
Demonstration of the Interactive Graph
Visualization System da Vinci

Michael Frhhlich and Mattias Werner

University of Bremen, Institute for Formal Methods in Software-Engineering,
PO-Box 330440, D-28334 Bremen, Germany
e-mail: daVinci@Informatik.Uni-Bremen.DE

Abst rac t . We present the graph visualization system da Vinci, an inter-
active tool that can be used by arbitrary application programs as a user
interface for graph data structures. Beside a novel automatic layout algo-
rithm for graphs, daVinci offers many interactive facilities such as fine-
tuning of a layout, abstractions and scaling operations. A bidirectional
application interface is used for tool communication with a program that
controls the graph structure.

1 I n t r o d u c t i o n

The visual representation of directed graphs becomes more and more important
in modern computer applications. Graphs are widespread, universal data struc-
tures that can be found in many different forms and applications. In computer
programs, a powerful visual representation is needed to give the user an intuitive
image of an internal graph structure. Handling the application by interacting
with the graph visualization (as with a graph editor) is even better to give the
user a more precise feedback about the program. Although graph visualization
is important for many domains, the use of this technique is not very common in
today's computer applications. Frequently, a user has to deal with uncomfort-
able textual interfaces or poor ad-hoc drawings of graphs. The reason for this
deficit is the great effort to implement a satisfying graph layout. Furthermore,
flexible and powerful graph visualization tools, which are reusable and easy to
integrate with applications, are hard to find. These facts were the motivation for
developing the interactive graph visualization system da V, nci.

In the past decade, a lot of powerful visualization tools for directed graphs
have been developed such as dot [1], GraphEd [2], the prototype of Henry [3],
VCG [4], and many others. Unfortunately, most of the available systems are
designed as isolated viewing components and do not provide distinct methods
for communicating with application programs. They can only be used to display
graphs, but not to develop them interactively in conjunction with a control-
ling application program. Systems demonstrating the opposite are Edge [5] and
GraphView [6]. Both tools offer interfaces to graph generating programs, but
without providing the manifold capabilities of daVincz's application interface.
Our approach joins two requirements: a connected application keeps full control
on the displayed graph and the user gets the impression to handle the application
by interacting with the graph visualization.

267

daVim

GRAPH CHAF

Hel~

No(

Dummy-N@r

Ed!

Crosslr

o-~
Label: _D

Direction: .~--- . ~ - . - �9 ~-

"Draw" r "Star (8010)"
"Draw" <-> "Star (8010)"
"Draw" - - - "Star (8010)"

Pattern:

co,o~. [] N [] .ii:~. i~;

Label: Star (8010)-

Info: Star (80107

GraphlcalObJect: lB~ IRh~ I Text I

Ic~rcle ti~i!!~i++ I'con I
I~.~. I liP:

Font Family: ~ Font Style:

I Courier

Hidden: []

Fig. 1. This figure shows a graph visualization with da Vinci, representing dependencies
of systems related to the Xerox Star project. Two subwindows are visible for setting
the scale and for getting informations about the graph. The lower two windows be-
long to a separate graph editor program which is connected to daVinci's application
interface. The editor has added some extra menus to the user interface of da Vinci for
manipulating the displayed graph interactively.

268

2 G r a p h L a y o u t

daVincz loads a cyclic or acyclic digraph from an ASCII term representation.
By using attributes in the term, one can define the visualization for example by
specifying text, font, color or shape of nodes. Icons of arbitrary size are supported
as well as multiline strings for all kinds of graphical objects.

da Vinci's layout procedure for hierarchical graph visualizations is based on
the heuristic algorithm of Sugiyama et al. ([7]) and was improved in certain
details to obtain better visualizations For example, da Vinci is able to draw the
world model graph (used in [7] for illustration) with only one third of the edge
crossings found in the layout of the original algorithm (refer to [8] for details).
To optimize the layout quality and speed of trees, a new linear time tree layout
algorithm, based on the work of Juutistenaho ([9]), is implemented. We have
improved this algorithm to reduce the number of tree traverses from two down
to one.

3 F u n c t i o n a l i t y

In contrast to other tools with static visualizations, daVinci provides several
interactive operations to work with the generated graph drawing. Standard rep-
resentations, calculated by graph layout algorithms, are usually good, but rarely
perfect, so a user should have f ine t u n i n g capabilities to get optimal results
(e.g. for presentations or publications). After processing the layout algorithm
initially, it is possible to adjust the position and order of graph nodes and edges
interactively with the mouse. Fine tuning in da Vinci is an embedded function,
so based on a fine tuned graph the layout algorithm can be started again to
obtain better results.

In case of large graphs, abstraction techniques are needed to cope with com-
plexity. Two i n t e r a c t i v e a b s t r a c t i o n s are implemented in da Vinci at the mo-
ment: subgraph- and edge hiding. Subgraph hiding is used to collapse the sub-
graph of a selected node. With edge hiding all edges of a selected node can be
omitted in the visualization. With interactive abstractions a user is able to sup-
press uninteresting or obstructing parts to simplify the visualization. To get an
overview, one can reduce the scale of a visualization to any rate. After using
scal ing, all the other interactions (e.g. fine tuning, abstractions) are still avail-
able.

The state of a visualization can be saved in a file to preserve interactions for a
later session. In the same way, a graph can be saved in Encapsulated PostScript
Format for printing. Informations about a graph (e.g. number of nodes, edges,
crossings, etc.) can be displayed on demand.

4 A p p l i c a t i o n I n t e r f a c e

It was the intention to create a generic and reusable tool which could be used by
application programs as a comfortable user interface for graphs. One fundamen-
tal concept is the strict separation of tasks between both systems. The connected

269

application, which is an autonomous process, is exclusively' responsible for con-
trolling and modifying the graph structure, and the only task of da Vinci is to
display this graph on the screen. So in opposite to usual graph editors, da Vinci
is not able to alter the graph by itself. To realize this concept, a bidirectional,
pipe-based application interface is provided for tool communication.

The first pipe is used by the application to send commands to da Vinci. Many
different commands are available for transfering graphs, adding application spe-
cific menus to da Vznci's user interface, s tart ing dialogues with the user, showing
status informations or controlling the visualization system. On the second pipe,
an application is informed about events triggered by the user such as selection
of nodes, edges and previously created menus or user input in a dialogue. An ap-
plication has to interpret the events in its own context. Depending on the event,
the application can modify its internal data structure and send back an up-
dated graph to display the changes. This way any program can offer the user the
opportuni ty to control the application by interacting with a graph visualization.

More than 500 educational and commercial sites are already using da Vinci.
Existing applications are manifold and cannot be enumerated in this paper. More
informations about da Vinci can be found in [8] or are available by the authors.

References

1. E. Koutsofios, S. C. North: "Drawing Graphs with dot - dot User's Manual".
Technical Report, AT&T Bell Laboratories, Murray Hill, New Jersey (1993).

2. M. Himsolt: "GraphEd: A Graphical Platform for the Implementation of Graph
Algorithms". In these proceedings.

3. T. R. Henry: "Interactive Graph Layout: The Exploration of Large Graphs". Ph.
D. Thesis, Technical Report No. 92-03, University of Arizona (1992).

4. G. Sander: "Graph Layout through the VCG Tool". In these proceedings.
5. F. Newbery-Paulisch: "The Design of an Extendible Graph Editor". Lecture Notes

in Computer Science No. 701, Springer Verlag (1993).
6. B. Birgisson, G. Shannon: "GraphView: An Extensible Interactive Platform for

Manipulating and Displaying Graphs". Technical Report No. 295, Computer
Science Department, Indiana University, Bloomington, Indiana (1989).

7. K. Sugiyama, S. Tagawa, M. Toda: "Methods for Visual Understanding of Hierar-
chical System Structures". IEEE Transactions on System, Man, and Cybernetics,
Vol. 11, No. 2 (1981) pp. 1047-1062.

8. M. FrShhch, M. Werner: "The Graph Visualization System daVinci- A User
Interface for Apphcations". Technical Report No. 5/94, Department of Computer
Science, University of Bremen, Germany (1994).

9. A. Juutistenaho: "Linear Time Algorithms for Layout of Generalized Trees".
Technical Report No. A-1994-6, Department of Computer Science, University
of Tampere, Finland (1994).

