
Encoding Presentation Emphasis Algorithms for Graphs

Emanuel G. Noik

CSRI, University of Toronto, 6 King's College Rd., Toronto, ON, Canada M4S 1A1

Abstract. While graphs can effectively visualize one or more relations on a set
of dements, drawings of large graphs can be difficult to understand. As such,
many presentation emphasis techniques for visualizing graphs such as fisheye
views have been proposed. A recent survey paper [9] described an abstract space
of techniques and identified common shortcomings. Here we outline a high-
level language that addresses several of these limitations; the language is used
to: 1) select subsets of graph elements; 2) compute a real-valued priority for
each element; and, 3) encode presentation strategies that automatically emphasize
elements based on subset membership and priority.

I Introduction

Despite a growing body of literature in automatic graph drawing, one of the most
pervasive obstacles for practical graph-based information systems remains the inability
of user interfaces to effectively cope with large or highly detailed graphs. Aside from
computational complexity issues, the fact remains that even when drawn by the most
effective graph layout algorithms (or hand-drawn by an artist, for that matter), drawings
of large or complex graphs can be very difficult (if not impossible) to understand. To
be fair, this problem is not confined to the graph: most visualization techniques do
not scale very well. In particular, there is a limit to the amount of detail that can be
effectively shown and discerned on a computer display; techniques such as pan and
zoom facilitate the exploration of detailed visualizations, but fail to integrate local detail
and global context and often confuse users. In response, Fumas suggested an analogy
to the wide angle or"fisheye" lens: the generalizedjisheye view [5]. By balancing local
detail and global context, fisheye views (FEVs) display information at several levels of
abstraction simultaneously. Unfortunately, even solutions that have incorporated fisheye
views have failed to provide flexible means to 1) specify expressions for computing
priorities (degree of interest metrics) for the elements in a visualization, and 2) encode
alternative presentation strategies that automatically emphasize elements based on their
priorities.

In a recent survey of emphasis techniques used in graph visualization, we reviewed
a large portion of the literature in this area and identified these and other common short-
comings [9]. In this paper, we outline a high-level language that effectively addresses
several of these limitations.

The paper is organized as follows. Section 2 reviews relevant terminology; Section
3 summarizes relevant portions of the survey findings; Section 4 describes the proposed
language; and, Section 5 provides brief notes on its implementation.

429

2 Terminology

2.1 Graphs and Graph Diagrams

A graph G = (V(G), A(G)) consists of a set of vertices V(G), and a set of arcs
A(G) C V(G) • V(G). We employ the hygraph formalism as used in the Hy+ system
[1] to express nested graphs. A hygraph G = (V(G), A(G), B(G)), is a graph that
contains a set of blobs B(G) C_ V(G) • 2v(~ a blob associates a (container) vertex
with a set of vertices that it contains; we assume that the containment relation is
hierarchical. Vertices, arcs, and blobs are labelled and may have additional attributes
(numbers or strings) which make it possible to associate domain-dependent data with
graph elements (e.g., arc weights). Thus a graph can be thought of as a set of three
relational database tables, with external attributes stored in additional fields. 1

A graph diagram or layout is a visualization of the graph in which vertices are
depicted as nodes and arcs as links (in facL graph diagrams are often referred to as node-
and-link diagrams). Since the blob containment relation is restricted to be hierarchical,
blobs are easily depicted by visual containment (e.g.,by nesting closed rectangular or
polygonal regions). Graph layouts may be hand-drawn or may be generated automati-
cally by a graph layout algorithm [2].

2.2 Emphasis-related Concepts

The following terminology comes in large part from the generalized fisheye view for-
malism [5].

The generalized FEV metaphor is based on the workings of the tisheye or very wide
angle lens used in photography, which magnifies the image at multiple levels - greatest
near the focus and least in the periphery. By balancing local detail and global context,
FEVs can simultaneously display information at multiple levels of abstraction.

When displaying large structures, the basic strategy uses a degree of interest (DOI)
function to assign to each point in the structure a number, or priority, that quantifies the
user's interest in that point given the current task. Priorities may be assigned by the user,
or may be computed by an algorithm. In a generalized FEV, the DOI is decomposed into
two components: a priori importance (API) which computes the global importance of
any point in the structure, and distance (Dist) which computes the conceptual distance
between any two points. If one point is selected as the current focus of interest, or focal
point (FP), then in its simplest additive form, DOl(p, f) = aP l (p) - Dist(p, f) is
the user's degree of interest in point p given FP f ; thus DOI increases with API and
decreases with Dist.

I have extended this simple model to handle multiple variable magnification FPs
by introducing several additional concepts. A focal point response function f.~'esp
computes the change in relevance of point p due to FP f and is a function of f .may
(see below) and Dist(p, f) . Usually f .resp ~ ~ , however if f .resp oc Dist, then
we can define peripheral points - selected points that decrease the relevance of nearby

1 To store a set of blobs in a relational table, the set is represented as a binary relation:
{(",~.0 1 (~', ' ["1,..-,",,}) E B(G)}.

430

points. 2 Afocalpoint magnification f.mag is a non-negative number that captures how
interesting FP f is in a visualization. Usually f.resp ~ ~ , so a FP with a high ()
f.mag will tend to increase the relevance of proximate points more than if it had alower
magnification. Given a set of focal points F and a point p, the focal point importance
(FPI) of p is an aggregate function .AG of the response of FPs F on point p:

FPI(F,p) = AGI~F (f.resp(f.mag, Dist(p, f)))

where .AG is one of: sum, rain, maz, avg; by default we assume sum. In this extended
model, nO I~p, E) is a function of AP I (p) and E P I~p, E).

It is easy to show that this model can express the original basic FEV slrategy. Since
the basic strategy is limited to a single FP without magnification, we get:

f .resp(mag, dist) = -dist
F P I (p, {f}) = f .resp(f .mag, Dist(p, f))

= -Dist(y,$)
DOI(p, {y}) = Am(p) + FPI(r, {Y})

= API(p) - Di,t(p, f)

Since AP1 values often cannot be directly compared to Dist values, and since it
is more convenient to assume that Dist is in [0, 1] when formulating expressions for
f.resp, we assume that all priorities (API, Disk FPI, and DOI) are normalized before
they are used. Given a set of priorities P = {pl, �9 �9 �9 p,~ }, the normalized value of Pi is

ifraa (P) rai, (P) maz(P)--rain(P)
1 otherwise

where rain(P) and raaz(P) are the minimum and maximum values in P. In this
formalization, DOl(p, F) will be in [0,1] for all points: the most interesting points will
have a DOI of 1 and the least 0.

3 L i m i t a t i o n s o f P r e v i o u s W o r k

A recent survey of presentation emphasis techniques for visualizing graphs [9] identified
several common limitations. The language which we present in the next section addresses
the following three:

1. Alternative presentation emphasis strategies: most existing techniques do not
exploit alternative presentation slxategies. In particular, most can be grouped into
three categories: filtering (suppress the display of low priority elements); distorting
(distort the size and position of elements to give more display space to higher pri-
ority elements); and, filtering-distorting hybrids. There has been very tittle study of

2 Peripheral points are convenient in situations where itis easier to identify uninteresting elements
rather than interesting ones.

431

techniques that generate adorned views [9] - views in which elements are empha-
sized by varying other graphical attributes such as colour, shading, line style and
thickness, as well as audio [7], and various types of motion (e.g., "in-betweening"
animation [11], vertical oscillations and small random movements [3], and vibration
or pulsing [12]). A quick glance at a presentation graphics text (e.g., [13]) suggests
that many intriguing possibilities remain unexplored.

2. Client priority algorlthms: most existing tecimiques use fixed (domain-dependen0
algorithms to compute priorities. Some techniques permit clients (programs or users)
to submit a set of static priority values (API), but do not provide the means to express
distance or DOI metrics.

3. Priority-m-Presentation Mapping: most existing techniques use fixed mappings,
which means that users cannot alter the way that differences in priorities are reflected
in the visualization. What is required is a flexible means to describe how DOI values
should be used to compute appropriate values for relevant graphical attributes.

4 Dye: A Presentation Emphasis Language

Dye 3 is a special purpose specification language that is based on relational algebra
with arithmetic and aggregation [14]. The current version of the language supports the
standard relational algebra union and difference operators, and the closed join operator,
defined as follows:

~ ({ R a , . . . , R , } , F) = ~rR, aF(R1 X .. . • R ,)

Notice that for n = 1, the closed join reduces to the relational algebra selection operator.

~({R1 }, F) = 7rR~ O'F(R1)

----- O'F (R1)

It is not difficult to show that the above operators define a subset of relational algebra
that is schema- and tuple-closed under the three basic operations and the operators
derived from these. That is, given a set of relations R] , . . . , Rn, a relation R produced
by applying a sequence of the above operators will have the scheme of one or more Ri,
and will not contain any tuples that were not present in at least one Ri.

A Dye program captures four types of information: subset selections; focal point
response functions; priority functions; and, actions that use set membership and DOI
values to assign values to various graphical attributes.

In addition, Dye is extensible - algorithms can be added to evaluate queries that
cannot be expressed in relational algebra (e.g. ,transitive closure). The current version of
Dye, for example, includes support for computing (the lengths of and elements along)
shortest paths [4]. The general syntax of a Dye program is:

s Graphite [1, 8] can be thought of as the raw material (carbon) for producing drawings of
graphs; Dye adds colour (visual emphasis through the systematic manipulation of various
graphical attributes including colour) to Graphite.

432

<program> ::=
["sets" [<set_assignment>]+]
["fpresponse" [<response_function>]+
["doi" [<doi_assignment>]+]
["actions" [<action_block>I+]

Unfortunately, due to strict page limits, a complete description of the language
could not be included- it can be found in [10]. In the absence of a complete language
description, we hope that the following example as will whet the reader's appetite. More
extensive and numerous examples consisting of graph drawings and Dye source code
were presented at the DIMACS 1994 Workshop on Graph Drawing Poster Gallery. An
electronic version of this poster is available by anonymous ftp from ttp.db.toronto.edu
in pub/noikJgd94poster.ps.Z.

Figure 1 shows a graph drawing of a passenger flights database generated by an
anchored force-based layout algorithm. The vertices of the graph represent cities; an
(undirected) arc between a pair of vertices implies that some airline operates flights
between the corresponding cities. Thus in addition to the purely topological information,
arcs are labelled (by the name of the airline - arc labels are suppressed by default to
reduce visual clutter) and have two additional attributes, namely the price of a one-way
ticket (in dollars), and the duration of a one-way trip (in minutes). Similarly, each vertex
is labelled by the name of the corresponding city.

Figure 2 shows a diagram and emphasis program that adds a number of presentation
elements. Link colour and line thickness are assignedby iterating over each arc a in the
set of arcs A. In this example, colour is chosen depending on the arc label, and thickness
is set relative to arc 13OI which is the ratio of ticket price (numeric arc atlribute 0) to
flying time (attribute 1). In the flights database as in most domains, paths in graphs
usually have a meaningful and significant interpretation. In particular, paths can provide
a fundamental measure of distance between a pair vertices in a graph. The minpath
primitive in this example takes four arguments: a set of arcs, a uaversal direction
(forward, reverse, or undirected- may traverse arc in either direction), an expression to
evaluate for each vertex along the path, and an expression to evaluate for each arc along
the path. Here, the primitive computes the length of the shortest undirected path using
the time arc attribute and incorporating an additional 30 minute delay for each vertex
along the path. The focal point response curve in this example varies as the cube of
proximity - this means that the FPI of nodes that are conceptually close to one or more
focal points will be higher than the FPI of those that are conceptually distant. Vertex
API is computed with the a vg aggregate function; here it is the average price to time
ratio of all incident arcs - a good indication of how expensive the flights through the
corresponding airport are. In this example vertex DOI is a weighted sum of API and
FPI and is used to vary node size through the v . s . x and v . s . y scaling primitives.

5 Implementation

Dye was implemented as a combination lex tokenizer and yacc parser that generates
C++ source code that is automatically compiled and dynamically linked with the Dye
run-time library to the Graphite layout engine [8]. The Graphite fi'amework has been

433

l~g. 1. The original drawing of the flights database produced by an anchored force-based layout.

modified to take into account the graphical attribute information generated by Dye.
Thus for example, nodes are pre-scaled based on the s . • s . y , s . z attributes and
post-translated based on the d. x, d . y , d . z attributes; space is allocated only for
objects that have not been hidden. The l a y o u t attribute directs the Graphito layout
engine to use specific layout algorithms for selected elements of the visualization, which
realizes a composite layout strategy [6]. Other attributes such as line style and width,
and colour do not typically impact the layout phase, and are therefore only used in the
final rendering phase,

6 Summary

We have argued that current approaches for incorporating visual emphasis in graph
visualization are too limited. In particular, most techniques do not provide adequate
means to encode degree of interest metrics, alternative presentation emphasis strategies,
and mappings from the former to the latter. We have proposed a high-level language
that can be used to encode precisely this type of information in a simple yet powerful
manner. In the future we would like to see a tighter coupling of the graph layout and
presentation emphasis components (e.g.,make degree of interest an explicit input to

434

#include <dye/rgb. h>

#define price %0

#define time %1

fpresponse fpr := (mag * ((l-dist) ** 3));

doi

v.api := avg(union(v.inA, v.outA),true, (a.price/a.time));

v.dist := minpath(A, undirected, 30, a.time);

v.doi := ((v.api * 0.3) + (v.fpi * 0.7));

a.api := (a.price / a.time);

a.doi := a. api;

actions

for v in V

v.s.x = v.s.y := ((0.25 + (v.doi * 4.75)) ** 0.5);

endfor

for a in A

if a.label == "aa" then a.fg_clr := DarkOliveGreen4; endif

. o .

a.line.width := (i.0 + (a.doi * 5.0));

endfor

Fig. 2. CoIour links based on arc label (airline); set link width based on the flight's price to time
ratio; gonerat~ a fisheye view with API = average price-time ratio of incident arcs, and distance =
total flying time along fastest route assuming each stop contributes an additional 30 minutes; set
node size relative to DOI; here San Francisco and Rome serve as focal points.

435

graph layout algorithms); we also plan to extend Dye to include dynamic presentation
elements such as animation.

Acknowledgements

This work was done as part of on-going research in relational dam visualization within
the database group at the University o f Toronto. I wish to thank Alberto Mendelzon,
Dimitm Vista, and Yoram Komatzky for their insightful comments and discussion.

References

1. M.P. Consens, E Ch. Eigler, M.Z. Hasan, A.O. Mendelzon, E.G. Noik, A.G. Ryman, and
D. Vista. Architecture and applications of the Hy+ visualization system. IBM Systems
Journal, 33(3):458-476, Aug. 1994.

2. G. Di Battista, E Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an
annotated bibliography. Comput. Geom. Theory Appl., to appear. Preprint avail, by anon.
ftp from ftp. cs. brown, edu : pub/papers/compgeo/.

3. K.M. Fairchild, S.E. Pollrock, and G.W. Furnas. Semnet: Three-dimensional graphic rep-
resentations of large knowlexlge bases. In R. Guindon, editor, Cognitive Science and its
Applications for Human-Compater Interaction, pages 201-233. Lawrence Erlbaum Asso-
ciates, 1988.

4. R.W. Floyd. Algorithm 97: Shortestpath. Communications of the ACM, 5(6):345, 1962.
5. G.W. Fumas. Generalized fisheye views. In ACM CHI "86, pages 16-23, Boston, MA, Apr.

1986. ACM.
6. T.R. Henry and S.E. Hudson. Interactive graph layout. In ACM UIST '91, pages 55-64.

ACM, 1991.
7. B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to the visualization of

hierarchical information structures. In IEEE Visualization "91, pages 284-291, San Diego,
CA, Oct. 1991.

8. E.G. Noik. Graphite: A suite of hygraph visualization utilities. In A. O. Mendelzon, editor,
Declarative database visualization: recent papers from the Hy+/GraphLog project, pages
108-126. Tech. rep. CSRI-285, U. of Toronto, Jul. 1993.

9. E.G. Noik. A space of presentation emphasis techniques for visualizing graphs. In GI '94:
Graphics Interface 1994, pages 225-234, Banff, AL, Canada, May. 1994.

10. E.G. Noik. Encoding Presentation Emphasis Algorithrr~ for Graphs. PhD thesis, Dept. of
Comp. Sci., U. of Toronto, in preparation.

11. S.P. Reiss. A framework for abstract 3d visualization. In VL '93: IEEE Symposium on Visual
Languages, pages 108-115, Bergen, Norway, Aug. 1993.

12. D. Schaffer, Z. Zuo, L. Bartram, J. Dill, S. Dubs, S. Greenberg, and M. Roseman. Compar-
ing fisheye and full-zoom techniques for navigation of hierarchically clustered networks. In
Graphics Interface '93, pages 87-96, May. 1993.

13. E.R. Tufte. Envisioning Information. Graphics Press, P.O. Box 430, Cheshire, Connecticut,
06410, 1990.

14. J.D. Ullman. Principles of Database and Knowledge-base Systems, volume 1. Computer
Science Press, 1803 Research Boulevard, RockviUe, MD, 20850, 1988.

