
A Fast Adaptive Layout Algorithm for Undirected
Graphs

(Extended Abstract and System Demonstration)

Arne Frick*, Andreas Ludwig, Heiko Mehldau

Universit~t Karlsruhe, Fakult~t fOr Informatik, D-761 28 Karlsmhe, Germany

Abstract. We present a randomized adaptive layout algorithm for nicely drawing
undirected graphs that is based on the spring-embedder paradigm and contains
several new heuristics to improve the convergence, including local temperatures,
gravitational forces and the detection of rotations and oscillations. The proposed
algorithm achieves drawings of high quality on a wide range of graphs with
standard settings. Moreover, the algorithm is fast, being thus applicable on general
undirected graphs of substantially larger size and complexity than before [9, 6, 3].
Aesthetically pleasing solutions are found in most cases. We give empirical data
for the running time of the algorithm and the quality of the computed layouts.

1 Introduction

The problem of obtaining an aesthetically pleasing drawing of a given graph G = (V, E)
is receiving increasing attention in the literature [2, 1]. One way of dealing with this
problem is the construction of straight-line drawings, in which each edge is mapped
into a straight-line segment in the plane. The problem then reduces to the problem of
positioning the vertices v 6 V by determining a mapping ~ : V --~ IR 2.

There are many criteria for judging the aesthetics of a graph drawing [12]. Among the
most influential are the display of symmetries existing in the graph and the minimization
of edge crossings. Furthermore, edges should have as few bends as possible, and the
deviation on their lengths should be small. The area used for drawing should be as
small as possible, while the vertices and edges should be evenly distributed in the area.
Connected vertices should be close to each other.

Straight-line drawings avoid bends in edges by definition. The remaining criteria,
however, cannot be matched optimally in polynomial time unless 79 = A/'79. Therefore,
only good approximations to an optimal solution appear to be feasible given the current
state of the art. Even more so, simultaneous optimization for several criteria can involve
quality tradeoffs as there exist incompatible combinations. Examples and references are
given in the full paper. After introducing some notation in Sect. 2, we briefly describe
heuristics to obtain good approximations to the simultaneous optimization problem in
Sect. 3.

We continue with a detailed discussion of the proposed algorithm called GEM in
Sect. 4. Empirical data on the convergence and the time complexity of the proposed

* EMail: frick@informatik, uni-karl sruhe, de

389

algorithm on different types of graphs is presented in Sect. 5. The results are compared
to those for publicly available implementations of other force-directed algorithms [9, 6].

We conclude with some suggestions for further investigation before we complement
the numerical data with graphical output from the GEM algorithm. Appendix A describes
GEMDRAW, the algorithm development environment, while App. B contains drawings
for several types of graphs, including well-known ones from the literature.

2 Notation

Throughout this paper, we use the following notation for graph sizes and density. We
shall use the following conventions to classify graphs into different groups. Graphs
of size IV] _< 16, 32, 64, 128 and V _> 128 are called tiny, small, medium, large,
huge, respectively. We acknowledge that this partition is somewhat arbitrary, but it does
reflect the fact that almost all methods discussed below focus on tiny and small graphs,
while few handle medium-sized sparse graphs, not to mention large or huge ones. We
further distinguish between sparse, normal and dense graphs (]E I < IV[, IV] _< [E[<
3lVI, IEI > 31vI). This is motivated by the fact that trees should be considered sparse,
while meshes, tori and hypercubes of small dimension represent the normal case.

3 Previous Approaches

The known heuristics for constructing a straight-line drawing of an undirected graph
can be classified into three groups according to the computational model employed.

The spring embedder model for drawing undirected graphs is due to Eades [4]. It
generalizes previously known algorithms for the layout of PCB's [5, 8]. Using an anal-
ogy to physics, vertices are treated as mutually repulsive charges and edges as springs
connecting and attracting the charges. Starting with an arbitrary initial placement of
vertices, the algorithm iterates the system in discrete time steps by computing the forces
between vertices and updating their position accordingly. The algorithm stops after a
fixed number of time steps. An obvious drawback with this approach is that the mass-
spring system may not have converged after the fixed number of steps while on the
other hand, time is wasted unnecessarily if this number is chosen too large. Although
the algorithm does not explicitly support the detection and display of symmetries, it
turned out to display symmetries if any exist. Kamada and Kawai [9] refined the model
subsequently. They introduce a optimal edge length k. Vertices are updated sequentially
by moving only one vertex at each time step. The algorithm performs a gradient de-
scent and converges deterministically to a local minimum. The time complexity of the
approach cannot be expressed in terms of IVI and IEI.

In optimization theory, researchers have introduced randomness to overcome the
problem of ending up in local minima. They use a technique from statistical mechanics
called simulated annealing [13, 10] allowing for changes into states with higher energy.
An arbitrary state change is computed. Any downhill move is accepted, while "uphill
moves" are accepted with a probability depending on a current temperature. Initially
the system has the ability to perform arbitrary moves because the temperature is still

390

high. Later, the probability of choosing a next state with more energy approaches zero
as the temperature is lowered. Davidson and Harel [3] employ simulated annealing to
achieve aesthetically pleasing results on small and medium-sized graphs. The approach
is flexible in that it can easily be adapted to incorporate other quality measures or weights
in the cost function, but unfortunately it is very slow. Independently, Fruchterman and
Reingold [6] modified Eades' algorithm by introducing a simple cooling schedule. Their
algorithm is deterministic in that it only performs local optimizations. The distance a
vertex can travel at a given time is limited depending on the current temperature.

The third group of heuristics is based on preprocessing of the graph to get a good
initial placement [15, 14]. The full paper contains reviews of these.

4 T h e GEM a l g o r i t h m

The algorithm proposed in this paper is called GEM (short for graph embedder). It con-
tains several novel algorithmic ideas. These include the concept of a local temperature,
the attraction of vertices towards their barycenter and the detection of oscillations and
rotations.

The major design goal was that interactive speed should be achieved even for
medium-sized graphs. We consider a drawing to be interactive if it takes less than 2 s to
compute. To this end, we designed GEM to rely on fast integer arithmetic.

We hypothesized that randomization works in the domain of force-directed graph
drawing. Therefore, randomization plays an important role in several places of the
algorithm.

The discussion of the GEM algorithm starts with the observation that cooling sched-
ules appear to give better results than methods relying solely on a gradient descent, but
their running time is unsatisfactory. Temperatures as used in GEM indicate the maximum
distance a vertex can travel when being updated. The temperature scale has a direct in-
fluence on a suitable choice of other parameters, i.e. the constants used in the formulae
for the attractive and repulsive forces.

Fruchterman and Reingold [6] conjectured that better cooling schedules should
allow much more efficient algorithms than theirs. Davidson and Harel [3] first suggested
an adaptive cooling schedule but did not explore on the idea further. As to our knowledge,
the algorithm proposed in this paper is the first approach using this idea, although we do
not employ a cooling schedule in the strict sense. Rather, the algorithm adapts to the data
locally and does not require global cooling as assumed by a schedule. For each vertex,
a local temperature is defined that depends on its old temperature and the likelihood
that the vertex oscillates or is part of a rotating subgraph. Local temperatures raise if
the algorithm determines that a vertex is probably not close to its final destination. The
global temperature is defined as the average of the local temperatures over all vertices.
Thus, it indicates how stable the drawing of the graph is.

The proposed algorithm consists of two stages, an initialization stage and an iteration
stage. The initialization consists of the assignment of an initial position, impulse and
temperature to each vertex. The main loop updates vertex positions until the global tem-
perature is lower than a desired minimal temperature or the time allowance has expired.
An abstract algorithm for GEM is depicted in Fig. 1. Although we found in practice that

391

most graphs would easily cool down to Train, we cannot exclude the possibility o f a
graph moving chaotically between rounds. This can be solved by choosing Train larger.

procedure GEM is
-- Input:

-- G = (V, E) graph where
-- V = set of record
-- ~ -- cutrent position

-- p -- last impulse

-- t -- local temperature

-- d -- s k e w g a u g e

-- Rmax maximal number of rounds [aWI]
-- Tm~x upper bound on local temperature [256]
-- Tmi, desired minimal temperature [3]
-- Output: for each v E V, a position is computed

forall v E V do
initialize v

while Tglobal > Train and #rounds < Rr.~x do
choose a vertex v to update;

compute v ' s impulse;

update v ' s position and temperature;

end; -- GEM

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Fig. 1. Main loop of the GEM algorithm

Vertices are moved sequentially according to a cho ice f u n c t i o n . Assuming that
vertex v was chosen to be updated, the attractive and repulsive forces acting on v are
computed. In addition, a grav i t a t i ona l f o r c e pulling the vertex towards the barycenter of
the vertex cluster is assumed. The use of gravitation accelerates the convergence of GEM.
In addition, it helps to keep disconnected graphs and loosely connected components
together.

The resulting force is scaled with v 's current temperature to form the i m p u l s e of
v such as to reflect the algorithm's "knowledge" of the state of computation. A low
temperature indicates either that the layout is almost stable (at least locally) or that there
exist oscillations or rotations. In each case, movements should be short. GEM has the
ability to leave wells containing local energy minima, since local temperature increases
change the global energy distribution. Relative to the old distribution, uphill moves
become possible. Unfortunately, this feature makes proofs of convergence hard, if not
impossible.

We now discuss in turn the initialization stage (Sect. 4.1), the choice mechanism
(Sect. 4.2), the impulse computation (Sect. 4.3) and the adjustment of the local temper-
ature (Sect. 4.4).

392

4.1 Initialization

Every vertex is initialized with a zero impulse vector p -- 0, a direction skew gauge
d = 0 and an initial temperature Trait. In general, we can confirm the claim of Ka-
mada/Kawai [9] that initial positions do not have great influence on the resulting pictures
but on the number of rounds to be performed to reach equilibrium. A random initial
placement usually suffices for convergence, but we observed that certain structures like
binary trees and meshes may gain from the computation of an initial placement by
inserting the vertices one-by-one in an initial round.

4.2 Choice of a vertex to update

GEM uses a sequential update strategy, i.e. a single vertex is updated in each iteration.
Our hypothesis suggests a random choice. We found indeed that GEM converges faster
with a random choice mechanism than with a deterministic schedule.

To achieve a random selection, we proceed as follows. Iterations are grouped into
rounds. At the beginning of each round, a random permutation is determined according
to which the vertices are chosen. The complexity of choosing a permutation can be
amortized to O(1) per iteration as there is an O(n) algorithm to compute a random
permutation on n elements[11].

4.3 Impulse Computation

GEM memorizes the last movement for each vertex. In analogy to physics, we refer to
this information as the impulse of the vertex. The computation of the impulse is governed
by several global constants, a desired edge length 2 and a gravitational constant factor
7 determining how strongly a vertex is driven towards the barycenter a of the current
layout. This additional attractive force has two important effects: unconnected and
loosely connected components are not separated too far, and it may lead to a 30%
increase in convergence speed.

The algorithm for computing the new impulse of a single vertex v is given in Fig. 2.
The function �9 mentioned therein is a scaling factor giving vertices with many edges
more inertia. This improves the layout quality in some cases, e.g. Fig. 18.

4.4 Temperature adjustment

After computing the current impulse for vertex v, its position is updated. If v's impulse
was non-negligible, we update v 's internal data structures (see Fig. 3).

A new local temperature for v is computed based on the last temperature, the last and
current movement and the skew gauge v.d indicating the likeliness of v oscillating or
being part of a rotation. The detection of rotations and oscillations requires knowledge
of s in(t) and cos(t) where fl = / p , v.p.

2 This is the same as the "optimal" edge length of [6].
3 It is important to use the barycenter as opposed to the center of the layout area, as the latter

would force a finished graph to move until its barycenter coincides with the center of the layout
a rea .

393

- - Input:

- - C

- -

-- Output:
- - p

vertex to be updated
~ . u.~ ; the barycenter o f G is computed as e / [V [
function growing with deg(v)[1 + deg(v)/2]

current impulse o f v
-- Constants and Functions:
-- Edes desired edge length [128]
-- 7 gravitational cons tan t [I l l 6]

-- attraction to center o f gravity

p:=(e/lV[- v .pos) �9 7" ~(v);
-- random disturbance
6:=small random vector; -- default range: [-32, 32] x [-32, 32]
p :=p + 6;
forall u E V \ {v} flo

-- repulsive forces
,a:=v.~ - u.~;
if A ~ 0 then p:=p + A . E ~ / [A [2 ;

forall (u, v) E E do
-- attractive forces
z~:=v.~ - u.~;

p:=p - z~. IzXl2/(E,~,,. @(v));

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Fig. 2. Impulse computation

Vertex rotations occur for example if the final layout has been found, but the tem-
perature is still too high. Under rare circumstances, a graph in rotation never converges,
so cooling down is an appropriate thing to do whenever non-negligible rotations are
detected.

A rotation is assumed when repeatedly fl had the same sign and was within a rotation
sensitive range as depicted in Fig. 4, in which v.p is the last impulse of v, while P l , P2
and Pa are possible directions for v's current movement. P l , p2 and p3 are examples
of a movement in the right direction, a rotation and an oscillation, respectively.

This situation triggers the skew gauge v .d . T h e more Iv.dl approaches 1, the more
unbalanced it is. v . t is scaled down by v's unbalancedness as this is a measure o f how
likely v is part of a rotation. The choice of a scale factor ~rr allows for necessary rotations.

A vertex is subject to an osc i l la t ion if its last and current impulse point in opposite
directions, which is detected by testing whether cos (t) < 0. If this is the case, GEM
assumes that the vertex has just passed its right position and lowers the temperature
according to a sensitivity factor ~ro assuming that it had passed its optimal position and
will turn around again in the next round. Subsequent oscillations will therefore finally
freeze the vertex.

To the opposite, if v 's current impulse has approximately the same direction as the

394

-- Input:
- - V

- - p

-- Output:
- - V

-- Constants:

- ~ T r n ~ x

- - O l o

- - O l r

- - O" 0

- - ~ r

vertex to be updated
current impulse o f v

with updated~, t, d, p

maximal temperature [256]
opening angle for oscillation detection; ~o E [0, a'/2] [a']
opening angle for rotation detection; otr e [0, a'] [r /3]
sensitivity towards oscillation; ao >__ 1 [1/3]
sensitivity towards rotation; ar E (0, 1] [1/21El]

if p ~ 0 then
p:=v. t �9 P / [Pl ; -- scale with current temperature
v.~:=v.~ + p;
e:=c + p; -- save the division at this point

if v .p ~ 0 then
/~:=/p, v.p;
i t s in ~ > sin(rr /2 + O~r/2) then

-- rotation
v.d:=v.d + trr �9 sgn(sin ~);

if l cos #1 > c o s (t o / 2) then
-- oscillation
v.t:=v.t �9 ao �9 cos ~;

v . t :=v. t . (1 - I v . d l) ;
v . t :=min(v . t , Tm~,,);
v .p :=p;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Fig. 3. Temperature update algorithm

"-'-~o

vp

/

Fig. 4. Detection of rotations and oscillations

395

last one (cos fl ,.~ 1), GEM interprets this as a move in the "right" direction and raises the
temperature somewhat to accelerate v's next movement. An opening angle so controls
the sensitivity towards this situation.

Of course, the opening angles ao and ~r have to be chosen carefully. Otherwise,
they might not be sensitive enough or cause overreactions.

After computing the new local temperature and perhaps adjusting the skew gauge,
some housekeeping is done in order to update the barycenter. Having done so, the
iteration is finished.

5 Measurements

In this section, we compare the runtimes of the GEM algorithm with those of publicly
available implementations of the Kamada/Kawai and Fruchterman/Reingold algorithms
contained in the GraphEd tool [7] subsequently called KK and FR, respectively. Our test
suite consists of 30 graphs of different types, sizes and densities. All measurements have
been conducted on a SparcStation l0 using the GraphEd test suite procedure. Due to the
unavoidable overhead incurred by the UNIX operating system, these timings should be
interpreted as a relative comparison and not as a performance benchmark.

An important determining factor are the parameters to the algorithms. In each case,
we used the default values. As mentioned in the source code for FR, the implementation
is heavily optimized. GEM was run in single-insertion mode for the initial placement.
Hard-coded animation output in the KK code was commented out to achieve competitive
test conditions.

A priori, we expected GEM to outperform KK and FR in terms of runtime as we
rely on integer arithmetic only, but it was unclear how randomization and the inherent
imprecision would influence the quality of the drawings. The resulting runtime and
quality measurements are given in Fig. 1. The quality data measured for each drawing
includes the number of edge crossings Xz the mean edge length/~ (used for scaling
of the results), the edge length deviation E, the minimal vertex distance Drain and the
maximal vertex distance Dma• The values for/~, Dram and D~ax are scaled by/~ as
to ensure comparability of the results.

6 Results

As all compared algorithms strive to satisfy the same aesthetic criteria, it is not surprising
to find that the quality measurements yield similar results. On the average, we observed
that GEM performs slightly better than FR. On small sparse graphs KK gives slightly
better results but becomes considerably worse on large graphs.

The quality of GEM drawings is good. Considering that the heuristics used in the
quality function have no notion of a crossing-free drawing, the algorithm surprisingly
often results in planar embeddings. In comparison to FR and KK, GEM can resolve
cycles and foldings in parts of the graph easily (see Fig. 11) as indicated by the low
number of edge crossings.

In our experience, GEM can cool every graph down to 5 0 . In most cases, the drawings
are not significantly worse than those for the default Train = 3 ~

396

Table 1. Test suite: Graphs

c~

1-8 are tiny, 9 -14 small, 15-22 medium, 23-26 large, 27-30 huge.

~ ~ i ! _ _

m ~ m b b ~

o o d d '

~ ~ ~ ' ~ ~=~ ~

N ~ 2 N N

~o d o d d o o d

ii --oo::il i
N N N N ~ N

o d d " o d d ~ ~

5 5 ~ ~

_ ~ ~

m ~ m m m ~

O O

{-q

O

O

{'t ~l~

~ ' ~ ~ ~ ' {'I

~ A A ~ A

O ~ 1 O O O O

O O O ~ l ~ o

eq ~

"0 ' ~ " 0

~ ~ ~ i ~

c 5 o

c5o~5

0 O 0

t',,I !

O 0 ' {5

00

0

397

The overall result is that GEM is consistently faster than the other methods. FR is
about four times slower, and KK deteriorates rapidly as the graph sizes increase. It
remains unclear if this is a feature of the implementation or inherent to the algorithm.

One iteration of the GEM algorithm takes time o(IvI) since the forces exerted on v
by the remaining IV[- 1 vertices have to be recomputed.

The PC version of GEM runs as fast as the GraphEd version. This was achieved
by optimizations at the data structure level and may also be attributed to the fact that
the environment has no GUI and multi-user overhead. On an amd486DX40 PC we
measured a speed of approximately 120,000 iterations per second. A heuristic we found
by experimenting says that we need approximately [V[rounds. Since a round consists
of IV[iterations and each iteration considers I vI vertices, this implies an estimated time
complexity of O([V[a), where the constant is small and depends on G.

7 Conclusions

In this paper, we have presented an adaptive algorithm to compute a layout for undirected
graphs based on local temperatures. We introduced several algorithmic improvements
to previous approaches, including local temperatures, attraction towards the barycenter
and the detection of rotations and oscillations. This represents a departure from the
conventional gradient descent methods narrowing into the nearest local minimum of the
quality function.

We were able to match or improve the quality of the results obtained by widely used
implementations of the Fruchterman/Reingold and Kamada/Kawai algorithms while
running consistently faster than these. The results also confirmed the hypothesis that
randomization can be successfully used for the force-directed layout of undirected
graphs.

While other published work presents mainly small-sized graphs and occasionally
medium-sized graphs, GEM can easily handle large and complex graphs. As graphs get
larger and larger, the drawing area becomes too small very quickly. Also, the human
eye will have difficulty comprehending larger graphs as a whole, so graph partitioning
schemes should be taken into consideration.

Although we chose not to explicitly minimize edge crossings, GEM can often avoid
crossings (see Fig. 18).

8 Open Questions

Several problems remain to be solved. First of all, nothing is known about the theoretical
behavior of the proposed algorithm. Although we were able to experimentally confirm a
time complexity of O([VI a) with small constants, we cannot give a formal proof. Even
worse, although the GEM algorithm almost always terminates with satisfactory results,
no proof of convergence is apparent.

Further research is necessary to determine the importance of each single factor in
the GEM algorithm and their interplay. Experiments in this direction could investigate in
leaving out single or several factors contributing to the success of GEM (randomization,
oscillation, rotation, gravitation).

398

There exist two interesting connections between the GEM algorithm and artificial
neural network theory. Having seen animations of GEM runs on mesh-like structures,
similarities to Kohonen feature maps are apparent. The question comes to mind whether
the connections between these domains are deeper. A second, even more intriguing
connection can be made to improved backpropagation learning algorithms (Rprop,
QuickProp) which have a notion of local learning rates, which is very similar to the
GEM idea of having local temperatures. An interesting experiment would therefore be
to devise a neural network for graph drawing.

Unfortunately, these connections do not help at present to settle the complexity and
stability questions raised above as researchers in these areas are themselves actively
investigating these questions.

A major problem in the area of graph drawing is the non-existence of a standard set
of graphs by which to judge on the quality of drawings. A first step in this direction
would be the definition of such a set for the restricted domain of straight-line drawings.
We hope to have contributed by the distinction between graphs of several sizes and
densities for our test suite.

9 Acknowledgements

W. Zimmermann gave valuable comments on the presentation of our results. We would
like to thank the anonymous referees who pointed out earlier work in force-directed
placement.

References

1. G. Di Battista, P. Eades, H. de Fraysseix, P. Rosenstiehl, and R. Tamassia, editors. Proceed-
ings of the ALCOM International Workshop on Graph Drawing 1993. ALCOM, 1993.

2. G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Algorithms for drawing graphs: an
annotated bibliography. Report, Brown University, June 1994.

3. R. Davidson and David Harel. Drawing graphs nicely using simulated annealing. Technical
Report CS 89-13, Department of Applied Mathematics and Computer Science, The Weizmann
Institute of Science, Rehovot, Israel, 1989. revised July 1993, to appear in Communications
of the ACM.

4. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149-160, 1984.
5. C. J. Fisk, D. L. Caskey, and L. E. West. ACCEL: Automated circuit card etching layout.

Proceedings of the IEEE, 55(11):1971-1982, November 1967.
6. T.M.J. Fruchterman and E.M. Reingold. Graph drawing by force-directed placement.

Software-Practice and Experience, 21, 1991.
7. M. Himsolt. Graphed: A graphical platform for the implementation of graph algorithms.

In Proceedings of Graph Drawing '94, LNCS, Princeton, New Jersey, October 10-12 1994.
DIMACS Workshop on Graph Drawing, Springer. this volume.

8. N. R. Quinn Jr. and M. A. Breuer. A forced directed component placement procedure for
printed circuit boards. IEEE Transactions on Circuits and Systems, CAS-26(6):377-388,
1979.

9. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31, 1989.

399

10. Scott Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optmizafion by simulated annealing.
Science, 220:671--680, 1983.

1 I. Donald E. Knuth. SeminumericalAlgorithms, volume 2. Addison-Wesley, 2nd edition, 1981.
12. J.B. Manning. Geometric symmetry in graphs. PhD thesis, Purdue University, December

1990.
13. N. Metropolis, W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller. Equation of state calcu-

lations by fast computer machines. J. Chem. Phys., 21:1087, 1953.
14. D. Tunkelang. A layout algorithm for undirected graphs. In Graph Drawing '93, ALCOM

International Workshop PARIS 1993 on Graph Drawing and Topological Graph Algorithms,
September 1993.

15. H. Watanabe. Heuristic graph displayer for G-Base. International Journal of Man-Machine
Studies, 30:287-302, 1989.

A GemDraw

This appendix describes GEMDRAW, the environment in which we developed GEM.
GEMDRAW is written for a PC in Bodand C using the Borland Graphics Interface (BGI).
It turned out early in the design stage that we needed a specialized tool for visualizing
vertex temperatures and for quickly producing large test graphs. We decided to select
and implement mechanisms for extending small graphs in a regular way, which are
to be described. In addition, GEMDRAW knows several types of parameterized graphs
(mesh-structures, trees, hypereubes, completeley connected) and allows for interactive
creation and modification of graphs.

Using the concepts of iteration and duplication, complex structures can be created
easily. For each graph G = (V, E), an iterated graph can be defined by cloning the
original graph IV[times and connecting each vertex of the original graph to all vertices
of its assigned clone. An iterated K10 is shown in Fig. 5. The duplication of G is defined
by cloning G once and adding edges between each original vertex and its clone. Figure 6
shows a duplicated K15. As an example of the usefulness of the concept, Fig. 7 shows
a torus defined by duplicating a cycle several times. A hypercube of dimension n can
quickly be produced as follows. Create a vertex and repeat n times: duplicate the graph
produced so far.

B Visual examples

In this appendix we present several examples for the quality of the graphs drawn by
GEM, including well-known examples from the literature.

We first turn our attention to sparse structures and give a sequence of drawings for
cycles in Fig. 8. This is a good example of the adaptive nature of the GEM algorithm
as a folding causes local temperatures to remain high. In Fig. 9 the heuristics of evenly
spacing vertices is illustrated using paths as an example.

A sequence of intermediate steps in the drawing of a triangular mesh (see Fig. 11)
shows that GEM can handle foldings well, as opposed to [6]. Observe that the neighbor-
hood of a folded area remains hot.

Drawings of square (Fig. 12) and hexagonal (Fig. 13) meshes of different sizes are
further examples demonstrating that GEM is not focused towards certain structures as

400

Fig. 6. Duplicated K15; the even vertex distance
Fig. 5. Iterated K10 heuristic forces vertices to be placed inside the

hull

Fig. 7. Torus defined by duplicating a cycle

all runtimes are a function of I VI. It can be observed that some huge graphs become
distorted. This is not a consequence of the gravitational force used to compute vertex
impulses, but merely of the random vectors added to the impulse: Once perfect symmetry
is disturbed, perturbations of this kind will occur.

Since GEM does not optimize for the number of edge crossings, the resulting drawing
will often be a projection of a 3D-picture. This can be exemplified with Fig. 14- 16. In
Fig. 16, the left layout is produced much more often than the middle one, which in turn
is computed more often than the right one.

We finish with GEM output for several examples from the papers of Fruchter-
man/Reingold and Davidson/Harel and compare the results. While GEM manages to
draw the graph in Fig. 18 planar as do Davidson/Harel, the drawing of the graph in
Fig. 19 is basically the Fruchterman/Reingold version.

401

Fig. $. Cycle with IV[= 30 vertices in differ-
ent stages of development

Fig. 9. Paths of size IV I = 30,300 after
3000, 20700 iterations

Fig. 10. Binary trees of size IVI = 31, 63,127, 255 after 1178, 3276, 9906, 34935 iterations

402

Fig. 11. Intermediate states of a triangular mesh with foldings

I
Fig. 12. Square grids of size IV[= 36,121,256,324 after 972, 6534, 26880, 42472 iterations

Fig. 13. Hexagonal grids of size IV[--- 24, 96,216,294 after 720, 5184, 15120, 29106 iterations

403

Fig. 14. Two different layouts of an icosahe-
dron (1V] = 12, IE[= 30) after ~ 220 itera-
tions (see also figure 29 from Fruchterman and
Reingold)

Fig. 15. Two different layouts of an dodecahe-
dron (IV[= 20, IEI = 30) after ~ 700 itera-
tions (see also figure 57 from Fmchterman and
Reingold)

Fig. 16. Three different layouts of an octahedron (IV I = 6, [E I = 12) after < 200 iterations

Fig. 17. Drawing of a soc-

cer ball (also known in chem- Fig. 18. GEM drawing of the Fig. 19. GEM drawing of the
istry as the C~o molecule
or Buckminster Fulleren) with graph in [6, fig. 24]; this draw- graph in [3, fig. 12]; this draw-
]V[= 60, [E I = 90 after ing is similar to [3, fig. 1] ing is similar to [6, fig. 26]

_< 5000 iterations at 3 o

