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Abs t rac t  

In this paper we describe the first prototype version of the Mobility Work- 
bench (MWB), an automated tool for manipulating and analyzing mobile 
concurrent systems (those with evolving connectivity structures) described 
in the r-calculus. The main feature of this version of the MWB is checking 
open bisimulation equivalences. We illustrate the MWB with an example 
automated analysis of a handover protocol for a mobile telephone system. 

Dedicated to Ellen on the occasion of her birth. 

1 I n t r o d u c t i o n  
Process algebra is the general study of distributed concurrent systems in an algeb- 
raic framework. There have been many successful models formulated within this 
framework, one representative example being Milner's CCS [10]. Each approach 
has added to more than a decade of fruitful discoveries on the mathematical  
foundations of concurrent processes, so that now it is the case that  these theor- 
ies can be applied in practice, perhaps using automated tools of which there are 
many; for a useful survey see [9]. Certainly, as systems become more complex, it 
becomes necessary to invoke the use of automated tools to aid in their anMyses. 
These tools however exploit the fact that  properties of finite-state systems are 
decidable, and hence they cannot be used except for this simple class of systems. 

A shortcoming of these process algebras, which was perhaps necessary for the de- 
velopment of such a complex field, is that they enforce restrictions on the nature 
of the systems which they a t tempt  to model. One such restriction is the inability 
to model evolving communication structures. However this particular shortcom- 
ing is now being tackled within the CCS framework with the 7r-calculus [13], an 
extension of CCS which allows for the modelling of mobility within systems, the 
ability for systems to dynamically alter their communication structures. The 
foremost problem with such an extension is the greatly increased complexity 
of the analysis of systems. One may say that our understanding of finite-state 
systems is rather complete now; however, with extra constructs within the al- 
gebra it becomes nontrivial to even define, let alone to then decide, semantic 
equivalences between systems. 

*Research supported by ESPRIT BRA Grants 6454: CONFER and 7166: CONCUR2. 
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In this paper we describe the MWB (Mobility Workbench), a tool for manipu- 
lating and analyzing mobile concurrent systems described in the r-calculus. In 
the current version, the basic functionality is to decide the open bisimulation 
equivalences of Sangiorgi [16], for agents in the monadic r-calculus with the 
original positive match operator. This is decidable for r-calculus agents with 
finite con t ro l -  analogous to CCS finite-state agents - -  which do not admit  
parallel composition within recursively defined agents. There are various other 
analysis routines implemented, including commands for finding deadlocks and 
for interactively simulating agents. 

The outline of the paper is as follows. We start  in Section 2 with a brief presenta- 
tion of the r-calculus, its syntax and semantic definition, as well as the definition 
of equality of agents. We also briefly describe aspects of the implementation of 
equality checking. We then present the MWB in Section 3, demonstrating its 
main utilities on simple examples. In Section 4 we describe an extended realistic 
case study, the automated verification of a part of a mobile telephone protocol. 
Finally in Section 5 we describe future development plans for the MWB. 

2 Mobi le  Processes:  T he  rr-calculus 
In this section we give a brief presentation of the syntax and semantics of the 
r-calculus, as well as a description of the open bisimulation equivalences and 
efficient characterisations for these which will be used in the implementation. 
For fuller treatments of these topics we refer to [13, 16]. 

There are two entities in the r-calculus: names (ranged over by x,y,z,w,v,u), 
and processes (ranged over by P,Q,R). The syntax of the r-calculus is given by 
the following BNF equation 

where A ranges over some set of variables with associated nonnegative arities 
k, and a represents an input x(y), a free output  Ey, a bound output  E(y), or 
a silent event r.  Briefly, 0 represents an inactive process; each process variable 
d ( x l , . . . ,  xk) has a corresponding definitional body P; matching [x = y]P is 
read as ~'ifx = y then P"; sum P1 + P2 offers the choice of P1 or/)2;  composi- 
tion P1 ]P2 places the two processes P1 and P2 side-by-side in parallel execution; 
restriction (t,,x)P hides the name x from the environment of P;  and action pre- 
fixing a.P performs the relevant input, output or silent transition, thus evolving 
into P.  (Bound output  ~(y).P is in fact simply shorthand for the expression 

The definitions of free and bound names are standard (x(y).P and (vy)P bind 
y), and we shall write fn(P) and fn(o~) for the free names of P and a; bn(P) and 
bn(oe) for the bound names of P and a; and n(P) and n(oe) for the names of P and 
a. The definitions for substitution and alpha conversion are equally standard, 
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pre : match : P ~ P '  
a.P ---* P [x = x]P --~ P' 

l d e :  P{Y/X} `~' P' (A(~) d~ p) 
A(~)) ~, P '  

p --~ p'  
sum : a p~  P + Q - . - ,  

: -  ( ) P P' bn(a) A.fn(Q) = I~ corn : P ~u =(~) Q' 
par : PIQ _2_. P'IQ PIQ --~ P'IQ'{y/z} 

open 
�9 (vy)P ~ P' 

r e s .  - -  ~ -  
(yx )P  ~ (~,x)P' 

close : 
PIQ - -  ( y ~ v )(P'IQ'~ 

\ ]  

Figure 1: Semantic derivation rules. 

with renaming possible to avoid name capture. We shall always identify processes 
or transitions which differ only on bound names. 

In Figure 1 we present the operational rules for the ~r-calculus. We have omit-  
ted symmetr ic  rules for sum, par, corn and close. From this definition of the 
single-step transition system we can define the weak transition system which 
abstracts  from silent transitions in the usual fashion: ~ represents ( T ) .  and 

represents ~ when c~ -- r and ~ )=====~ when a r r .  

2 . 1  O p e n  B i s i m u l a t i o n  
There are several ways in which one can define bisimilarity of r-calculus terms, 
varying on the at t i tude taken towards name instantiation. Notable among these 
are the early and late bisimulations of [13]. We choose to concentrate on the 
elegant notion of open bisimilarity of [16] - -  which is finer than the previous 
equivalences - -  for several reasons. Firstly, the strong version is a congruence. 
In particular, it is preserved by input prefix, unlike either of early or late equival- 
ence. I ts  natural i ty  is attested to by a simple axiomatisation.  Most importantly,  
it has an efficient eharacterisation (described below) which we exploit in the 
implementat ion.  

D e f i n i t i o n  2.1 A binary relation Tt between process terms is a strong open 
bisimulation if  whenever (P, Q) E Tt then for each substitution cr from names to 
names, 
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�9 ifP~r " , P ' t h e n Q a  6 Q, f o r someQ,  wi th (P ' ,Q ' )ET~;  

�9 if Qcr ~, Q' then P~ ~ P' for some P' with (P', Q') ETr 

P and Q are strongly open bisimilar, written P ..~ Q, if (P, Q) E Td for some 
strong open bisimulation ~ .  

A 

I f  we replace ~ by ~ in the consequents of the two clauses in the above 
definition, then P and Q are (weak) open bisimilar, written P ~.. Q. 

This definition is actually only adequate for the calculus without restriction. The 
inclusion of restriction requires a treatment of distinctions [13], symmetric and 
irreflexive binary relations over names stipulating when names are not allowed 
to be equated by instantiation. We can however define open bisimilarity with 
respect to distinctions; these will be referred to by "~z) and ~D for the strong 
and weak relations, respectively. For example, [x = y]z.O ,,~{(=,y)} 0 though these 
two terms are not equal by the original definition of ,~. We do not go into 
these definitions in detail here, leaving the reader instead to consult [13, 16], but 
we note that  the open bisimilarity relations correspond to the cases when the 
distinctions D are empty. 

2 . 2  A n  E f f i c i e n t  C h a r a c t e r i s a t i o n  o f  O p e n  B i s i m u l a t i o n  
The definition of open bisimilarity (as with those for early and late equival- 
ence) involves universal quantifications over substitutions, which make a direct 
implementation infeasible. However, there is an alternate characterisation for 
open bisimilarity based on the transition system presented in Figure 2 which is 

similar to the approach of [8]. The transitions here are of the form P U,,~ p, ,  
where M intuitively represents the least condition (set of name identities) un- 

der which action a can occur. Thus for example we have [x = y]~.P *=v,~ --..+ p .  

These composite transitions (M, ~) are ranged over by #, and we write n(M, (~) 
for n(M) U n(~) and similarly for bn(M, ~). We shall always assume that  the 
condition x = x is ignored in the rules match, corn and close, so that  for example 
[x = x]P ~ P' whenever P ~ P ' .  

. We also define a weak transition system: ~ r e p r e s e n t s  (N.~r .. L.j.a (K~r 
. . .  for n,  m _> 0 ,  w h e r e  M = L A A # a n d  . . .  

for n >_ 0, where M = /~ i  Ni if ~ = r ,  where in either case no name bound in 
occurs in the accumulated condition M. 

In the following definition, we denote by aM the substitution on names induced 
by the equivalence classes associated with the equivalence relation corresponding 
to M; we select one representative of each class and map the other members of 
the class to it. We also use ~ to denote logical implication, and =- to denote 
equality modulo alpha conversion. 
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m a t c h .  p r e .  true,a 
c~.P ",~ P 

,de: P' ( ) A(~) ~ P' A(k) d~U P 

s>' 
par. PIQ "~ P'IQ 

o p e n .  p M ~  p, ( y ~ n ( M )  U{x}) 
(vy)P Ufi~(U) p, 

r e s :  p U~ p, (x ~ n(#)) 
(~,x)P ~ (~,x)P' 

P M'~ P' bn(a)) 
[x = y]P M^2~ y'~' P' (x, y 

p.~U p, 
sum : p +Qs p' 

com : 
P', Q 

p[Q M^NA~ . . . . .  P' [Q' {y/ z } 

close p M,~U) p ,  Q N,y~(u) Q, 
: MANAQ~ . . . .  v tV ~/p,,~,t~ 

PIQ t y) l~ 1r 

Figure 2: Alternate transition system. 

Definition 2.2 A binary relation 7r between process terms is a strong ~-bisimulation 
if whenever (P, Q) E T~ then 

�9 i f P  M-2* ~ P'  then Q ~.~ Q' for some N, fl and Q' with M ~ N, o~r M -= fl(rM 
and (P'~r~, QqrM) E T~; 

�9 i fQ M-:*~ Q' then P ~ P'  for some N, /3  and P' with M =:~ N, SaM =-- flaM 
and ( P'  crM , Q' aM ) E T~. 

P and Q are strongly x-bisimilar, written P x Q, if (P, Q) E 7~ for some strong 
~-bisimulation TO. 

N,~ 
I f  we replace ~,~ by ~a in the above definition, then P and Q are (weak) ~- 
bisimilar, written P ~ Q .  

Again this definition is valid only for the subcalculus without restriction, but 
again we can define -.~-bisimilarity with respect to distinctions, and again we 
leave the details to [16]. 

The following theorems from [16] and [18] respectively, are what we are partic- 
ularly interested in. 

T h e o r e m  2.3 (Sangiorgi)  --q9 coincides with ~D 

T h e o r e m  2.4 (Vic tor )  ~D coincides with ~D. 
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2 . 3  A l g o r i t h m i c  A s p e c t s  
The usual technique for deciding bisimilarity of (finite-state) systems is to con- 
struct the state space of the two systems in question and then perform a parti t ion 
refinement algorithm to try to distinguish the two start states. However, this 
technique is inapplicable in the case of the r-calculus due to the problems of 
name instantiation. 

For example, the two terms 

P(x) def = x(y).yy.P(y) ( )) Q(x) = x(y). yy.Q(y) + [x = y]yy.Q(y 

are clearly open bisimilar. In contrast with the late and early equivalences, with 
~-equivalence it is enough to instantiate the bound name of an input with a 
single fresh name (a name x is fresh with respect to a transition P ~ Q if 
x f[ fn(Q) - bn(p)). But then P(x) has a minimal state space consisting of 
only two states, namely itself and the intermediate state ~x.P(x) attained by 
instantiating the y by x, thus performing the input action x(x). Regardless of 
how the state space of Q(x) is generated, it cannot be equated to the above 
state space of P(x) ,  as its first transition cannot instantiate y to x, due to the 
appearance of x in the ensuing process. To match the two, the state space of 
P(x) must be extended to match that  of Q(x). 

Thus the implementation of the bisimulation algorithm is by necessity an "on- 
the-fly" algorithm [4]: the state spaces of the two systems in question are gen- 
erated together during the construction of the candidate bisimulation relation 
which equates them. 

Beyond this, the algorithm implemented in the MWB follows Definition 2.2 
(both its strong and weak versions) closely: given two agents P and Q and a 
relation 7~, check if (P, Q) is already in the relation. If so, return the relation un- 
changed. Otherwise, for each transition of P ,  find a (strong or weak) transition 
of Q such that  the conditions match appropriately and the actions are equival- 
ent under the substitution g induced by the first, larger, condition. Make the 
transitions instantiate the same bound name (alpha-converting the derivatives), 
and assuming that  P and Q are equivalent (by adding (P, Q) to the relation), 
apply the substitution c~ to the derivatives and recurse over them using the ex- 
tended relation. This either fails, which causes the current recursion to try the 
next transition of Q (or to fail if no such transition exists), or returns a relation 
relating the two derivatives, which is used in subsequent recursive calls. Finally, 
when all transitions of P have been matched by Q, match each transition of Q 
with a (strong or weak) transition of P in the same way, returning the resulting 
relation. (This is the approach in the absence of distinctions; in the more general 
case, distinctions are handled in a suitable fashion.) 
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3 The Mobility Workbench 
The basic functionality of the MWB is to decide (strong and weak) open bisim- 
ilarity. Amongst other things, it can also be used to find deadlocks and for 
interactively simulating agents. 

In Figure 3 we have a sample session which demonstrates some simple usage. 
Note that  we render v as ~ and ~y as 'x<y> when typing in ASCII format. First 
we define an agent Bul l  implementing a one-place buffer, then another, Bur2, 
implementing a two-place buffer by composing two instances of Bull ,  and finally 
three agents, Buf20, Bur21 and Buf22, together implementing a two-place buffer 
without parallel composition. 

We proceed with this example by comparing the two implementations for weak 
equality. The MWB responds by saying that  they are equivalent and that it 
found a bisimulation relation with 18 tuples, and asks us if we want to inspect 
it. We respond positively and the MWB prints out the relation as a list of pairs 
of agents with associated distinction sets. 

We then simulate the behaviour of the agent Buf2 ( i ,  o). The MWB presents the 
possible transitions, along with their least necessary conditions (if not trivial), 
and prompts the user to select one of them. After having a single choice on 
the first two steps, we then get a choice of three transitions; the first which is 
possible only if the names i and o are the same; the second which uses a new 
name "v0 since all other known names are free and thus can't be reused; and 
the third, which simply outputs the value we read. 

Next, we change the definition of Bur22 to introduce a possible deadlock and 
again check for weak equivalence between B u f 2 ( i , o )  and Buf20 ( i , o ) .  This 
time we find that  they are not equivalent, and proceed by looking for deadlocks 
in Buf20 ( i , o ) ;  as the MWB finds deadlocked agents, it tells us the agent and 
the transition trace that leads to the deadlocked agent. 

Finally we try equating B u f 2 ( i , o )  and Buf20 ( i , o )  under the proviso that i 
is different from all other free names of the two agents (namely o). Under this 
distinction, the deadlocks don't appear, and the MWB reports that  they are 
again equivalent. 

4 An Extended Example: Mobile Telephones 
As a case study, we have specified and verified the core of the handover protocol 
intended to be used in the GSM Public Land Mobile Network (PLMN) proposed 
by the European Telecommunication Standards Institute (ETSI). The formal 
specification of the protocol, and its service specification, are due to Orava and 
earrow [14], who also verified the protocol algebraically. Fredlund and Orava [5] 
later verified the protocol automatically by specifying the protocol in LOTOS 
[17], which was translated to labelled transition systems using the Cmsar tool [6], 
which were in turn minimized using the Ald~baran tool [3], and finally compared 
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The M o b i l i t y  W o r k b e n c h  
( P r e l i m i n a r y  v e r s i o n  0 . 8 6 ,  b u i l t  Tue O c t  12 1 5 : 2 7 : 5 5  MET 1 9 9 3 )  

MWB> a g e n t  B u f l ( i , o )  = i(x).'o<x>.Bufl(i,o) 

MWB> agent Buf2(i,o) = ('m)(Bufl(i,m) ] Bufl(m,o)) 

NWB> agent Buf20(i,o) = i(x).Buf21(i,o,x) 

MWB> agent Buf21(i,o,x) = i(y).Buf22(i,o,x,y) + 'o<x>.Buf20(i,o) 

MWB> agent Buf22(i,o,x,y) = 'o<x>.Buf21(i,o,y) 

MWB> weq B u f 2 ( i , o )  B u f 2 0 ( i , o )  
The two  a g e n t s  a r e  r e l a t e d .  
Relation size = 18. Do you want to see it? (y or n) y 

R = < Buf2(i,o), Buf20(i,o) > {} 

< ('y)(Bufl(i,y) [ Bufl(y,o)), Buf20(i,o) > {} 

< ('y)('y<m>.Bufl(i,y) [ 'o<x>.Bufl(y,o)), Buf22(i,o,x,m) > {} 

MWB> s t e p  B u f 2 ( i , o )  
O: - -  i ( x )  - - >  ( ' m ) ( ' m < x > . B u f l ( i , m )  ] B u f l ( m , o ) )  

Step> 0 
O: -- t --> ('m)(Bufl(i,m) [ 'o<x>.Bufl(m,o)) 

Step> 0 
O: - -  [ i = o ] , t  - - >  ( ' m ) ( ' m < x > . B u f l ( i , m )  [ B u f l ( m , o ) )  
1 :  - -  i ( ' v O )  - - >  ( ' m ) ( ' m < ' v O > . B u f l ( i , m )  [ ' o < x > . B u f l ( m , o ) )  
2 :  - -  ' o < x >  - - >  ( ' m ) ( B u f l ( i , m )  [ B u f l ( m , o ) )  

Step> 1 / 

O: -- ~o<x> --> ('m)(~m<'vO>.Bufl(i,m) I Buf1(m,o)) 

Step> quit 

MWB> agent Buf22(i,o,x,y) = ~o<x>.Buf21(i,o,y) + [i=o]t.O 

MWB> weq 8uf2(i,o) Buf20(i,o) 

The two agents are NOT related. 

MWB> deadlocks Buf20(i,o) 

Deadlock found in O, reachable by 3 transitions: 

-- i(x) -- i(y) -- [i=o],t --> 

Deadlock found in O, reachable by 5 transitions: 

- -  i ( x )  - -  i ( y )  - -  ' o < x >  - -  i ( ' v 0 )  - -  [ i = o ] , t  - - >  
D e a d l o c k  f o u n d  i n  0 ,  r e a c h a b l e  b y  7 t r a n s i t i o n s :  

-- i(x) -- i(y) -- 'o<x> -- i(~vO) -- 'o<y> -- i(y) -- [i=o],t --> 

MWB> weqd (i) Buf2(i,o) Buf20(i,o) 

The two agents are related. 

Relation size = 8. Do you want to see it? (y or n) y 

R = < Buf2(i,o), Buf20(i,o) > {i#o} 

< (*y)(Bufl(i,y) i Bufl(y,o)), Buf20(i,o) > {i#o} 
< (~y)(~y<m>.Bufl(i,y) [ 'o<x>.Bufl(y,o)), Buf22(i,o,x,m) > {i#o} 

o , ,  

Figure 3: A simple sample session with the MWB. 
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using Ald~baran. The following informal presentation of the protocol is based 
on the presentation in [5]. 

The PLMN is a cellular system which can be seen as consisting of Mobile Sta- 
tions (MSs), Base Stations (BSs), and Mobile Switching Centres (MSCs). The 
MS, mounted in e.g. a car, provides service to an end user. The BS manages the 
interface between the MS and a stationary network, controlling all radio commu- 
nication within a geographical area (a cell). All communication with the MS in 
a cell is routed through the BS responsible for the cell. The MSC manages a set 
of BSs, and communicates with them and with other MSCs using a stationary 
network. 

When a MS moves across a cell boundary, the handover procedure changes the 
communication partner of the MS from the BS of the old cell to the BS of the 
new cell, ensuring that  the MS is constantly in contact with the MSC. The MSC 
initiates the handover by transmitting a handover command message to the MS 
via the old BS. The handover command message contains parameters enabling 
the MS to locate the new BS. When transmitting this message the MSC sus- 
pends transmission of all messages except for messages related to the handover 
procedure. When the MS receives the handover command message, it discon- 
nects the old radio links and initiates the new radio links. To establish these 
connections the MS sends handover access messages to the new BS, in order to 
synchronize with the new BS. When the connections are successfully established, 
the BS sends a handover complete message to the MSC via the new BS. When 
this message has been received, the network resumes normal operations and re- 
leases the old radio links, which are now free and can be allocated to another 
MS. 

In Figure 4 we present a r-calculus specification of the protocol. This is drawn 
from [14], but in this presentation we omit the failure handling aspects of the 
protocol. In Figure 5 we present the MWB code for this specification, which 
differs from Figure 4 in that the argument lists of agent identifier definitions 
must contain all free names which appear in the agent. 

Correctness of this specification would come from showing that  it matched some 
(ideally simple) service specification which would clearly define the desired be- 
haviour of the system. In Figures 6 and 7, we present the service specification 
of the handover protocol and its rendering into MWB code, respectively. 

When checking the protocol specification (System) against the more abstract 
service specification (Spec), we must express the fact that  the parameters in, 
out ,  ho_acc, ho_com, data ,  ho_cmd and ch..vel are constants, i.e. they are 
distinct from all other free names. This is done by using the weqd (weak open 
bisimulation with distinctions) command of the MWB, in the following way: 

weqd (i, o, acc, corn, data, cmd,rel) 

Spec(i,o) System(i, o, acc, com, data, cmd, re1) 
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c c ( f o ,  f,,, 0 

He(l, m) 

MSC(.f~, fp, m) 

BSa(f, m) 

BS~(Lm) 

MS(m) 

def 
e ( . f , , ,  y, ,)  = 

de'f Q(ya) = 

d e f  System = 

do__, in(v).y, data.yov.cc(fo, fp, 0 
+ Z(m,~162 . . . .  /p(c). 

[c = ho_com]-]ach_vel.fa(mo, d).lmo, d.CV(fp, fa, l) 
~~ im.l(m).gc(Z,m) 

---- (vl He(l,  m) ] CC(f~, h ,  1 
def ( = f(c). [c = data]f(v).~data.~v.BSa(f,m) 

+ [c = ho_cmd]f(v).m----ho_cmd.~v. 
f(c).[c = ch_vel]fm.BSp(f, m)) 

do=, m(e).[~ = ho_ar162162176 m) 
def ( = re(c). [c = data]m(v).o-u-tv.MS(m). 

+ [c = h o _ c m d ] m ( m n ~ ) . ~ h o _ a c c . M S ( m ~ ) )  

( ~ m ) ( M S C ( f , , f , , m )  [ BSp(fv, m)) 

(vm)(BS, ( f~ ,m)  [ MS(m))  

(v f . ) (v fp) (P( f . ,  fv)[ Q(Y,,)) 

Figure 4: A formal specification of the handover procedure. After [14]. 

The bisimulation found by the MWB has 823 tuples. Running on a Sun SPARC- 
station 2 with 32Mb memory, it took approximately 61 CPU hours (user mode). 
The ML heap size was at most 17430 kb (well below the physical memory size of 
the machine). This appears to be rather extreme, and indeed the current proto- 
type version of the MWB was not written with efficiency in focus. However, the 
new version of MWB being developed (see Section 5) finds a bisimulation with 
249 tuples (leaving out alpha-equivalents) in just over 6 minutes CPU time on 
a SPARCstation 10, using 135 Mb heap space. 

5 F u t u r e  D e v e l o p m e n t  
On the theoretical side, the weak equivalence ~D should be further investigated, 
e.g. regarding its axiomatization and its relationship to the late and early weak 
equivalences. 

The prototype version of the MWB described here leaves room for many improve- 
ments. One deficiency is that it only handles the monadic r-calculus, where only 
one name can be sent or received atomically, while the polyadic ~r-calculus [11] 
generalises communication to allow zero or more names. The polyadic ~r-calculus 
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MNB> agent CC(fa,fp,l,in,data,ho.cmd,ho-com,ch_rel) = 
in(v). 'fa<data>. 'fa<v> .CC(fa,fp,l,in,data,ho-cmd,ho_com,ch_rel) 

+ l (mne~). 'fa<ho_cmd>. 'fa<mne~>.fp(c). [c=ho-com] 'fa<ch_rel>. 
fa(mold). 'l<mold>. CC(fp ,fa,l, in ,data,ho-cmd ,ho-com, ch_rel) 

MNB> agent HC(I,m) = 'l<m>.l(m).HC(l,m) 

MNB> agent MSC(fa,fp,m,in,data,ho-cmd,ho_com,ch.rel) = 
(~i) (HC(I ,m) [ CC(fa,fp ,i, in ,data,ho-cmd ,ho-com, ch-rel) ) 

MWB> agent BSa(f,m,ho-acc,he-com,data,ho-cmd,ch_rel) = 
f(c). ( [c=dat a] f (v). 'm<dat a>. 're<v> .BSa(f ,m,ho_acc ,ho-com,dat a,ho-cmd, ch_rel] 

+ [c=ho-cmd]f(v). 'm<ho-cmd>. 're<v> .f(c). 
[c=ch_rel] 'f<m> .BSp(f ,m,ho-acc ,ho-com,dat a,ho_cmd ,ch_rel) ) 

MNB> agent BSp (f ,m, ho-acc, ho-com, data ,ho-cmd, ch_rel) = 
m(c). [c=ho-acc] 'f<ho_com> .BSa(f,m,ho-acc ,ho-com,data,ho_cmd,ch_rel) 

MNB> agent MS(m,data,ho-cmd,out,ho.acc) = 
re(c). ( [c=data]m(v). 'out<v>.MS(m,data,ho_cmd,out ,ho-acc) 

+ [c=ho_cmd] m (renew). 'mnew<ho.acc>. MS (mnew, dat a, ho-cmd, out, he.acc ) ) 

MWB> agent P(fa ,fp, in ,ho_acc ,ho-com,data,ho-cmd, ch-rel) = 
("m) ( MSC (fa, fp ,m, in,data, ho-cmd, ho-com, ch-rel) 

i BSp (fp ,m,ho-acc ,ho-com,dat a ,ho-cmd, ch_rel) ) 

MWB> agent Q (fa, out ,ho.acc ,ho-com,data,ho-cmd, ch_rel) = 
('m)( BSa(fa ,m,ho_acc ,ho-com ,dat a,ho-cmd, ch_rel) 

] MS (m,dat a ,ho-cmd, out ,homcc) ) 

MWB> agent System(in,out,ho-acc,ho-com,data,ho-cmd,ch-rel) = 
('fa) ('fp) ( P (fa,fp, in ,ho_acc ,ho-com,dat a,ho-cmd, ch_rel) 

i Q(fa,out ,ho~acc ,ho-com,data,ho_cmd,ch-rel) ) 

Figure 5: The MWB code for the protocol specification. 

also allows a notion of sorts, roughly analogous to the notion of types in func- 
tional programming. 

Another shortcoming of the current version of the MWB is of course its ineffi- 
ciency. We are currently developing a new version of the MWB with efficiency as 
one of its goals; e.g. using de Bruijn indices [1] to represent names (making alpha 
conversion unnecessary), and using hash tables to record the possible transitions 
of an agent instead of computing them each time they are needed. This version 
will handle the polyadic ~r-calculus, and will include the sort inference algorithm 
developed by Gay [7]. The model checking algorithm due to Dam [2] is also 
being implemented. As hinted at in the previous section, this new version is 
providing great gains in efficiency. In particular, with the new version we are 
able to verify the full handover protocol as presented in [14] in less than 11 CPU 
minutes. 

On the longer term, we expect the tool to evolve with the needs of users: adding 
more "utility" commands, e.g., for minimizing agents, finding distinguishing 
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def svec = in(v).sl(v) + T.Swc 

s1(~) do=, in(~).s2(vi,v) + - ~ . S m c  + T.o,t~l.sw~ 

S,(v~,,2) a~ i . (~) . s , ( . , ,v2 , , )  + o--~,~.Sl(,,) + ~.o~t,~.o,t,~.swc 

s~(v, ,~,v~) ~~ o - -~ , . s~ (~ ,~ )  

Figure 6: A formal specification of the service specification. 

MNB> agent Spec(in,out) = in(v).Sl(v,in,out) + t.Spec(in,out) 

NNB> a g e n t  S l ( v l , i n , o u t )  = 
i n ( v ) . S 2 ( v l , v , i n , o u t )  + ~ o u t < v l > . S p e c ( i n , o u t )  + t . ~ o u t < v l > . S p e c ( i n , o u t )  

MNB> agent S2(vl,v2,in,out) = 
in(v).S3(vl,v2,v,in,out) + ~out<vl>.Sl(v2,in,out) + 

t.~out<vl>.~out<v2>.Spec(in,out) 

MNB> agent S3(vl,v2,v3,in,out) = ~out<vl>.S2(v2,v3,in,out) 

MNB> weqd (i,o,acc,com,data,cmd,rel) Spec(i,o) System(i,o,acc,com,data,cmd,rel) 
The two agents are related. 
Relation size = 823. Do you want to see it? (y or n) n 

Figure 7: The MWB code for the service specification. 

formulae, etc. We would also like to see graphical interfaces based on Sangiorgi's 
tree representation [16], Parrow's Interaction Diagrams [15], and Milner's 7r-nets 
[~2]. 

We would also like to face the intractability of the problem of deciding equival- 
ence for more general 7r-calculus agents (without finite control). The inequality 
problem is semidecidable and indeed due to the "on-the-fly" implementation 
of our algorithm we can provide such results - -  but the equality problem requires 
a tool running in some sort of semi-automatic mode, asking the human user for 
assistance at different points, e.g. for choosing strategy and tactics to solve a 
given problem. 
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