
The Mobi l i ty Workbench*

A Tool for the r - C a l c u l u s - -

BjSrn Victor~ FaronMoller$

Abs t rac t

In this paper we describe the first prototype version of the Mobility Work-
bench (MWB), an automated tool for manipulating and analyzing mobile
concurrent systems (those with evolving connectivity structures) described
in the r-calculus. The main feature of this version of the MWB is checking
open bisimulation equivalences. We illustrate the MWB with an example
automated analysis of a handover protocol for a mobile telephone system.

Dedicated to Ellen on the occasion of her birth.

1 I n t r o d u c t i o n
Process algebra is the general study of distributed concurrent systems in an algeb-
raic framework. There have been many successful models formulated within this
framework, one representative example being Milner's CCS [10]. Each approach
has added to more than a decade of fruitful discoveries on the mathematical
foundations of concurrent processes, so that now it is the case that these theor-
ies can be applied in practice, perhaps using automated tools of which there are
many; for a useful survey see [9]. Certainly, as systems become more complex, it
becomes necessary to invoke the use of automated tools to aid in their anMyses.
These tools however exploit the fact that properties of finite-state systems are
decidable, and hence they cannot be used except for this simple class of systems.

A shortcoming of these process algebras, which was perhaps necessary for the de-
velopment of such a complex field, is that they enforce restrictions on the nature
of the systems which they a t tempt to model. One such restriction is the inability
to model evolving communication structures. However this particular shortcom-
ing is now being tackled within the CCS framework with the 7r-calculus [13], an
extension of CCS which allows for the modelling of mobility within systems, the
ability for systems to dynamically alter their communication structures. The
foremost problem with such an extension is the greatly increased complexity
of the analysis of systems. One may say that our understanding of finite-state
systems is rather complete now; however, with extra constructs within the al-
gebra it becomes nontrivial to even define, let alone to then decide, semantic
equivalences between systems.

*Research supported by ESPRIT BRA Grants 6454: CONFER and 7166: CONCUR2.
tDept of Computer Systems, Uppsala University, Box 325, S-751 05 Uppsala, Sweden,

and Swedish Institute for Computer Science.
$Dept of Computer Science, University of Edinburgh, The King's Buildings, Edinburgh.

429

In this paper we describe the MWB (Mobility Workbench), a tool for manipu-
lating and analyzing mobile concurrent systems described in the r-calculus. In
the current version, the basic functionality is to decide the open bisimulation
equivalences of Sangiorgi [16], for agents in the monadic r-calculus with the
original positive match operator. This is decidable for r-calculus agents with
finite con t ro l - analogous to CCS finite-state agents - - which do not admit
parallel composition within recursively defined agents. There are various other
analysis routines implemented, including commands for finding deadlocks and
for interactively simulating agents.

The outline of the paper is as follows. We start in Section 2 with a brief presenta-
tion of the r-calculus, its syntax and semantic definition, as well as the definition
of equality of agents. We also briefly describe aspects of the implementation of
equality checking. We then present the MWB in Section 3, demonstrating its
main utilities on simple examples. In Section 4 we describe an extended realistic
case study, the automated verification of a part of a mobile telephone protocol.
Finally in Section 5 we describe future development plans for the MWB.

2 Mobi le Processes: T he rr-calculus
In this section we give a brief presentation of the syntax and semantics of the
r-calculus, as well as a description of the open bisimulation equivalences and
efficient characterisations for these which will be used in the implementation.
For fuller treatments of these topics we refer to [13, 16].

There are two entities in the r-calculus: names (ranged over by x,y,z,w,v,u),
and processes (ranged over by P,Q,R). The syntax of the r-calculus is given by
the following BNF equation

where A ranges over some set of variables with associated nonnegative arities
k, and a represents an input x(y), a free output Ey, a bound output E(y), or
a silent event r. Briefly, 0 represents an inactive process; each process variable
d (x l , . . . , xk) has a corresponding definitional body P; matching [x = y]P is
read as ~'ifx = y then P"; sum P1 + P2 offers the choice of P1 or/)2; composi-
tion P1]P2 places the two processes P1 and P2 side-by-side in parallel execution;
restriction (t,,x)P hides the name x from the environment of P; and action pre-
fixing a.P performs the relevant input, output or silent transition, thus evolving
into P. (Bound output ~(y).P is in fact simply shorthand for the expression

The definitions of free and bound names are standard (x(y).P and (vy)P bind
y), and we shall write fn(P) and fn(o~) for the free names of P and a; bn(P) and
bn(oe) for the bound names of P and a; and n(P) and n(oe) for the names of P and
a. The definitions for substitution and alpha conversion are equally standard,

430

pre : match : P ~ P '
a.P ---* P [x = x]P --~ P'

l d e : P{Y/X} `~' P' (A(~) d~ p)
A(~)) ~, P '

p --~ p'
sum : a p~ P + Q - . - ,

: - () P P' bn(a) A.fn(Q) = I~ corn : P ~u =(~) Q'
par : PIQ _2_. P'IQ PIQ --~ P'IQ'{y/z}

open
�9 (vy)P ~ P'

r e s . - - ~ -
(yx)P ~ (~,x)P'

close :
PIQ - - (y ~ v)(P'IQ'~

\]

Figure 1: Semantic derivation rules.

with renaming possible to avoid name capture. We shall always identify processes
or transitions which differ only on bound names.

In Figure 1 we present the operational rules for the ~r-calculus. We have omit-
ted symmetr ic rules for sum, par, corn and close. From this definition of the
single-step transition system we can define the weak transition system which
abstracts from silent transitions in the usual fashion: ~ represents (T) . and

represents ~ when c~ -- r and ~)=====~ when a r r .

2 . 1 O p e n B i s i m u l a t i o n
There are several ways in which one can define bisimilarity of r-calculus terms,
varying on the at t i tude taken towards name instantiation. Notable among these
are the early and late bisimulations of [13]. We choose to concentrate on the
elegant notion of open bisimilarity of [16] - - which is finer than the previous
equivalences - - for several reasons. Firstly, the strong version is a congruence.
In particular, it is preserved by input prefix, unlike either of early or late equival-
ence. I ts natural i ty is attested to by a simple axiomatisation. Most importantly,
it has an efficient eharacterisation (described below) which we exploit in the
implementat ion.

D e f i n i t i o n 2.1 A binary relation Tt between process terms is a strong open
bisimulation if whenever (P, Q) E Tt then for each substitution cr from names to
names,

431

�9 ifP~r " , P ' t h e n Q a 6 Q, f o r someQ, wi th (P ' ,Q ')ET~;

�9 if Qcr ~, Q' then P~ ~ P' for some P' with (P', Q') ETr

P and Q are strongly open bisimilar, written P ..~ Q, if (P, Q) E Td for some
strong open bisimulation ~ .

A

I f we replace ~ by ~ in the consequents of the two clauses in the above
definition, then P and Q are (weak) open bisimilar, written P ~.. Q.

This definition is actually only adequate for the calculus without restriction. The
inclusion of restriction requires a treatment of distinctions [13], symmetric and
irreflexive binary relations over names stipulating when names are not allowed
to be equated by instantiation. We can however define open bisimilarity with
respect to distinctions; these will be referred to by "~z) and ~D for the strong
and weak relations, respectively. For example, [x = y]z.O ,,~{(=,y)} 0 though these
two terms are not equal by the original definition of ,~. We do not go into
these definitions in detail here, leaving the reader instead to consult [13, 16], but
we note that the open bisimilarity relations correspond to the cases when the
distinctions D are empty.

2 . 2 A n E f f i c i e n t C h a r a c t e r i s a t i o n o f O p e n B i s i m u l a t i o n
The definition of open bisimilarity (as with those for early and late equival-
ence) involves universal quantifications over substitutions, which make a direct
implementation infeasible. However, there is an alternate characterisation for
open bisimilarity based on the transition system presented in Figure 2 which is

similar to the approach of [8]. The transitions here are of the form P U,,~ p, ,
where M intuitively represents the least condition (set of name identities) un-

der which action a can occur. Thus for example we have [x = y]~.P *=v,~ --..+ p .

These composite transitions (M, ~) are ranged over by #, and we write n(M, (~)
for n(M) U n(~) and similarly for bn(M, ~). We shall always assume that the
condition x = x is ignored in the rules match, corn and close, so that for example
[x = x]P ~ P' whenever P ~ P ' .

. We also define a weak transition system: ~ r e p r e s e n t s (N.~r .. L.j.a (K~r
. . . for n, m _> 0 , w h e r e M = L A A # a n d . . .

for n >_ 0, where M = /~ i Ni if ~ = r , where in either case no name bound in
occurs in the accumulated condition M.

In the following definition, we denote by aM the substitution on names induced
by the equivalence classes associated with the equivalence relation corresponding
to M; we select one representative of each class and map the other members of
the class to it. We also use ~ to denote logical implication, and =- to denote
equality modulo alpha conversion.

432

m a t c h . p r e . true,a
c~.P ",~ P

,de: P' () A(~) ~ P' A(k) d~U P

s>'
par. PIQ "~ P'IQ

o p e n . p M ~ p, (y ~ n (M) U{x})
(vy)P Ufi~(U) p,

r e s : p U~ p, (x ~ n(#))
(~,x)P ~ (~,x)P'

P M'~ P' bn(a))
[x = y]P M^2~ y'~' P' (x, y

p.~U p,
sum : p +Qs p'

com :
P', Q

p[Q M^NA~ P' [Q' {y/ z }

close p M,~U) p , Q N,y~(u) Q,
: MANAQ~ v tV ~/p,,~,t~

PIQ t y) l~ 1r

Figure 2: Alternate transition system.

Definition 2.2 A binary relation 7r between process terms is a strong ~-bisimulation
if whenever (P, Q) E T~ then

�9 i f P M-2* ~ P' then Q ~.~ Q' for some N, fl and Q' with M ~ N, o~r M -= fl(rM
and (P'~r~, QqrM) E T~;

�9 i fQ M-:*~ Q' then P ~ P' for some N, /3 and P' with M =:~ N, SaM =-- flaM
and (P' crM , Q' aM) E T~.

P and Q are strongly x-bisimilar, written P x Q, if (P, Q) E 7~ for some strong
~-bisimulation TO.

N,~
I f we replace ~,~ by ~a in the above definition, then P and Q are (weak) ~-
bisimilar, written P ~ Q .

Again this definition is valid only for the subcalculus without restriction, but
again we can define -.~-bisimilarity with respect to distinctions, and again we
leave the details to [16].

The following theorems from [16] and [18] respectively, are what we are partic-
ularly interested in.

T h e o r e m 2.3 (Sangiorgi) --q9 coincides with ~D

T h e o r e m 2.4 (Vic tor) ~D coincides with ~D.

433

2 . 3 A l g o r i t h m i c A s p e c t s
The usual technique for deciding bisimilarity of (finite-state) systems is to con-
struct the state space of the two systems in question and then perform a parti t ion
refinement algorithm to try to distinguish the two start states. However, this
technique is inapplicable in the case of the r-calculus due to the problems of
name instantiation.

For example, the two terms

P(x) def = x(y).yy.P(y) ()) Q(x) = x(y). yy.Q(y) + [x = y]yy.Q(y

are clearly open bisimilar. In contrast with the late and early equivalences, with
~-equivalence it is enough to instantiate the bound name of an input with a
single fresh name (a name x is fresh with respect to a transition P ~ Q if
x f[fn(Q) - bn(p)). But then P(x) has a minimal state space consisting of
only two states, namely itself and the intermediate state ~x.P(x) attained by
instantiating the y by x, thus performing the input action x(x). Regardless of
how the state space of Q(x) is generated, it cannot be equated to the above
state space of P(x) , as its first transition cannot instantiate y to x, due to the
appearance of x in the ensuing process. To match the two, the state space of
P(x) must be extended to match that of Q(x).

Thus the implementation of the bisimulation algorithm is by necessity an "on-
the-fly" algorithm [4]: the state spaces of the two systems in question are gen-
erated together during the construction of the candidate bisimulation relation
which equates them.

Beyond this, the algorithm implemented in the MWB follows Definition 2.2
(both its strong and weak versions) closely: given two agents P and Q and a
relation 7~, check if (P, Q) is already in the relation. If so, return the relation un-
changed. Otherwise, for each transition of P , find a (strong or weak) transition
of Q such that the conditions match appropriately and the actions are equival-
ent under the substitution g induced by the first, larger, condition. Make the
transitions instantiate the same bound name (alpha-converting the derivatives),
and assuming that P and Q are equivalent (by adding (P, Q) to the relation),
apply the substitution c~ to the derivatives and recurse over them using the ex-
tended relation. This either fails, which causes the current recursion to try the
next transition of Q (or to fail if no such transition exists), or returns a relation
relating the two derivatives, which is used in subsequent recursive calls. Finally,
when all transitions of P have been matched by Q, match each transition of Q
with a (strong or weak) transition of P in the same way, returning the resulting
relation. (This is the approach in the absence of distinctions; in the more general
case, distinctions are handled in a suitable fashion.)

434

3 The Mobility Workbench
The basic functionality of the MWB is to decide (strong and weak) open bisim-
ilarity. Amongst other things, it can also be used to find deadlocks and for
interactively simulating agents.

In Figure 3 we have a sample session which demonstrates some simple usage.
Note that we render v as ~ and ~y as 'x<y> when typing in ASCII format. First
we define an agent Bul l implementing a one-place buffer, then another, Bur2,
implementing a two-place buffer by composing two instances of Bull , and finally
three agents, Buf20, Bur21 and Buf22, together implementing a two-place buffer
without parallel composition.

We proceed with this example by comparing the two implementations for weak
equality. The MWB responds by saying that they are equivalent and that it
found a bisimulation relation with 18 tuples, and asks us if we want to inspect
it. We respond positively and the MWB prints out the relation as a list of pairs
of agents with associated distinction sets.

We then simulate the behaviour of the agent Buf2 (i , o). The MWB presents the
possible transitions, along with their least necessary conditions (if not trivial),
and prompts the user to select one of them. After having a single choice on
the first two steps, we then get a choice of three transitions; the first which is
possible only if the names i and o are the same; the second which uses a new
name "v0 since all other known names are free and thus can't be reused; and
the third, which simply outputs the value we read.

Next, we change the definition of Bur22 to introduce a possible deadlock and
again check for weak equivalence between B u f 2 (i , o) and Buf20 (i , o) . This
time we find that they are not equivalent, and proceed by looking for deadlocks
in Buf20 (i , o) ; as the MWB finds deadlocked agents, it tells us the agent and
the transition trace that leads to the deadlocked agent.

Finally we try equating B u f 2 (i , o) and Buf20 (i , o) under the proviso that i
is different from all other free names of the two agents (namely o). Under this
distinction, the deadlocks don't appear, and the MWB reports that they are
again equivalent.

4 An Extended Example: Mobile Telephones
As a case study, we have specified and verified the core of the handover protocol
intended to be used in the GSM Public Land Mobile Network (PLMN) proposed
by the European Telecommunication Standards Institute (ETSI). The formal
specification of the protocol, and its service specification, are due to Orava and
earrow [14], who also verified the protocol algebraically. Fredlund and Orava [5]
later verified the protocol automatically by specifying the protocol in LOTOS
[17], which was translated to labelled transition systems using the Cmsar tool [6],
which were in turn minimized using the Ald~baran tool [3], and finally compared

435

The M o b i l i t y W o r k b e n c h
(P r e l i m i n a r y v e r s i o n 0 . 8 6 , b u i l t Tue O c t 12 1 5 : 2 7 : 5 5 MET 1 9 9 3)

MWB> a g e n t B u f l (i , o) = i(x).'o<x>.Bufl(i,o)

MWB> agent Buf2(i,o) = ('m)(Bufl(i,m)] Bufl(m,o))

NWB> agent Buf20(i,o) = i(x).Buf21(i,o,x)

MWB> agent Buf21(i,o,x) = i(y).Buf22(i,o,x,y) + 'o<x>.Buf20(i,o)

MWB> agent Buf22(i,o,x,y) = 'o<x>.Buf21(i,o,y)

MWB> weq B u f 2 (i , o) B u f 2 0 (i , o)
The two a g e n t s a r e r e l a t e d .
Relation size = 18. Do you want to see it? (y or n) y

R = < Buf2(i,o), Buf20(i,o) > {}

< ('y)(Bufl(i,y) [Bufl(y,o)), Buf20(i,o) > {}

< ('y)('y<m>.Bufl(i,y) ['o<x>.Bufl(y,o)), Buf22(i,o,x,m) > {}

MWB> s t e p B u f 2 (i , o)
O: - - i (x) - - > (' m) (' m < x > . B u f l (i , m)] B u f l (m , o))

Step> 0
O: -- t --> ('m)(Bufl(i,m) ['o<x>.Bufl(m,o))

Step> 0
O: - - [i = o] , t - - > (' m) (' m < x > . B u f l (i , m) [B u f l (m , o))
1 : - - i (' v O) - - > (' m) (' m < ' v O > . B u f l (i , m) [' o < x > . B u f l (m , o))
2 : - - ' o < x > - - > (' m) (B u f l (i , m) [B u f l (m , o))

Step> 1 /

O: -- ~o<x> --> ('m)(~m<'vO>.Bufl(i,m) I Buf1(m,o))

Step> quit

MWB> agent Buf22(i,o,x,y) = ~o<x>.Buf21(i,o,y) + [i=o]t.O

MWB> weq 8uf2(i,o) Buf20(i,o)

The two agents are NOT related.

MWB> deadlocks Buf20(i,o)

Deadlock found in O, reachable by 3 transitions:

-- i(x) -- i(y) -- [i=o],t -->

Deadlock found in O, reachable by 5 transitions:

- - i (x) - - i (y) - - ' o < x > - - i (' v 0) - - [i = o] , t - - >
D e a d l o c k f o u n d i n 0 , r e a c h a b l e b y 7 t r a n s i t i o n s :

-- i(x) -- i(y) -- 'o<x> -- i(~vO) -- 'o<y> -- i(y) -- [i=o],t -->

MWB> weqd (i) Buf2(i,o) Buf20(i,o)

The two agents are related.

Relation size = 8. Do you want to see it? (y or n) y

R = < Buf2(i,o), Buf20(i,o) > {i#o}

< (*y)(Bufl(i,y) i Bufl(y,o)), Buf20(i,o) > {i#o}
< (~y)(~y<m>.Bufl(i,y) ['o<x>.Bufl(y,o)), Buf22(i,o,x,m) > {i#o}

o , ,

Figure 3: A simple sample session with the MWB.

436

using Ald~baran. The following informal presentation of the protocol is based
on the presentation in [5].

The PLMN is a cellular system which can be seen as consisting of Mobile Sta-
tions (MSs), Base Stations (BSs), and Mobile Switching Centres (MSCs). The
MS, mounted in e.g. a car, provides service to an end user. The BS manages the
interface between the MS and a stationary network, controlling all radio commu-
nication within a geographical area (a cell). All communication with the MS in
a cell is routed through the BS responsible for the cell. The MSC manages a set
of BSs, and communicates with them and with other MSCs using a stationary
network.

When a MS moves across a cell boundary, the handover procedure changes the
communication partner of the MS from the BS of the old cell to the BS of the
new cell, ensuring that the MS is constantly in contact with the MSC. The MSC
initiates the handover by transmitting a handover command message to the MS
via the old BS. The handover command message contains parameters enabling
the MS to locate the new BS. When transmitting this message the MSC sus-
pends transmission of all messages except for messages related to the handover
procedure. When the MS receives the handover command message, it discon-
nects the old radio links and initiates the new radio links. To establish these
connections the MS sends handover access messages to the new BS, in order to
synchronize with the new BS. When the connections are successfully established,
the BS sends a handover complete message to the MSC via the new BS. When
this message has been received, the network resumes normal operations and re-
leases the old radio links, which are now free and can be allocated to another
MS.

In Figure 4 we present a r-calculus specification of the protocol. This is drawn
from [14], but in this presentation we omit the failure handling aspects of the
protocol. In Figure 5 we present the MWB code for this specification, which
differs from Figure 4 in that the argument lists of agent identifier definitions
must contain all free names which appear in the agent.

Correctness of this specification would come from showing that it matched some
(ideally simple) service specification which would clearly define the desired be-
haviour of the system. In Figures 6 and 7, we present the service specification
of the handover protocol and its rendering into MWB code, respectively.

When checking the protocol specification (System) against the more abstract
service specification (Spec), we must express the fact that the parameters in,
out , ho_acc, ho_com, data , ho_cmd and ch..vel are constants, i.e. they are
distinct from all other free names. This is done by using the weqd (weak open
bisimulation with distinctions) command of the MWB, in the following way:

weqd (i, o, acc, corn, data, cmd,rel)

Spec(i,o) System(i, o, acc, com, data, cmd, re1)

437

c c (f o , f,,, 0

He(l, m)

MSC(.f~, fp, m)

BSa(f, m)

BS~(Lm)

MS(m)

def
e (. f , , , y, ,) =

de'f Q(ya) =

d e f System =

do__, in(v).y, data.yov.cc(fo, fp, 0
+ Z(m,~162 /p(c).

[c = ho_com]-]ach_vel.fa(mo, d).lmo, d.CV(fp, fa, l)
~~ im.l(m).gc(Z,m)

---- (vl He(l, m)] CC(f~, h , 1
def (= f(c). [c = data]f(v).~data.~v.BSa(f,m)

+ [c = ho_cmd]f(v).m----ho_cmd.~v.
f(c).[c = ch_vel]fm.BSp(f, m))

do=, m(e).[~ = ho_ar162162176 m)
def (= re(c). [c = data]m(v).o-u-tv.MS(m).

+ [c = h o _ c m d] m (m n ~) . ~ h o _ a c c . M S (m ~))

(~ m) (M S C (f , , f , , m) [BSp(fv, m))

(vm)(BS, (f~ ,m) [MS(m))

(v f .) (v fp) (P(f . , fv)[Q(Y,,))

Figure 4: A formal specification of the handover procedure. After [14].

The bisimulation found by the MWB has 823 tuples. Running on a Sun SPARC-
station 2 with 32Mb memory, it took approximately 61 CPU hours (user mode).
The ML heap size was at most 17430 kb (well below the physical memory size of
the machine). This appears to be rather extreme, and indeed the current proto-
type version of the MWB was not written with efficiency in focus. However, the
new version of MWB being developed (see Section 5) finds a bisimulation with
249 tuples (leaving out alpha-equivalents) in just over 6 minutes CPU time on
a SPARCstation 10, using 135 Mb heap space.

5 F u t u r e D e v e l o p m e n t
On the theoretical side, the weak equivalence ~D should be further investigated,
e.g. regarding its axiomatization and its relationship to the late and early weak
equivalences.

The prototype version of the MWB described here leaves room for many improve-
ments. One deficiency is that it only handles the monadic r-calculus, where only
one name can be sent or received atomically, while the polyadic ~r-calculus [11]
generalises communication to allow zero or more names. The polyadic ~r-calculus

438

MNB> agent CC(fa,fp,l,in,data,ho.cmd,ho-com,ch_rel) =
in(v). 'fa<data>. 'fa<v> .CC(fa,fp,l,in,data,ho-cmd,ho_com,ch_rel)

+ l (mne~). 'fa<ho_cmd>. 'fa<mne~>.fp(c). [c=ho-com] 'fa<ch_rel>.
fa(mold). 'l<mold>. CC(fp ,fa,l, in ,data,ho-cmd ,ho-com, ch_rel)

MNB> agent HC(I,m) = 'l<m>.l(m).HC(l,m)

MNB> agent MSC(fa,fp,m,in,data,ho-cmd,ho_com,ch.rel) =
(~i) (HC(I ,m) [CC(fa,fp ,i, in ,data,ho-cmd ,ho-com, ch-rel))

MWB> agent BSa(f,m,ho-acc,he-com,data,ho-cmd,ch_rel) =
f(c). ([c=dat a] f (v). 'm<dat a>. 're<v> .BSa(f ,m,ho_acc ,ho-com,dat a,ho-cmd, ch_rel]

+ [c=ho-cmd]f(v). 'm<ho-cmd>. 're<v> .f(c).
[c=ch_rel] 'f<m> .BSp(f ,m,ho-acc ,ho-com,dat a,ho_cmd ,ch_rel))

MNB> agent BSp (f ,m, ho-acc, ho-com, data ,ho-cmd, ch_rel) =
m(c). [c=ho-acc] 'f<ho_com> .BSa(f,m,ho-acc ,ho-com,data,ho_cmd,ch_rel)

MNB> agent MS(m,data,ho-cmd,out,ho.acc) =
re(c). ([c=data]m(v). 'out<v>.MS(m,data,ho_cmd,out ,ho-acc)

+ [c=ho_cmd] m (renew). 'mnew<ho.acc>. MS (mnew, dat a, ho-cmd, out, he.acc))

MWB> agent P(fa ,fp, in ,ho_acc ,ho-com,data,ho-cmd, ch-rel) =
("m) (MSC (fa, fp ,m, in,data, ho-cmd, ho-com, ch-rel)

i BSp (fp ,m,ho-acc ,ho-com,dat a ,ho-cmd, ch_rel))

MWB> agent Q (fa, out ,ho.acc ,ho-com,data,ho-cmd, ch_rel) =
('m)(BSa(fa ,m,ho_acc ,ho-com ,dat a,ho-cmd, ch_rel)

] MS (m,dat a ,ho-cmd, out ,homcc))

MWB> agent System(in,out,ho-acc,ho-com,data,ho-cmd,ch-rel) =
('fa) ('fp) (P (fa,fp, in ,ho_acc ,ho-com,dat a,ho-cmd, ch_rel)

i Q(fa,out ,ho~acc ,ho-com,data,ho_cmd,ch-rel))

Figure 5: The MWB code for the protocol specification.

also allows a notion of sorts, roughly analogous to the notion of types in func-
tional programming.

Another shortcoming of the current version of the MWB is of course its ineffi-
ciency. We are currently developing a new version of the MWB with efficiency as
one of its goals; e.g. using de Bruijn indices [1] to represent names (making alpha
conversion unnecessary), and using hash tables to record the possible transitions
of an agent instead of computing them each time they are needed. This version
will handle the polyadic ~r-calculus, and will include the sort inference algorithm
developed by Gay [7]. The model checking algorithm due to Dam [2] is also
being implemented. As hinted at in the previous section, this new version is
providing great gains in efficiency. In particular, with the new version we are
able to verify the full handover protocol as presented in [14] in less than 11 CPU
minutes.

On the longer term, we expect the tool to evolve with the needs of users: adding
more "utility" commands, e.g., for minimizing agents, finding distinguishing

439

def svec = in(v).sl(v) + T.Swc

s1(~) do=, in(~).s2(vi,v) + - ~ . S m c + T.o,t~l.sw~

S,(v~,,2) a~ i . (~) . s , (. , ,v2 , ,) + o--~,~.Sl(,,) + ~.o~t,~.o,t,~.swc

s~(v, ,~,v~) ~~ o - -~ , . s~ (~ ,~)

Figure 6: A formal specification of the service specification.

MNB> agent Spec(in,out) = in(v).Sl(v,in,out) + t.Spec(in,out)

NNB> a g e n t S l (v l , i n , o u t) =
i n (v) . S 2 (v l , v , i n , o u t) + ~ o u t < v l > . S p e c (i n , o u t) + t . ~ o u t < v l > . S p e c (i n , o u t)

MNB> agent S2(vl,v2,in,out) =
in(v).S3(vl,v2,v,in,out) + ~out<vl>.Sl(v2,in,out) +

t.~out<vl>.~out<v2>.Spec(in,out)

MNB> agent S3(vl,v2,v3,in,out) = ~out<vl>.S2(v2,v3,in,out)

MNB> weqd (i,o,acc,com,data,cmd,rel) Spec(i,o) System(i,o,acc,com,data,cmd,rel)
The two agents are related.
Relation size = 823. Do you want to see it? (y or n) n

Figure 7: The MWB code for the service specification.

formulae, etc. We would also like to see graphical interfaces based on Sangiorgi's
tree representation [16], Parrow's Interaction Diagrams [15], and Milner's 7r-nets
[~2].

We would also like to face the intractability of the problem of deciding equival-
ence for more general 7r-calculus agents (without finite control). The inequality
problem is semidecidable and indeed due to the "on-the-fly" implementation
of our algorithm we can provide such results - - but the equality problem requires
a tool running in some sort of semi-automatic mode, asking the human user for
assistance at different points, e.g. for choosing strategy and tactics to solve a
given problem.

A c k n o w l e d g e m e n t
We would like to thank Davide Sangiorgi for initiating the theoretical develop-
ments explored in this paper, and for providing us with numerous comments
and corrections. Joachim Parrow and Lars-s Fredlund also contributed useful
comments on early drafts of this paper, and Lars-s provided model code from
which the first author learned a great deal of Standard ML.

440

References
[1] N.G. de Bruijn. Lambda Calculus Notation with Nameless Dummies, a Tool for

Automatic Formula Manipulation, with Application to the Church-Rosser The-
orem. Indagationes Mathematicae, 34:381-392. North-Holland, 1972.

[2] M. Dam. Model Checking Mobile Processes. In Proceedings of CONCUR'93. Lec-
ture Notes in Computer Science 715. E. Best (ed). pp22-36. Springer-Verlag, 1993.

[3] J-C. Fernandez. Ald~baran: A tool for verification of communicating processes.
Technical Report RTC 14, IMAG, Grenoble, 1989.

[4] J-C. Fernandez and L. Mounier. "On-the-fly" verification of behavioural equival-
ences and preorders. In Proceedings of CAV'91. 1991.

[5] L.-s Fredlund and F. Orava. Modelling Dynamic Communication Structures in
LOTOS. In Proceedings of FORTE'91,K.R. Parker and G.A. Rose (eds). pp185-
200. North-Holland, 1992.

[6] H. Garavel and J. Sifakis. Compilation and verification of LOTOS specifications.
In Proceedings of Protocol Specification, Testing, and Verification X, 1990.

[7] S.J. Gay. A Sort InferenceAlgorithm for the Polyadic r-Calculus. In Proceedings
of 20th ACM Symp. on Principles of Programming Languages, ACM Press, 1993.

[8] M. Hennessy and H. Lin. Symbolic bisimulations. Research Report TR1/92. Uni-
versity of Sussex, 1992.

[9] E. Madelaine. Verification tools from the CONCUR project. Bulletin o] the
European Association of Theoretical Computer Science 47, pp110-126, June 1992.

[10] R. Mflner. C o m m u n i c a t i o n and Concur rency . Prentice-Hall, 1989.

[11] R. Milner. The polyadic r-calculus: a tutorial. Research Report ECS-LFCS-91-
180. University of Edinburgh, October 1991.

[12] R. Milner. Action Structures for the r-Calculus. Research Report ECS-LFCS-93-
264. University of Edinburgh, May 1993.

[13] R. Milner, J. Parrow and D. Walker. A calculus of mobile processes (Parts I and
II). Journal o] Information and Computation, 100:1-77, September 1992.

[14] F. Orava and J{ Parrow. An algebraic verification of a mobile network. Formal
Aspects of Computing, 4:497-543, 1992.

[15] J. Parrow. Interaction Diagrams. Swedish Institute of Computer Science Research
Report R93:06, 1993. (To appear in Proceedings of REX'93, Springer-Verlag.)

[16] D. Sangiorgi. A theory of bisimulation for the 7r-calculus. In Proceedings of
CONCUR'93. Lecture Notes in Computer Science 715. E. Best (ed). pp127-142.
Springer-Verlag, 1993.

[17] P.H.J. van Eijk, C.A. Vissers and M. Diaz (eds). The Formal Descr ip t ion
Technique LOTOS. North-Holland, 1989.

[18] B. Victor. Forthcoming licentiate thesis, Uppsala University, 1994.

