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Abst rac t .  Graph drawing research has been mostly oriented toward 
two-dimensional drawings. This paper describes an investigation of fun- 
damental aspects of three-dimensional graph drawing. In particular we 
give three results concerning the space required for three-dimensional 
drawings. 
We show how to produce a grid drawing of an arbitrary n-vertex graph 
with all vertices located at integer grid points, in an n • 2n • 2n grid, such 
that no pair of edges cross. This grid size is optimal to within a constant. 
We also show how to convert an orthogonal two-dimensional drawing 
in a H x V integer grid to a three-dimensional drawing with Iv/HI x 
Ix/if] • V volume. Using this technique we show, for example, that 
three-dimensional drawings of binary trees can be computed with volume 
[x/~ x [~/-~ x [log n]. We give an algorithm for producing drawings of 
rooted trees in which the z coordinate of a node represents the depth 
of the node in the tree; our algorithm minimizes the footprint of the 
drawing, that is, the size of the projection in the xy  plane. 
Finally, we list significant unsolved problems in algorithms for three- 
dimensional graph drawing. 

1 I n t r o d u c t i o n  

Recent hardware advances have promised to bring the cost of three-dimensional 
interfaces low enough to make them widely available, and initial research into 
three-dimensional applications has begun [14, 16, 21, 23]. However, as yet this 
work has been done mainly by software engineers who use experimentation rather 
than mathematical proof to establish the effectiveness of their techniques. For ex- 
ample, very little fundamental work has been done to understand the bounds on 
the volume used when drawing graphs in three dimensions. This paper presents 
some elementary but fundamental mathematical  results for three-dimensional 
graph drawing. 
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The size of a grid drawing can be measured in various ways; for two-dimensional 
drawings the most common measure is the area of the drawing [1, 2, 4, 10]. 
However, for visualization systems, the most relevant measure is the maximum 
distance which the drawing extends in each dimension. To define this notion 
more precisely, suppose that  S is a set of points in three-dimensional space. The 
rectangular hull of S is the smallest rectangular prism (with sides parallel to the 
coordinate axis) which contains all of S. If the set of vertex positions in a three- 
dimensional graph drawing :D is S, and the rectangular hull of S has dimensions 
X x Y x Z, then the s i z e o f l )  is the maximum of X, Y and Z. 

A Fary drawing is a straight-line drawings with no edge crossings. Fary grid 
drawings of planar graphs have been studied [5, 6, 12, 18]. This paper is con- 
cerned with bounds on the size of a three-dimensional Fary grid drawing. 

The next section proves upper and lower size bounds for three-dimensional 
Fary grid drawings of general graphs. Section 3 gives a size-efficient technique 
to convert a planar orthogonal grid drawing to a three-dimensional Fary grid 
drawing. The footprint algorithm is described in Section 4; this is an efficient 
algorithm for producing three-dimensional drawings of rooted trees with a small 
footprint, that  is, a small projection in the zy-plane. In the final section we list 
some fundamental unsolved problems for three-dimensional graph drawing. 

2 T h r e e - D i m e n s i o n a l  G r i d  F a r y  D r a w i n g s  

In this section we show how to produce a three-dimensional Fary grid drawing 
of any graph. Our drawing of a graph with n vertices fits into an n • 2n x 2n 
grid. This significantly reduces the previous best known upper bound for this 
problem of n x n 2 • n 3 (G. DiBattista, private communication). 

We achieve this volume bound by providing for each n a universal set of grid 
points// , ,  = {Pl, . . - ,P, ,};  this set has the property that  any four distinct points 
Pi, Pj, Pk, and Pl are not coplanar. Our drawing algorithm simply places each 
vertex vi at point Pi- Since an edge crossing requires four coplanar points, the 
output  is a Fary drawing. The set U, is universal in the sense that  Un depends 
only on the number of vertices n and not on the graph itself. 

The choice of U,, is motivated by some elementary mathematics. The moment 
curve M is a three-dimensional curve defined by the parameters: 

M(t )  = (t, t2,t  3) 

It is not difficult to prove that  the moment curve has the property that  dis- 
tinct chords can only intersect at end points. That  is, given four distinct points 
Pl,P2,P3 and P4 on M, the segments PiP2 and ~ do not intersect. There- 
fore, given a graph G with n vertices, we can obtain a three-dimensional Fary 
grid drawing of G placing each vertex vi at M(i) .  This drawing uses volume 
n x n 2 x n3; such a drawing is very sparse and has poor resolution on a screen. 

However, we improve this upper bound using the following simple algorithm: 



A l g o r i t h m  1 3-D DRAW 
Input: A graph G with n vertices 

Output: A 3-D drawing of G 

1. Choose a pr ime p with n < p < 2n 
2. fo r  i = 1 t o  n d o  place vi at point pi = (i, i s mod  p, i 3 m o d  p) 

[3 

T h e o r e m  1. Algori thm 1 gives a three-dimensional Fary grid drawing of  an n 
vertex graph in n x 2n x 2n volume in O(n)  t ime.  

Proof. Note tha t  Step 1 can be implemented in linear t ime using a simple pr ime 
number sieve [25]. Thus the algorithm takes linear time. 

Given a vector x = ( x l , . . . ,  xr),  the Vandermonde mat r ix  V ( x )  of x is an 
i The determinant  of  V ( x )  has a special r • r mat r ix  whose i j t h  entry is xj.  

form [13]: 

l~_j~r l~i<j~_r 

Note tha t  this determinant  is 0 if and only if either xj = 0 for some j ,  or there 
is a pair i, j of  distinct indices for which xi = xj.  

Suppose tha t  p is a pr ime greater than each of four integers i, j ,  k, I. Consider 
the following Vandermonde-like determinant  

1 1 1 1 
i j k e 

A =  i 2 m o d p j 2 m o d p k  s m o d p ~ s m o d p  
i a mod  p j3 mod p k a mod  p s mod  p 

Note that  the points Pi ,Pj ,Pe ,Pi  are coplanar if and only if A = 0 [9]. Now from 
(2) we can deduce tha t  

i a il 1 t a 

1 

A = i s j 3 k s f 2  m o d p ,  

j3 k 3 

and using simple ar i thmetic  noting the similarity with the Vandermonde deter- 
minant  we can deduce tha t  

A = ( !  -- k)(g - j ) ( t  - i ) (k  - j ) ( k  - i ) ( j  - i) m o d  p 

and thus A # 0, since i , j , k , ~  are distinct and i , j , k , s  < p. I t  follows tha t  the 
points Pi, PJ, Pk, Pt in Algori thm 1 are not coplanar. 

We can show further that ,  apart  from a constant, no general drawing algo- 
r i thm can achieve smaller size. 



T h e o r e m 2 .  Suppose that 7) is a three-dimensional Fary grid drawing of the 
complete graph G on n vertices, and 7) uses volume X • Y x Z.  Then each of 
x,  Y, z is ~(n). 

Proof. Suppose that X <_ n/5.  Consider the planes parallel to the yz plane which 
intersect the drawing of G. At least one such plane must contain at least five 
vertices; since G is complete, the subgraph on these five vertices is complete, 
and thus is not planar [3]. Thus X > n/5; a similar argument applies to Y and 
Z. 

Note that although Algorithm i is useful in establishing the theoretical limits 
for general three-dimensional graph drawing, it is not a very practical algorithm 
because it is insensitive to the particular graph being drawn. Specific classes of 
graphs, in fact, can be drawn in size less than that achieved by Algorithm 1; the 
next section describes such a technique. 

3 Converting Orthogonal Grid Drawings to Three 
Dimensions 

This section describes a general technique for converting a two-dimensional or- 
thogonal grid drawing to a three-dimensional Fary drawing. Conceptually, the 
technique is quite simple: we just "roll up" the two-dimensional page. For specific 
classes of graphs, this technique gives a better size bound than the technique of 
the previous section. 

For a positive integer r, the serpentine rollup c~r maps the two-dimensional 
grid into the three-dimensional grid such that for x, y > 0 

(x div r, y, x mod r) if x div r is even 
err(x, y ) =  (xd iv r ,  y, ( r - x - 1 )  modr )  i f z d i v r i s o d d  

Note that the y-coordinate remains unchanged while the z-coordinate is 
"rolled-up" into the xz  plane (see Figure 1). 

The following lemmas follow directly from the definition of at: 

L e m m a 3 .  /fcrr(xl,yl)  = ~rr(x2, y2) then xl  = x2 and Yl = Y2. 

L e m m a 4 .  Suppose that Pl = (xl ,  Yl) and P2 = (x2, Y2) are grid points with 
xl  < x2. Then either 

(a) < or 
(b) x(c%(pl)) = x(ar(p2)) and z(ar(pl))  r z(~rr(p2)). 

L e m m a 5 .  Suppose that Pl = (Xl, Yl), P2 = (xz, y2), and P3 = (x3, Y3) are grid 
points with xl  < x2 < x3 and x(~rr(pl)) = x(~r(p2)) = x(trr(p3)). Then either 

(a)  < < or  

( 0  > > 
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Fig. 1. Serpentine roUup. 

: : c=:> 

Fig. 2. The mapping to D3 of horizontal edges. 

Note that  l emma  3 implies that  the inverse mapping  a71(x,  y, z) is defined 
for x > 0 ,  y >  0, and 0 < z < r. 

Suppose 7) is a two-dimensional orthogonal  drawing of a planar graph G. We 
assume that  7) has no edge bends since we can replace a bend with a d u m m y  
vertex. We produce a three-dimensional grid drawing 7)3 of G using the serpen- 
tine rollup, as follows. If  vertex v is drawn at point p in 7), then we place v at 
c~,(p) in 7)3. We then draw edges as straight line segments. Figure 2 illustrates 
the mapping  f rom two horizontal edges in two dimensions to two edges in three 
dimensions. 

L e m m a 6 .  There are no edge crossings ~n 7)3. 

Proof. Consider distinct edges e = (vl, v2) and f = (v3, v4) in G. Let (xi ,  Yi) be 
the coordinates of the drawing of vertex vi in l). We show tha t  the drawings of 
e and f do not cross in 7)3 since they do not cross in 7). 

We proceed by case analysis. Suppose in the drawing 7): 

- Edges e and f are drawn vertically. In this case xl = x2 and x3 = x4. I f  
xl  r xa, then by Lemma 4 x (~r (x l ,  Yl)) = x(c~r(x2, Y2)) r x(~r~(x3, Y3)) = 
x(cr~(x4, Y4)) and so the edges do not cross. 
I f  xl = x3 then we can assume w.l.o.g, tha t  Yl < Y~ _ Y3 < Y4. Then 
the Lemma  holds since the mapping  c~ does not alter the y-coordinate of a 
point. 

- Edge e is drawn vertically and edge [ is drawn horizontally. Here xl  -- x2 
and Y3 ---- Y4. Suppose edges e and f cross in drawing 193 but not in draw- 
ing 7). In 7)3, edge e is contained in the line defined by x = x(cr~(Xl, y l ) ) ,  z = 



z(c~r(xl, Yl)) and edge f is contained in the plane defined by y = y(ar (x3, y3)) = 
Y3. Therefore, the crossing must  be at p = (x(a,(xl ,  Yl)), Y3, z(~r,(xl, Yl))). 
Then by l emma 3, point a~-l(p) must  be in bo th  the drawings of e and f in 
D, and is hence a crossing. 

- edges e and f are drawn horizontally. In this case Yl = Y2 and Y3 = Y4. A 
crossing is possible in I)3 only if edges e and f are drawn with the same 
y-coordinate Yl = y2 = y3 = Y4. Assume w.l.o.g, that  xl < x2 < x3 < x4. 
An edge crossing is not possible by the monotonici ty of a .  along the rollup 
described by lemmas  4 and 5. 

From this Lemma  we can deduce the major  proper ty  of the serpentine rollup 
t ransformat ion below. 

T h e o r e m  7. Suppose G is a planar graph and 7) is an orthogonal drawing of G 
with b bends using h • w area. Then for any integer r, 1 <_ r <_ w, there is a 
three-dimensional grid drawing of G with b bends using r • h x [~]  volume. 

Thus two-dimensional orthogonal drawings can be efficiently "rolled up" to 
produce efficient three-dimensional Fury drawings. For instance, in [4] a linear 
t ime algorithm is given for constructing an orthogonal grid drawing of a binary 
tree in an area of n • log(n); we can deduce the following: 

C o r o l l a r y  8. A three-dimensional Fary grid drawing of a binary tree with n 
nodes can be constructed in O(n) time using x/-ff x ~ • log(n) volume. 

As another example,  an algori thm of [19] m a y  be used to construct an or- 
thogonal drawing of a planar graph with m a x i m u m  degree 4 (as in Figure 3 in an 
O(n) x O(n) grid, with O(n) bends and using linear time. Thus we can deduce: 

C o r o l l a r y  9. A three-dimensional grid drawing of a planar graph with maximum 
degree 4 and n nodes can be constructed in linear time using n • x/n x v/-ff volume 
and having O(n) total edge bends. 

4 T h e  M i n i m u m  F o o t p r i n t  A l g o r i t h m  

In this section we discuss three-dimensional grid drawings of rooted trees. We 
use the convention tha t  the z coordinate of a vertex is chosen to indicate its 
depth in the tree: the root has z coordinate h, where h is the height of  the 
whole tree, and a vertex of depth d has z coordinate h - d. In other words, 
the vertices are placed in layers, where a layer is a plane z = h - d containing 
the vertices of depth d. The edges are drawn as orthogonal polylines with two 
bends. Siblings are drawn on horizontal lines parallel to either the x or the y 
axis. These three-dimensional conventions are a direct generalization of common 
two-dimensional paradigms; two such drawings, one in two dimensions and one 
in three dimensions, are given in Figure 4 and Figure 5. 

We further require that  subtrees are separated in the following sense. Suppose 
tha t  u and v are two vertices in a tree drawing and neither is an ancestor of the 



Fig. 3. An orthogonal grid drawing. 

Fig. 4. A rooted tree in two dimensions 

other. Then we require that  the rectangular hulls of the subtrees under u and 
v be disjoint. This requirement ensures that  the subtrees are visually separated 
and assists navigation. 

The above convention for three-dimensional tree drawing is called the clas- 
sical convention, following the two-dimensional terminology of [8]. 

Note that  the classical convention fixes the z coordinate of each vertex in the 
drawing. Thus a compact size must be obtained by minimizing the footprint of 
the drawing, that  is, the size of the projection of the drawing onto the xy-plane. 

The three-dimensional problem of drawing with a minimum footprint in three 



Fig. 5. A rooted tree in three dimensions 

dimensions is the natural analogue to the well studied problem of minimization 
of the width of a drawing in two dimensions (see [10, 11, 15, 17, 24, 22]). 

Note that according to the classical convention, the footprints of two disjoint 
subtrees must be disjoint. Further, if u has children v and w, then the footprint 
of the subtree under u is the rectangular hull of the union of the footprints of 
the subtrees under v and w. Thus the xy-plane projection of a three-dimensional 
layout in the classical convention forms an inclusion convention drawing of the 
tree according to the terminology of [8]. The techniques of [8] apply, and using 
the dynamic programming method of [7] we can deduce: 

Theorem 10. A minimum footprint layout of a tree with n nodes can be found 
in time O(n2). 

We believe that the combination of the algorithmic techniques of [7] and the 
three-dimensional classical convention give a practical approach to drawing trees 
in three dimensions. Samples of three-dimensional classical convention drawings 
are in Figures 5 and 6. 

5 C o n c l u s i o n s  a n d  O p e n  P r o b l e m s  

In this paper, we have demonstrated some initial results of an investigation 
of the fundamental algorithmic problems involved in drawing graphs in three 
dimensions. We believe that the results of Sections 2 and 3 are useful in defining 
the theoretical performance limits of layout algorithms in three dimensions. The 
algorithm in Section 4 is a practical technique for drawing rooted trees in three 
dimensions. 

However, the number of unanswered funadmental problems is quite large. 
Here we list a sample. 



Fig. 6. A rooted tree in three dimensions 

1. It is clear than a graph with an orthogonal drawing in three dimensions 
has maximum degree 6. Which graphs of maximum degree 6 can be drawn 
in three dimensions without edge crossings? Is there an efficient algorithm 
to test this property? What  are the size requirements for such drawings? 
Note the recent work on visibility graphs of rectangles in three dimensions 
(Sue Whitesides, private communication) may have implications for these 
questions. 

2. Is it possible to improve the lower bounds in this paper? In particular: 
(a) In our three-dimensional Fary grid drawing algorithm we find a collection 

of points with no 4 points coplanar. However, when drawing a complete 
graph, edge crossings can be avoided if any 4 coplanar points are arranged 
such that one point is interior to the convex hull of the remaining three. 
Is it possible to obtain an algorithm which uses this weaker condition? 
Is it possible to improve on Theorem 1? Is it possible to obtain a Fary 
drawing of a complete graph on n vertices in volume n • n • n? 

(b) Is it possible to obtain a Fary drawing of a binary tree with n nodes in 
volume X x Y x Z where each of X, Y, Z is O(~/-~)7 

(c) Is it possible to draw a tree of depth d with n vertices in the classical 
convention with footprint O(nd)? 

3. Find algorithms and lower bounds for three-dimensional Fary grid drawings 
of planar graphs. Are there planar graphs which require volume X • Y • Z 
where each of X,  Y, Z is ~2(n)? Note every planar graph can be drawn as 
the vertices and edges of a three-dimensional convex polyhedron [20]. Is it 
possible to obtain such a drawing with volume O(n) x O(n) • O(n)? 

4. There has been a great deal of investigation of the problem of drawing a 
biparti te graph so that each part  lies on a horizontal line. The corresponding 
problem of drawing a biparti te graph so that  each part lies on a horizontal 



10 

plane has not been investigated. It is not difficult to establish that to avoid 
crossings, Kin,  requires area O(mn) .  However, no further results have beell 
obtained. 
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