) is abstracted because r ~ l)(r The 
second one stems from that r is not injective: the resolution (bl) and (b2) are 
simplified into (b') because r = r = s'. The last one stems from that the 
image of a ground clause of Q is weaker than the corresponding clause of P: the 
resolution (c) is abstracted because r ~- sl, s2, t) = q' *-- s~,t ' is weaker than 
q/ +_ j .  

The notion of abstraction defined in this paper differs from the notions of ab- 
straction in [6, 14, 1] at least in abstraction mapping's partiality. As far as we 
concern ground atoms, our notion of abstraction is a partial TI-abstraetion as 
Theorem 5 shows. The difference comes from a difference of motivation: while 
their notions of abstraction are motivated by theorem-proving with abstraction, 
our notion of abstraction is motivated by extracting similarity with abstraction. 

Using the class of abstraction relations between logic programs we have seen, 
we define a class of similarities bet~veen programs. 



239 

GR *-- p p ~--- q, r 

(a)', ~ q,r r ~ ,' 
t ! 

*-- q q ~  Sl, S2,t  

(bl) 7 ~-- Sl,S2, t Sl *'- ! 

J I 
b*-  . . . . . . . . . . . . . . . . . . . .  -I 

(b2) l ~ s2,  t s2 ~-  ', 
' ~ 
I I 

( C )  ~ . . . . . . . . . . . . . . . . . . . . .  "(-"-~ lJ "re-- .4li 

I I 

.L 

GR' ~_. pt pt ~__ qt 

qt qt ~ st 

. . . . . . . . . . . . . . . . . . . . .  

( b ' )  7 - -  s '  s ' ~ ' 
I I 

• 

Fig. 1. 

Defini t ion 10. Let P and Q be logic programs. Let r be an abstraction mapping 
from Q to P. Q is similar to P w.r. t  r iff P is more abstract than Q w.r.t. r 

Q is similar  to P iff there exists an abstraction mapping r and Q is similar 
to P w.r.t. r 

4 R e s t r i c t e d  S i m i l a r i t i e s  f o r  D e c i d a b i l i t y  

If the Herbrand base of a target program is finite then the PES is also finite 
and the decision whether the target program is similar to a source program 
w.r.t, an abstraction mapping is clearly decidable. Then, when the Herbrand 
base is infinite, is the decision decidable? This question is open. In this section, 
we restrict the class of the similarities defined in the previous section so that 
the decision is decidable even if the Herbrand base is infinite. By restricting the 
class of abstraction mappings in the preceding section, we restrict the class of 
the similarities. The restricted class of abstraction mappings can deal with the 
following abstractions, which are introduced in [6]. 

1. Renaming symbols abstraction. For a ground atom A, the predicate sym- 
bol and function symbols appearing in A are renamed in some systematic 
way. The renaming is not necessarily one-to-one. For example, ground atoms 
cup(a) and b o t t l e ( a )  are renamed into conta iner (a) .  

2. Permuting arguments abstraction. For a ground atom A, the order of the ar- 
guments of the predicate symbol or function symbols appearing in A changes 
in some systematic way. For example, a ground atom c h i l d ( a , f a t h e r ( a ) )  
is changed into parent  ( f a t h e r ( a ) ,  a). In this example, renaming symbols 
abstraction is applied at the same time. 

3. Deleting arguments abstraction. For a ground atom A, certain arguments of 
the predicate symbol or function symbols appearing in A are deleted in some 



240 

systematic way. Let us consider a ground atom append( [ a ,b ] ,  [c] ,  [a ,b ,  c] ). 
By deleting the second and the third arguments of the predicate symbol 
append and the first argument of the function symbol [-I-I, and renam- 
ing append, [-I -] and [] into zm, s and 0 respectively, the ground atom is 
abstracted into n n ( s ( s ( 0 ) ) ) .  Note that the propositional abstraction is a 
special case of this (all arguments of all predicate symbols are deleted). 

Def ini t ion 11, Let ~1 and Z2 be sets of function symbols. Let //1 and II2 
be sets of predicate symbols. Let S is the set of sequences of different, natural 
numbers including the null sequence r A pair <r tzz> is called a symbol- 
abstraction mapping, where t z  is a total mapping r : Z1 --* Z2 x $ and t u  is 
a partial mapping t n  : H~ --* 112 x S, and they have the following properties. 

- For any f e ~1, t z ( f )  = (g, a l . . .  a~g>, where { a s , . . . ,  a~g} C {1, . . . ,  ~/}. 
- For anyp e 7 ) ( r  r = <q, a t . . "  a~q), where {el, . . . .  a~q} C {1, . . . ,  ~p}. 

~hs((Z1,//1>, (~2, H2)) denotes the class of symbol-abstraction mappings 

In the above definition, t z ( f )  = <g, a l . . .  am) means that any term s whose 
function symbol is f is mapped to a term t whose function symbol is g and the 
ai-th argument of s is mapped to the i-th argument of t for all 1 < i < m. 

Defini t ion 12. For any symbol-abstraction mapping 
<r162 E ~s ( ( z1 , / / 1 ) , (~2 , / /2>) ,  a partial mapping r : Exp(Z1,//1) 
Exp(~2,//2) is defined as follows. 

1. For any variable X e l;, r  = X. 
2. For any special constant c E C, r = c. 
3. For any constant c e 271, r - c', where t r ( c )  = (c', e}. 
4. For any term f ( t l  . . . .  , tn) e Trm(Sl),  r  . . . .  , tn)) = g(r  r 

where r  __ <9, a l . . "  am>. 
5. For any atom p ( t l , . . .  , tn) e Atm(Nl, / / ] )  such that p e Z)(r 

r  tn)) = q(r .. , r where r = <q, al . . . am>. 
6. For any clause C e Cls(N1,//1) such that He(C) e D(r 

r = r ~ r  r where {BI , . . . ,  B~} = Bo(C)RT?(r 
7. For any substitution 0 = { X 1 / s l , . . .  , X ~ / s n }  E Sub(Z1), 

0(0) = { x ~ / r  . . . .  x . / r  

Moreover, for any set of cla.ses S c_ Cls(~l , / /1) ,  r = {r I C e S n ~ ( r  
�9 ((E1,//1>, <r2,//2>) denotes the class of the mappings defined as above. 

Let P and Q be logic programs. For any r e r V(P)), note that r IB(O) is 
an abstraction mapping from Q to P. So, we also call r an abstraction mapping. 

Example 3. Abstraction mappings r r and Ca introduced in Example 1 are 
obtained as follows. 

r =<o,~> r =<o,~> ~(o)  =<o,~> 
el( I - I_])  =<~,2> tf([_t_])=<~,2> tf(~) =<s,~) 
r = <plus, 1.2.3> r = <nn, 1} tn(even) = (nn, 1} 

r = <an, I> 



241 

L e m m a  13. Let E1 and ~2 be sets of function symbols. Let 111 and 112 be sets 
of predicate symbols. Let r be in ~((~1,11~>, (~2,112)). For any t e Trm(r l ) ,  
any A E Atm(~l , / /1) ,  any S C Arm(Z1, T/l), and any 0 E Sub(~l), 

r  = r162 r  = r162 r  0) = r  r 

T h e o r e m  14. Let P and Q be logic programs. Q is similar to P w.r.t. r 
�9 (V(Q), V(p)) i#  P _> r 

Since whether P _> r or not is decidable, the decision whether Q is similar 
to P w.r.t. r is also decidable. 

Example4. For the abstraction mapping r in Example 3, natural-number = 
r Therefore, reverse is similar to natural-number w.r.t. r Likewise, 
we can confirm similarities w.r.t. r and r 

5 ALPS Algorithm 

In this section, using the restricted class of the similarities introduced in the 
preceding section, we consider an algorithm for ALPS. By virtue of a decidability 
of the similarities, we get such an algorithm easily. Here, we show an algorithm 
using Shapiro's [11, page 33] incremental model inference algorithm. Concepts 
and notations for the model inference are based on [11], unless stated otherwise. 

Using the terminology of the model inference, we restate the problem in the 
introduction as follows. 

A s s u m e  

- vocabulary (~, H}, 
- observational language Lo which is the set of ground atoms in Atm(Z, 11) 
- hypothesis language Lh C_ Cts(~, H), 

G i v e n  

- a source program P and 
- an oracle for unknown model M over (~, H>, 

F ind  a finite Lo-complete axiomatization of M which is similar to P. 

Lo-complete axiomatization of M ([11, page 8]) means a subset of Lh which is 
true in M and deduces all positive examples in Lo. 

We get the following result of this problem. 

T h e o r e m  15. I f  M is a h-easy model and there exists a solution in Lh then the 
Algorithm 1 identifies a solution in the limit. 

The algorithm is illustrated as follows: while switching abstraction mappings, the 
algorithm searches the hypothesis space constrained by the similarity w.r.t the 
abstraction mapping with the top-down (i.e. from general to specific) strategy. 

The algorithm assumes the followings in the same w~y as [11]. 



242 

1. The refinement operator p is complete for Lh and conservative for the reso- 
lution "b-". 

2. al ,  a2, c~3, �9 �9 �9 is a enumeration of all elements of Lo and (al, V1), (a2, V2 ) , . . .  
is a enumeration of facts of M, where a fact (a, V) means that a E Lo has 
a validity V in M which is taught by the oracle for M. 

3. h is a total recursive function. 

Moreover, the algorithm assumes the followings. 

1. r  r is a enumeration of all elements of qb((•, H) ,  V(P)) except for 
elements r such that 7)(r = 0, where len = I~( (E ,H) ,V(P) )  I. 

2. A set of clauses L~(r denotes {C E L~ ] C ~ 73(r or P >_ {r 
where L~ denotes the source set of the marking m ([11, page a2l), i.e. the 
set of clauses which are not marked 'false' and all antecedent clauses by p 
are marked 'false' in m. A set of clauses L~(r Ik denotes {C E L~(r [ 
size(C) < k}, where size(C) denotes the size of the clause C ([11, page 23]). 
Note that L~n(r [k(i) is computable. 

The differences between the algorithm and Shapiro's algorithm are as follows. 
Firstly, our algorithm must find not only an axiomatization but also an abstrac- 
tion mapping. So, the algorithm has two-dimensional search space: refinements 
and abstraction mappings. The algorithm can search this search space exhaus- 
tively. Secondly, our algorithm use L~(r instead of L~ because a solution must 
be similar to the source program. By the constraint of the similarity, the hypoth- 
esis space Lh is reduced to Ur Lr where L r = {C E Lh [ C r 73(r or P > h '  
{r Of course, this does not mean that our algorithm converges on a solu- 
tion faster than Shapiro's. 

A l g o r i t h m  1 

For all i (1 < i < fen), SF(i) ~-- O, ST(i) ~-- O, n(i) ~ O, and k(i) ~- 0 
i ~-- 1 and mark _k 'false'. 
r e p e a t  

if there exists an a E SF(i) such that L~(Oi) I~(i)[-n(i) ~ then  
apply the contradiction backtracing algorithm 

and mark the refuted hypothesis 'false'. 
i ~ - i + l  

else if there exists an aj E ST(i) such that L~(r ]k(i)Vh(j) aj then  
k(i) k(i)  + 1, i i + 1 

else 
o u t p u t  L~(r 

+ 1 read a fact v (o) 
if V,(O = true t hen  ST(i)  ~- ST(i) U {an(O) 
else SF(i) ~-- SF(i) U {an(O} 

endi f  
if i > l e n t h e n i = l  

forever  



243 

6 Concluding Remarks 

In this paper, we firstly have proposed a class of similarities between programs 
and a theory of ALPS using the similarities. We believe that further research 
based on the theory reveals that ALPS is effective for improvement of LPS 
system's performance and useful as a device to shift a bias. Secondly, we have 
showed that an algorithm for ALPS which is obtained by extending Shapiro's 
incremental model inference algorithm, and the algorithm identifies a solution 
in the limit. 

However, the algorithm is impractical. This mainly stems from the enumera- 
tion of abstraction mappings. To overcome the difficulty, we are now developing 
an algorithm which constructs an abstraction mapping step by step. In addition, 
this algorithm incorporates the idea from theorem-proving with abstraction. 

Furthermore, we are now investigating to utilize the aspect of ALPS as a 
device to shift a bias for the change of representation (the program transforma- 
tion). For instance, given natural-number as a source program, an ALPS system 
transforms naive.sort into insert-sort which is similar to natural-number. That is, 
from the examples provided by naive.sort, the ALPS system synthesizes insert- 
sort. We expect that this method enable us to refine our initial program into 
more efficient or more comprehensible one depending on a source program. 

A Appendix 

Proof sketch of Theorem 5. We can show Tp T n _D r T n) by induction on 
n (0 < n < w). Since ~Jn<~ Tp T n ~ Un<~ r T n) -- r TQ T n), 
M(P) ~ r is proved. [] 

Proof sketch of Theorem 9. We can verify the conditions in Definition 8. For in- 
stance, the condition 2 is verified as follows. Let Nk = {r Dk) and Nk+l = 
(r Ok+l) be ground refutation nodes in GR t, where 1 < i < j < n. Then, 
G~ = G~ \ r U {A e Bo(CI) t r  e Bo(Dk)}. 

r = r \ r U r e Bo(Ci) [ r e Bo(D~)}) 
(By Proposition 3.) 

= r \ r U Bo(Dk) = r \ {He(D~)} U Bo(Dk) 
(By Bo(Dk) C r 

[] 

Proof sketch of Theorem 14. (if part) For any I C B(Q) and any A E r 
there exists a clause C e Q and a grounding substitution t~ E Sub(Q) of C 
such that r --= A and Bo(C)O C I. By the assumption, there ex- 
ists a clause D E P and a substitution (r e Sub(P) such that Da _C r 
Thus, by Proposition 3 and Lemma 13, He(D)crr -- r = A and 
Bo(D)~rr C_ r _ r This means A e Tp(r 



244 

(only-if part) ~re prove it by the contraposition. Assume there exists a clause 
C E Q such that D ~ r for any clause D e P. Then, there exists a spe- 
ciaJ and grounding substitution t~ E Sub(P) of r such that for any clause D 
in P and any grounding substitution c~ E Sub(P) of D, D~ ~ r There- 
fore, r ~ Tp(r On the other haJad, there exists a ground 
substitution # E Sub(Q) such that 0# is a grounding substitution of C. If we 
assume I = Bo(C)0# then r --- r e r This means 
Tp(r ~ r because r = r [3 

Proof sketch of Theorem 15. We can show that  if L~(r Ik(i) is not a solution 
then the algorithm transfers the index i to next value. Let us fix r Since 

(Lo, L r is admissible pair and p is complete for L r we can show that the 

algorithm identifies a solution if the solution is in LCh * by Theorem 6.3 in [11]. [3 

References  

1. Fausto Giunchiglia and Toby "Walsh. A theory of abstraction. Artificial Intelli- 
gence, 57:323-389, 1992. 

2. Bipin Indurkhya. On the role of interpretive analogy in learning. In Proceeding of 
ALT'90, pages 174-189, 1990. 

3. J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, second edition, 
1987. 

4. Ryszard S. Michalski. A theory and methodology of inductive learning. Artificial 
Intelligence, 20:11t-161, 1983. 

5. Stephen Muggleton. Inductive logic programming. In Inductive Logic Program- 
ming. ACADEMIC PRESS, 1992. 

6. David A. Plaisted. Theorem proving with abstraction. Artificial Intelligence, 
16:47-108, 1981. 

7. Luc De Raedt and Maurice Bruynooghe. Constructive induction by analogy. In 
Proceeding of ML '89, pages 476-477, 1989. 

8. Luc De Raedt and Mum'ice Bruynooghe. Interactive concept-learning and con- 
structive induction by analogy. Machine Learning, 8:107-150, 1992. 

9. C61ine Rouveirol. Extension of inversion of resolution applied to theory completion. 
In Inductive Logic Programming. ACADEMIC PRESS, 1992. 

10. Seiichiro Sakurai and Makoto Hm'aguchi. Towards learning by abstraction. In 
Proceeding of ALT'91, pages 288-298, 1991. 

11. Ehud Y. Shapiro. Inductive inference of theories from facts. Technical Report 192, 
Yale University Computer Science Dept., 1981. 

12. Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, 1986. 
13. Birgit Tausend and Siegfied Bell. Analogical reasoning for logic programming. In 

Inductive Logic Programming. ACADEMIC PRESS, 1992. 
14. Josh D. Teneuberg. Abstracting first-order theories. In Change of Representation 

and Inductive Bias, pages 67-79. Kluwer Academic Publishers, 1990. 


