
A n o t h e r L o o k at LTL M o d e l C h e c k i n g *

E. Clarke l, O. G r u m b e r g 2, K. Hamaguch i 1

1. Carnegie Mellon, Pi t tsburgh
2. The Technion, Haifa

A b s t r a c t . We show how LTL model checking can be reduced to CTL model
checking with fairness constraints. Using this reduction, we also describe how
to construct a symbolic LTL model checker tha t appears to be quite efficient in
practice. In particular, we show how the SMV model checking system developed by
McMillan [16] can be extended to permit LTL specifications. The results tha t we
have obtained are quite surprising. For the examples we considered, the LTL model
checker required at most twice as much time and space as the CTL model checker.
Although additional examples still need to be tried, it appears tha t efficient LTL
model checking is possible when the specifications are not excessively complicated.
K e y w o r d s : automatic verification, temporal logic, model checking, binary deci-
sion diagrams

1 Introduct ion

Over the past thirteen years there has been considerable research on efficient model checking
algorithms for branching-time temporal logics like CTL (See [5] for a survey). Verification tools
based on these algorithms have discovered non-trivial design errors in sequential circuits and
protocols [10] and are now beginning to be used in industry. There has been relatively little
research, however, on efficient model checking algorithms for linear-temporal logic (LTL), and
practical verification tools are virtually non-existent. In fact, the question of whether it is possible
to develop such tools has been argued for many years. Sistla and Clarke [17] showed in 1982
that the model checking problem for LTL was, in general, PSPACE complete. Later, Pnueli and
Lichtenstein [14] gave an LTL model checking algorithm tha t was exponential in the size of the
formula, but linear in the size of the model. Based on this result, they argued that the high
complexity of LTL model checking might still be acceptable for short formulas. Vardi and Wolper
[18] obtained a different algorithm based on w-automata with roughly the same complexity.
Unfortunately, the LTL algorithms appeared significantly more difficult to implement. Because
of this, very few LTL model checkers were actually constructed. To the best of our knowledge, no
experiments were made to determine how the CTL and LTL model checking algorithms actually
compared in practice.

In this paper we show how LTL model checking can be reduced to CTL model checking
with fairness constraints. We also describe how to construct a symbolic LTL model checker tha t
appears to be quite efficient in practice. In particular, we show how the SMV model checking
system developed by McMillan as part of his Ph.D. thesis [16] can be extended to permit LTL
specifications. We have developed a translator T that takes an LTL formula f and constructs an
SMV program T(f) to build the tableau for f . The tableau construction that we use is similar
to the one described in [4]. To check that f holds for some SMV program M, we combine the

* This research was sponsored in part by the Avionics Laboratory, Wright Research and De-
velopment Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson
AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597 and in
part by the National Science foundation under Grant No. CCR-9217549 and in part by the
Semiconductor Research Corporation under Contract 92-DJ-294 and in part by the Wright
Laboratory, Aeronautical Systems Center Air Force Materiel Command, USAF, and the Ad-
vanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330. The third
author was supported by a Kurata Research Grant and a Kyoto University Foundation Grant.
The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied of the U.S.
government.

416

text of T = T(-,f) with the text of M to obtain a new SMV program P = Prod(T, M). We
add CTL fairness constraints to P in order to make sure tha t eventualities of the form a U b are
actually fulfilled (i.e. to eliminate those paths along which a U b and a hold continuously, but
b never holds). By checking an appropriate CTL formula on P we can find the set V! of all of
those states s such that f holds along every path tha t begins at s. The projection of V! to the
state variables of M gives the set of states where the formula f holds.

Note tha t our approach makes it unnecessary to modify SMV (or even understand how
SMV is actually implemented). We have evaluated the approach on several standard SMV
programs (including Martin's distributed mutual exclusion circuit [15] and the synchronous
arbiter described in McMillan's thesis [16]). In order to make sure tha t the experiments were
unbiased, we deliberately chose specifications which could be expressed in both CTL and LTL.
The results tha t we obtained were quite surprising. For the examples we considered, the LTL
model checker required at most twice as much time and space as the CTL model checker.
Although additional examples still need to be tried, it appears tha t efficient LTL model checking
is possible when the specifications are not excessively complicated. In the full paper we will
describe how the same basic approach can be used to extend SMV for testing inclusion between
various types of w-automata.

2 Binary Decision Diagrams

Ordered binary decision diagrams (OBDDs) are a canonical form representation for boolean
formulas [3]. They' are often substantially more compact than traditional normal forms such
as conjunctive normal form or disjunctive normal form, and they can be manipulated very
efficiently. An OBDD is similar to a binary decision tree, but has the following properties.

- Its structure is a directed acyclic graph rather than a tree.
- A total order is placed on the occurrence of variables as the graph is traversed from root to

leaf.
- No two subgraphs in the graph represents the same function.

Bryant showed that given a variable ordering, the OBDD representation for a boolean formula
is unique.

We can implement various important logical operations using OBDDs. The function that
restricts some argument xi of the boolean function f to a constant value b, denoted by f]=,--b,
can be performed in time which is linear in the size of the original binary decision diagram
[3]. The restriction algorithm allows us to compute the OBDD for the formula 3 x f as f [=-0
+ f I=-1. All 16 two-argument logical operations can also be implemented efficiently on boolean
functions tha t are represented as OBDDs. The complexity of these operations is linear in the
size of the argument OBDDs [3]. Furthermore equivalence checking of two boolean functions
can be done in constant time, by using a hash table properly[2].

OBDDs are extremely useful for obtaining concise representations of relations over finite
domains [4, 16]. If R is n-ary relation over {0,1} then R can be represented by the OBDD for
its characteristic function

f~z(xl x ,) = 1 iff R(xl x ,) .

Otherwise, let R be an n-ary relation over the finite domain D. Using an appropriate binary
encoding of D, we can represent R by an OBDD.

3 Computation Tree Logics

We begin by describing the temporal logic CTL* [8, 9, 12], which can express both linear-time
and branching-time properties. In this logic, a path quantifier, either A ("for all computation
paths") or E ("for some computation paths") can prefix an assertion composed of arbitrary
combinations of the usual linear-time operators G ("always"), F ("sometimes"), X ("next t ime') ,
and U ("unt i l ') . .Both Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) are
included in CTL .

There are two types of formulas in CTL* : state formulas (which are true in a specific state)
and path formulas (which are true along a specific path). Let AP be the set of atomic proposition
names. The syntax of state formulas is given by the following rules:

417

- If p G AP, then p is a state formula.
- If f and g are state formulas, then - - f and f v g are state formulas.
- If f is a path formula, then E(f) is a state formula.

Two additional rules are needed to specify the syntax of path formulas:

- If f is a state formula, then f is also a path formula.
- If f and g are path formulas, then -~f, f v g, X f , and f U g are path formulas.

CTL* is the set of state formulas generated by the above rules.
We define the semantics of CTL* with respect to a Kripke structure M = (S, R, L), where S

is the set of states; R C S • S is the transition relation, which must be total (i.e., for all states
s G S there exists a state s ' E S such that (s,s') G R); and L : S ---* "P(AP) is a function that
labels each state with a set of atomic propositions true in that state. In this paper, we assume
that all Kripke structures are finite.

A path in M is an in.finite sequence of states, 7r = so,s1, . . , such that for every i > 0,
(si, si+l) E R. We use 7r' to denote the suffix of r starting at sl. If f is a state formula, the
notation M, s ~ f means that f holds at state s in the Kripke structure M. Similarly, if f is
a path formula, M, r ~ f means that f holds along path ~r in Kripke structure M. When the
Kripke structure M is clear from context, we will usually omit it. The relation ~ is defined
inductively as follows (assuming that f l and f2 are state formulas and gl and g2 are path
formulas):

1. s ~ p
2. s ~ - ~ f :
3. s ~ f l v f 2
4. s E(g:)

6. 7r ~ "~gl
7. ~ ~ gl V g2
8.7r ~ X g l
9. �9 ~ g l Ug2

p e L(s) .
s V : f l .

~:~ there exists a path �9 starting with s such that 7r ~ gl.
~:~ s is the first state of �9 and s ~ f l .

r 7r gl or 7r ~ g2.
w 1 ~ gl.

r there exists a k ~ 0 such that ~r k ~ g2 and for all
O < j < k, rJ ~ gl.

The following abbreviations are used in writing CTL* formulas:

�9 f A g - - - ~ (' ~ f V - . g) * F f = t r u e U f
�9 A (f) ---- -1 E (- ~ f) �9 G f - -~ F - ~ f

CTL [1, 8] is a restricted subset of CTL* that permits only branching-time operators--each
of the linear-time operators G, F, X, and U must be immediately preceded by a path quantifier.
More precisely, CTL is the subset of CTL* that is obtained if the following two rules are used
to specify the syntax of path formulas.

- If f and g are state formulas, then X f and f U g are path formulas.
- If f is a path formula, then so is -~f.

Linear temporal logic (LTL), on the other hand, will consist of formulas that have the
form A f where f is a path formula in which the only state subformulas permitted are atomic
propositions. More precisely, a path formula is either:

- an atomic proposition p E AP.
- If f and g are path formulas, then -~f, f V g, X f , and f U g are path formulas.

There are eight basic CTL operators: AX, EX, AG, EG, AF , EF, A U and EU. Each of
the eight operators can be expressed in terms of three operators EX, EG, and EU.

4 CTL Model Checking

CTL Model checking is the problem of finding the set of states in a state transition graph where
a given CTL formula is true. One approach for solving this problem is a symbolic model checking
using an OBDD to represent the transition relation of the graph. Assume that the transition
relation is given as a boolean formula R(0, 0') in terms of current state variables ~ = (v l , . . . , Vn)
and next state variables ~' = (v~, . . . , v'n). The algorithm takes a CTL formula f , and the OBDD

418

tha t represents R(0, 0'). For each subformula g, the algorithm computes the states tha t satisfy
g in a bottom-up manner. This step is performed by OBDD operations. The algorithm returns
an OBDD that represents exactly those states of the system that satisfy the formula f .

Fairness constraints were introduced for checking the correctness of CTL formulas along fair
computation paths. A fairness constraint can be an arbitrary set of states, usually described
by a formula of the logic. A path is said to be fair with respect to a set of fairness constraints
if each constraint holds infinitely often along the path. The path quantifiers in CTL formulas
are then restricted to fair paths. The CTL model checking under given fairness constraints can
also be performed using OBDD operations. As will be shown in the next section, LTL model
checking can be reduced to CTL model checking under fairness constraints.

5 L T L M o d e l C h e c k i n g

In this section we consider the model checking problem for linear temporal logic. Let A f be
a linear temporal logic formula. Thus, f is a restricted path formula in which the only state
subformnlas are atomic propositions. We wish to determine all of those states s E S such tha t
M, s ~ A f . By defnition M, s ~ A f iff M, s ~ -~ E - - f . Consequently, it is sufficient to be
able to check the t ruth of formulas of the form E f where f is a restricted path formula. If the
Kripke structure is represented explicitly as a s tate transition graph, this problem is known to
be PSPACE-complete [17] in general.

Liehtenstein and Pnueli [14] developed an algorithm for the problem that was linear in the
size of the model M and exponential in the length of the formula f . Although their algorithm
was linear in the size of the model, i t was still impractical for large examples because of the state
explosion problem. As in the case of CTL model checking, representing the transition relation
as an OBDD enables the procedure to be applied to much larger examples. The exponential
complexity of their algorithm in terms of formula length is caused by a tableau construction
which may require exponential space in the size of the formula.

Butch et. al developed a symbolic satisfiability algorithm for LTL [4], This algorithm is
based on implicit tableau construction, which leads to an additional reduction in space and
time. We also use this implicit technique in the following model checking algorithm. We begin
with an informal description of the algorithm. Given a formula E f and a Kripke structure
M, we construct a special Kripke structure T called the tableau for the path formula f . This
structure includes every path that satisfies f . By composing T with M, we find the set of paths
tha t appear in both T and M. A state in M will satisfy E f if and only if it is the start of a path
in the composition that satisfies f . The CTL model checking procedure described in Section 4
is used to find these states.

We now describe the construction of the tableau T in detail. Let A P 1 be the set of atomic
propositions in f . The tableau associated with f is a structure T = (ST, RT, LT) with AP! as
its set of atomic propositions. Each state in the tableau is a set of elementary formulas obtained
from f . The set of elementary subformulas of f is denoted by el(f) and is defined recursively as
follows:

- el(p) = {p} if p e . 4 e .
- el(-~g) = el(g) .

el(g V h) = el(g) U el(h) .
el(X g) = {X g} U el(g).
el(g U h) = {X(g U h)} U el(g) U el(h).

Thus, the set of states S~- of the tableau is 7~(el(f)). The labeling function LT is defined so that
each state is labeled by the set of atomic propositions contained in the state.

In order to construct the transition relation RT, we need an additional function sat that
associates with each elementary subformula g of f a set of states in ST. Intuitively, sat(g) will
be the set of states tha t satisfy g.

- sat(g) ---- {r [g e #} where g e el(f).
sat(-~g) = { , , I ,," r sa t (g) } .

- sat(g V h) = sat(g) U sat(h).
- sag(g U h) = sat(h) O (sat(g) n sat(X(g U h))).

We want the transition relation to have the property that each elementary formula in a state
is true in tha t state. Clearly, if Xg is in some state a, then all the successors of a should satisfy

419

g. Fur the rmore , since we are dealing with LTL formulas, if X g is no t in a , t hen a should sa t i s fy
-~Xg. Hence, no successor of a should satisfy g. T h e obvious definition for RT is

RT(~,~')= A ~esat(Xg)~*~'esat(g).

Figure 1 gives the tableau for the formula g = a U b. To reduce the n u m b e r of edges, we
connect two s t a t e s a and a ' with a bidirectional arrow if there is an edge f rom ~r to ~r' and also
f rom ~r' to a. Each subse t of el(g) is a s ta te of T. sat(Xg) = {1, 2, 3, 5} since each of these s t a t e s
con ta ins the formula Xg . sat(g) = {1, 2, 3,4, 6} since each of these s t a tes ei ther conta ins b or
conta ins a and Xg . The re is a t ransi t ion from each s ta te in sat(Xg) to each s ta te in sat(g) and
f rom each s t a t e in the complemen t of sat(Xg) to each s ta te in the complemen t of sat(g).

F i g . 1. Tableau for a U b

)

)

Unfor tuna te ly , the definition of RT does not guaran tee tha t eventuality propert ies are ful-
filled. We can see this behavior in Figure 1. Al though s ta te 3 belongs to sat(g), the p a t h t h a t
loops forever in s t a te 3 does not satisfy the formula g since b never holds on tha t pa th . Con-
sequent ly, an addi t ional condit ion is necessary in order to identify those pa th s along which f
holds. A pa t h ~ tha t s t a r t s from a s ta te a E sat(f) will satisfy f if and only if

- For every subfo rmula g U h of f and for every s ta te cr on 7r, if ~r E sat(g U h) t hen ei ther
a e sat(h) or there is a later s ta te r on r such t ha t r e sat(h).

T h e definition of RT can also cause T to have s ta tes which have no successors. We call such
s t a t e s deadend s ta tes . For example, a s ta te {a, X a, X-~a} has no successors, because no s t a t e is
in bo t h sat(a) and sat('~a). Because of the semant ics of LTL, all of the sequences t ha t sa t isfy a
p a t h formula f m u s t be infinite. Thus , if we remove the deadend s ta tes f rom the t ab leau of f ,
no p a t h t ha t satisfies f will be elminated. Therefore, in the tableau of f , we can safely ignore
finite sequences tha t t e rmina te in deadend states .

In order to s t a t e the key property of the tableau construct ion, we mus t in t roduce some new
nota t ion . Let 7r = so, s l be a pa th in a Kripke s t ruc ture M, then label(~) = L(so), L(sl)
Let l = 10,11, �9 �9 �9 be a sequence of subse ts of some set ,U and let Z ' C ~U. The restriction of 1 to
2Y', denoted by l I~' , is the sequence l~, l~ , . . , where l~ = l~ N Z ' for every i > 0. The following
t h e o r e m makes precise the intui t ive claim tha t T includes every pa th which satisfies f .

420

T h e o r e m 1. Let T be the tableau for the path formula f . Then, for every Kripke structure M
and every path r ' of M, if M, ~r' ~ f then there is a path r in T that starts in a state in sat(f) ,
such that label(r') lap s = label(r).

Next, we want to compute the product P = (S, R, L) of the tableau T = (ST, RT, LT) and
the Kripke structure M = (SM, RM, LM).

-- S = {(o' ,a ') I a 6 ST,a' 6 SM and LM(er') NAPI = LT(a)}.
- R((a ,a ') , (r ,r ')) iff Rr(a , r) and RM(~ ' , r ') .
- z ((~ , ~ ')) = L T (~) .

P may have deadend states, even if T contains no deadend states. However, it is not difficult
to show tha t P contains exactly the infinite paths r " for which there are infinite paths 7r in T
and r ' in M such that label(r u) = label(r) = label(r') lAP 1. Thus, if we remove the deadend
states from the product, no path that satisfies f will be elminated. As a result, we can safely
ignore finite sequences in P. We extend the function sat to be defined over the set of states of
the product P by (or, ~') E sat(g) if and only if a G sat(g).

We next apply CTL model checking and find the set of all states V in P, V C_ sat(f), tha t
satisfy E G true with the fairness constraints

{sat(-~(g U h) v h) I g U h occurs in f}. (1)

Each of the states in V is in sat(f). Moreover, it is the start of an infinite path tha t satisfies all
of the fairness constraints. These paths have the property tha t no subformula g U h holds almost
always on the path while h remains false. The correctness of our construction is summarized by
the following theorem.

T h e o r e m 2. M, a' ~ E f if and only if there is a state a in T such that (a, o") E sat(f) and
P, (a, a ') ~ E G True under fairness constraints {sat(-,(g U h) v h)] g U h occurs in f } .

To illustrate this construction, we check the formula g = a U b on the Kripke structure M in
Figure 2. The tableau T for this formula is given in Figure 1. If we compute the product P as
described above, we obtain the Kripke structure shown in Figure 3. Although P contains deadend
ta ' ' " " " s tes (4, 4) and (8, 3), we can ignore those states. We use the CTL model checking algorithm

to find the set V of states in sat(g) that satisfy the formula E G true with the fairness constraint
sat('~(a U b) V b). It is easy to see that the fairness constraint corresponds to the following set
of states {(2, 4'), (5, 3'), (7, 1'), (6, 2'), (1, 2')}. Thus, every state in Figure 3 satisfies E G true.
However, only (2,4'), (3, 1'), (1,2') and (6, 2') are in sat(g), so the states 1', 2', and 4' of M
satisfy E g = E[a U b].

F ig . 2. Kripke Structure M

4.4' IX

sJe

a~

Fig. 3. The product P of the structure M and
the tableau T

We now describe how the above procedure can be implemented using OBDDs. We assume
tha t the transition relation for M is represented by an OBDD as in the previous section. In order
to represent the transition relation for T in terms of OBDDs, we associate with each elementary

421

formula g a state vaxiable v~. We describe the transition relation RT as a boolean formula in
terms of two copies ~ and ~ of the state variables. The boolean formula is converted to an OBDD
to obtain a concise representation of the tableau. When the composition P is constructed, it is
convenient to separate out the state vaxiables that appear in AP 1. The symbol ~ will be used to
denote a boolean vector that assigns truth values to these state variables. Thus, each state in ST
will be represented by a pair (/~, f), where f is a boolean vector that assigns values to the state
variables that appear in the tableau but not in APr. A state in SM will be denoted by a pair
(~, ~) where q is a boolean vector that assigns values to the state variables of M which are not
mentioned in f . Thus, the transition relation Rp for the product of the two Kripke structures
will be given by

We use the symbolic model checking algorithm that handles fairness constraints to find the set
of states V that satisfy EG true with the fairness constraints given in (1). We must be careful
because Of the sequences in the product P that terminates in deadend states. Let {cl, c2 , . . . , c~}
be fairness constaints. The symbolic model checking algorithm computes the set V as the greatest
fixpoint of the following function r : :P(S) --~ 7~(S):

r (Z) -- {s I for any cl, there exists a sequence of length one or greater from s to a
state s ' E sat(ci) n Z}.

It is easy to see that, if V is computed in this manner, then every state ~r E V will be the
beginning of an infinite path that satisfies all of the fairness constraints el, c2 , cl. Suppose
that a state ~ is in V. Since ~ E V = r(V), the definition of r guarantees that there exists a
sequence of length one or larger from a to some state ~rl E sat(c1). Since al E V, we can find
a finite sequence from ~rl to some a~ E sat(c2). Thus, we can eventually find an infinite path
~r from a which goes through states in sat(cl) infinitely often, for each ci. The states in V are
represented by boolean vectors of the form (/~, r f). Thus, a state (~, ~) in M satisfies E f if and
only if there exists f such that (~, q, f) e V and (/~, ~) e sat(f).

6 LTL Model Checking Using the SMV Model Checker

As stated in Section 5, LTL model checking can be reduced to CTL model checking under fairness
constraints. If the tableau and the fairness constraints for a given LTL formula axe represented
implicitly as boolean formulas, we can perform symbolic LTL model checking using an existing
symbolic model checker for CTL. We have developed a translator that enables the SMV model
checker to handle LTL formulas. For a given LTL formula, the translator generates an SMV
program for the corresponding tableau and fairness constraints. We can perform symbolic LTL
model checking using the resulting SMV program. In this section, we describe how the translator
works.

We begin with a brief description of the SMV model checker. SMV is a tool for checking that
finite-state systems satisfy specifications given in CTL. It uses the OBDD-based symbolic model
checking algorithm in Section 4. The language component of SMV is used to describe complex
finite-state systems. Figure 4 shows an SMV program for the Kripke structure in Figure 2 and
a specification A(a U b). This example illustrates the basic features of SMV that are needed to
explain the translation procedure. The syntax and semantics of the complete language axe given
in McMillan's thesis [15].

SMV users can decompose the description of a complex finite-state system into modules.
Module definitions begin with the keyword MODULE. The module main is the top-level module.
(The example in Figure 4 contains a single module; however, our translator can handle programs
with multiple modules.) Variables are declared using the keyword VAIL In the example, a and
b are boolean variables (line 3-4). The TRAI/S statements are used to define transitions of the
model (lines 5-8). In the TltANS statements, next (g) is obtained from g by replacing each state
variable v in g by the corresponding next state variable v'. For example, n e x t (a & !b) means
a' A -,b ~ where a' are b ~ are the next state variables for a and b, respectively. Thus, each TITANS
statement determines a propositional formula that relates the original state variables and the
next state variables. The transition relation for an SMV program is obtained by taking the
conjunction of these formulas. CTL formulas are declared as specifications using the keyword
SPEC (line 9).

Next~ we describe the translation algorithm. Suppose that we have an SMV program with
an LTL formula A f , instead of a CTL formula, as its specification. As stated in Section 5, it is

422

1 MODULE main -- simple program

2 VAR

3 a: boolean;
4 b: boolean;

5 TRANS (a & !b) -> next(!(a & !b))
6 TRANS (a & b) -> next(a & !b)
7 TRANS (!a & b) -> next(!a & b)
8 TRANS (!a & !b) -> next(!a & b)

9 SPEC A[a U b]

Fig. 4. Simple SMV program

-- Kripke structure

MODULE

MODULE

MODULE main

-- LTL formula
SPEC A f

Fig. 5. An SMV program

sufficient to handle a formula E -~f. The translator replaces A f with an SMV description of the
tableau and the fairness constraints for -~f. The translation of the SMV program in Figure 5 is
shown in Figure 6. The translation follows the general procedure outlined in Section 5:

1. Associate a state variable with each elementary formula of "-f.
2. Represent the transition relation of the tableau for -~f as a boolean formula in terms of the

state variables.
3. Represent fairness constraints as boolean formulas in terms of the state variables.
4. Generate a CTL specification.

In the first step, the formula f is negated and expanded to a formula in which the only
operators are V, -% X, U. The parse tree of "-f is traversed to find its elementary formulas.
If a node associated with formula X g (or g U h) is visited, then the corresponding elementaxy
formula X g (or X(g U h)) is stored in the list el.list The translator declares a new variable
EL X g for each formula X g in the list el_list. Since atomic propositions are already declared in
the original SMV program, they are not declared again.

In order to generate descriptions for the transition relation and the fairness constraints,
we have to construct the characteristic function --~h of sat(h) for each subformula or elementary
formula h in --f. The translator builds these functions using a DEFINE statement 2. The translator
traverses the parse tree of -~f, and generates the appropriate SMV statements at each node.

S~ : ffi p; if p is an atomic proposition.
Sh : = ELh ; if h is elementary formula X g in eLlist.
Sh: ffi !Sg; ifh----~g.
S~:= Sg I [Sg~; i f h = g l V g 2 .
Sh: ffi Sg~ I (Sgl & S x (~ l U g 2)) ; i f h = g l U g 2 .

The transition relation can be described in terms of the characteristic functions as follows:

A Sx,(~) ~* s,(~')
Xge~l(l)

This statement associates a symbol with an SMV expression. When the symbol appears in
the program, it is repla~ed with the expression.

423

The expression Sa(0') is represented in SMV by next(Sa) . The translator constructs a
formula SXa = next (S a) for each Xg in eLlist. These formulas are combined in a TRANS
statement to give the transition relation for the tableau.

TRANS
(S x g 1 = next (S91)) &
(S x g 2 = next (Sg 2)) &

(Sxg N = next (Sg N))

Likewise, the translator traverses the parse tree and generates an SMV FAIRNESS constraint
for each node associated with a formula of form g U h:

FAIRNESS {Sguh J Sh

Finally, the translator generates an SMV SPEC statement. From Theorem 2, it is clear that
the formula E - - f can be checked using the the specification S~! A E G True. Thus, in order to
check the LTL formula A f = "~ E-~f, the translator constructs an SMV SPEC statement for
",(S~! A E G True).

We illustrate the translation procedure by applying it to the simple example in Figure 4.
The result of this procedure is shown in Figure 7. The statements in lines 1 through 8 come
from the original SMV program, while the statements in fines 9 through 19 are generated by
the tableau construction for a U b. The translation procedure first determines that a, b and
X(a U b) are elementary formulas and causes the state variable EL_X_a_U b to be declared for
X(a U b) in line 10. Next, the DEFINE statement in lines 12 through 16 is constructed for the
characteristic functions of sat(a), sat(b), sat(X(a V b)), sat(a U b) and sat(-~a U b). The Trans
statement in line 17 causes the transition relation for the tableau to be constructed, and line 18
contains the fairness constraint for a U b. Finally, the specification to be checked is given by the
'SPEC' statement in line 19.

7 Experimental Results

This section describes the experimental results that we obtained for symbolic LTL model check-
ing. In order to compare the performance of LTL model checking with CTL model checking, we
used two sequential circuit designs whose specifications can be described in both LTL and CTL,

The first example is a distributed mutual exclusion(DME) circuit designed by Alain Martin[15!.
The DME circuit is a speed-independent token ring, which consists of identical arbiter cells. A
user of the DME circuit obtains exclusive access to the resource via request and acknowledge sig-
nals. We assume aribitrary delay for all gates in the circuit. Each gate is modeled as a finite-state
machine that non-deterministically decides either to recompute its output or remain unchanged.
We verify the correctness of the following two specifications:

1. (Safety) No two users are acknowledged simultaneously.
2. (Liveness) All requests are eventually acknowledged,

The safety specification is given by the formula

AG A -~(ackl A ackj),
l<_i<j<_n

where ack~ means that user i is acknowledged. This formula is both an LTL formula and a CTL
formula. In the experiments for this specification, infinite delays are allowed at each gate. In
other words, the output value of each gate can remain unchanged forever.

Next, we verify that requests are eventually acknowledged. We only check this specification
with respect to a single user (user 1). In this case the LTL specification has the form:

AG(reql --+ F ackl)

This formula is equivalent to the CTL formula:

AG(reql --* A F ackl)

424

'-- Xripke structure

MODULE

MODULE main

-- Tableau for f
VAR -- new variables

ELxe * : boolean;
ELx~ 2 : boo lean ;

ELxg ~ : boo lean ;

DEFINE -- characteristic function
Sh, :ffi " �9 ";
Sh2:ffi . . . ;

ShM - ' = . �9 . ;

rRANS - - t r a n s i t i o n r e l a t i o n
(SX~ ' = next (Sg I)) &
(SXg ~ = next (Sg 2)) k

(SX~ ~ = next (Sg N))

-- fairness constraints
FAIRNESS !Sg~uh~ [Sh~

FAIRNESS !S~uh~] Sh, ~

FAIRNESS !Sg~uh. ~] Sh~

-- ne. specification
SPEC !(S~/ k EG true)

1 MODULE main - - s i m p l e progra~t

2 VAR

3 a: boo l ea n ;
4 b: boo lean ;

5 TRANS (a k !b) -> next(!(a ~ !b))
6 TRANS (a k b) -> next(a k !b)
7 TRANS (!a k b) -> next(!a k b)
8 TRANS (!a ~ !b) -> next(!a R b)

9 VAR

10 EL_X_a_U_b : b o o l e a n ;

11 DEFINE

12 S_a := a;
13 S_b := b;
14 S_X_a_U_b := EL_X_a_U_b;
15 S_a_U_b := S_b [(S_a & S_X_a_U_b);
16 S_NOT_a_U_b := !S_a_U_b;

17 TRANS S_X_a_U_b ffi next(S_a_U_b)

18 FAIRNESS :S_a_U_b [b

19 SPEC !(S_NOT_a_U_b & EG true)

Fig. 7. Translator output for simple SMV pro-
gram

Fig . 6. Translator output for SMV pro-
gram

I f infinite delays are allowed at each gate, these formulas are not true. In order to overcome this
problem we use a fairness constraint which ensures that the output of the gate is reevaluated
infinitely often.

SMV provides several options to perform model checking. We verified the circuit using the
following approach.

- A single OBDD is constructed for the transition relation of the circuit.
- The reachable states of the circuit are determined, and evaluation of the CTL operators is

restricted to these states.
- At each step in the forward search, the transition relation is restricted to the set of reachable

425

states. The Restrict function of Coudert, Madre and Berthet [11] is used for this purpose.

Table 1 summarizes the experimental results for the safety specification, and Table 2 sum-
maxizes the results for the liveness specification. The columns show the number of the cells
(~/~eell), the maximum number of OBDD nodes used at any given time (~i~nodes), the run
time on SPARC station I0 (time), the size of the transition relation in OBDD nodes (trans.)
and the number of the reachable states (#reachable states). In the experiment for the safety
specification, we observe that the number of reachable states for LTL model checking is twice
as large as for CTL model checking. The increase in allocated OBDD nodes and run time is less
than 10%. In the experiments for the liveness specification, the number of the reachable states
is four times larger for LTL model checking, while the increase in space and time is 1.5-3 times
larger.

~cell ~nodes ~time(see)
CTL CI'L CTL CFL CTL ~I'L CTL

3 1132611362 17.9 20.5 2778 2781 6579
4 13458 15357 47.5 49.4 4757 4760 75172
5 22321:22348 100.5 104.4 6760 6763 802425
6 25869i27318 182.3 193.6 8763 8766 8.2166e+06
7 28413 33310 326.4 329.3 10766 10769 8.1784e+07
8 44322 44369 509.2 526.3 12769 12772 7.97393e-b08
9 49702 49755 794.0 794.8 14772 14775 7.65302e-F09
10 55082 55141 1125.2 1362.7 16775 16778 7.30144e+10

t rans . ~ r e a c h a b l e s t a t e s
L'FL

13158
150344

1.60485e+06
1.64332e+07
1.63568e-1-08
1.59479e-1-09
1.53060e-I-10
1.46029e-I-11

Tab le 1. Safety specification for the DME circuit

~ c e l l ~nodes #time(see) trans. #reachable states
CTL LTL CTL LTL (JTL LTL CTL LTL

3 12721 33940 426.1 1260.5 2778 3004 6579 26316
4 26541 72029 2553.2 6096.7 4757 4983 75172 300688
5 47346 120299 9623.1:21950.1 6760 6986 802425 3.2097e-{-06
6 92080 183043 36995.3 66502.5 8763 8989 8.2166eq-06 3.28664e+07
7 163867 263380 97807.1191990.0 10766 10992 8.1784eq-07 3.27136eq-08

Table 2. Liveness specification for the DME circuit

The second example is a synchronous bus arbiter which is described in McMillan's thesis [16].
This circuit is composed of a daisy chain of identical arbiter cells. The requester with the
highest priority receives an acknowledgement from the arbiter under normal operation, while a
round-robin scheme is applied when the bus traffic becomes very heavy. Each cell is modeled
by a deterministic machine, so the whole arbiter circuit is also a deterministic machine. The
specifications in this case are essentially the same as in the case of the DME circuit discussed
previously:

1. (Safety) No two users are acknowledged simultaneously.
2. (Liveness) All requests are eventually acknowledged.

In fact, exactly the same LTL and CTL specifications can be used.
In the experiments using SMV, we used the options to construct single transition relations,

and to compute reachable states before model checking. Table 3 shows the experimental results
for the safety specification and Table 4 shows the results for the liveness specification. For the

426

safety specification we observe that the number of reachable states for LTL model checking
checking is twice as large as for CTL model checking. The number of the allocated OBDD nodes
and run time both increase by a factor of 1.5. In the second experiment, the number of the
reachable states is four times larger for LTL model checking. The amount of space and time
that is required is 1.5-2 times larger.

!~cell ~nodes ~time(sec) trans.
CTL LTL CTL LTL CTL LTL

3 384 734 0.08 0.1 80 122
4 654 1279 0.1 0.1 112 218
5 987 1913 0.11 0.15 144 318
6 1383 2628 0.13 0.18 176 418
7 1842 3424 0.16 0.21 208
8 2364 4301 0.16 0.26 240
9 2949 5259 0.16 0:33 272
10 3597 6298 0.21 0.33 304
11 4308 7418 0.21 0.41 336
12 5082 8619 0.31 0.45 368

~ r e a c h a b l e s t a t e s
CTL

384
2041

10240
49152

518 229376
618 1.04858e@06
718 4.71859e@06
81~ i2.09715e+07
918 !9.22747e@07

1018 4.02653e+08

LTL
768

4096
20480
98304

458752
2.09715e+06
9.43718e+06
11.19430e+07
~1.84549e+08
8.05306e+08

Table 3. Safety specification for the synchronous arbiter

:fi~cell ~ n o d e s ~ t i m e (s e c) t rans .
CTL LTL CTL LTL UTL LTL

3 996 2159 0.10 0.26 80 134
4 1531 3137 0.20 0.36 112 196
5 2 1 5 5 4254 0.38 0.43 144 258
6 2 8 6 7 5483 0.43 0.48 176 320
7 3667 6820 0.48 0.61 208 382
8 4 5 5 5 8266 0.53 0.81 240 444
9 5531 9821 0.71 1.01 272 506
10 6595 10000 0.83 1.23 304 568
11 7747 10001 1.00 1.46 336 630
12 8987 10052 1.16 1.71 368 692

~ r e a c h a b l e s t a t e s
CTL LTL

384 1536
2048 8192

10240 40960
49152 196608

229376 917504
1.04858e+06 4.1943e+06
4.71859e+06 1.88744e+07
2.09715e+07 8.38861e+07
9.22747e+07 3.69099e+08
4.02653e+08 1.61061e+09

Table 4. Liveness specification for the synchronous arbiter

8 Direct ions for Future Research

Certainly the most important thing that remains to be done is to try additional examples. Based
on the two examples that we have considered in detail so far, it appears that efficient LTL model
checking is possible when the formula that is being checked is not excessively complicated. This
does not mean that LTL will take the place of CTL in model checking applications. Many other
problems, like testing inclusion and equivalence between various types omega-automata [7], can
also be reduced to CTL model checking. LTL, on the other hand, does not appear to have this
flexibility. Moreover, in many of the applications of model checking to verification, it is important
to be able to assert the existence of a path that satisfies some property. For example, absen~
of deadlock might be expressed by the CTL formula A G E F start (Regardless of what state

427

t h e p r o g r a m en te r s , t he re ex i s t s a c o m p u t a t i o n l e ad ing b a c k to t h e start s t a t e) . N e i t h e r t h i s
f o r m u l a nor i t s n e g a t i o n can be expressed in LTL [6], so LTL m o d e l c h e c k i n g t e c h n i q u e s c a n n o t
be used to dec ide w h e t h e r t he fo rmula is t r u e or not . Idea ly , i t s h o u l d be p o s s i b l e to r e a s o n
a b o u t l i n e a r - t i m e and b r a n c h i n g - t i m e p r o p e r t i e s in t he s a m e logic (say, C T L *). We be l i eve t h i s
g o a l can p o t e n t i a l l y be rea l ized by e x t e n d i n g t he t e c h n i q u e s d i scuss sed in th i s p a p e r . E m e r s o n
a n d Lei [13] h a v e shown how to reduce C T L * m o d e l check ing to L T L m o d e l check ing . I f t h e
t r a n s f o r m a t i o n o u t l i n e d in th i s p a p e r can be e x t e n d e d to i n c o r p o r a t e t h e i r r e d u c t i o n , t h e n i t
s h o u l d be poss ib le to deve lop a m o d e l checker t h a t can h a n d l e b o t h t y p e s of p r o p e r t i e s .

References

1. M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. Acta Informatica, 20:207-
226~ 1983.

2, K. S. Brace, R, L. Rudell, and R. E. Bryant. Efficient implementation of a BDD package: In Proceedings
of the 27th ACM/IEEE Design Automation Conference. IEEE Computer Society Press, June I990.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Com-
puters, C-35(8), 1986.

4. - 20 J. it. Bureh, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 10
states and beyond. Information and Computation, 98(2):142-170, June 1992.

5. E. Clarke O. Grumberg and D. Long. Verification tools for finite-state concurrent s~cstems systems. In
A Decade of Concurrency, Noordw jkerhout, The Netherlands, June 1993. To appear m Springer Lecture
Notes In Computer Science.

6. E. M. Clarke and I. A. Draghicescu. Expressibility results for linear time and branching t ime logics. In
Linear Time, Branching Time, and Partial Order in Logics and Models for Concurrency, volume 354,
pages 428-437. Springer-Verlag: Lecture Notes in Computer Science, 1988.

7. E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified approach for showing language containment
and equivalence between various types of w-automata. Information Processing Letters, 46:301-308~ 1993.

8. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal
logic. In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981, volume 131 of Lecture Notes
in Computer Science. Springer-Verlag, 1981.

9. E. M. C]arke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications. ACM Transactions on Programming Languages and Systems,
8(2).'244-263, 1986.

10. E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A. Ness. Verifi-
cation of the Puturebus% cache coherence protocol. In L. Claesen, editor, Proceedings of the Eleventh
International Symposium on Computer Hardware Description Languages and their Applications. North-
Holland, April 1993.

11. O. Coudert, J. C. Madre, and C. Berthet. Verifying temporal properties of sequential machines without
building their state diagrams. In R. P. Kurshan and E. M. Clarke, editors, Proceedings of the 1990
Workshop on Computer-Aided Verification, June 1990.

12. E. A. Emerson and J. Y. Halpern. "Sometimes" and "Not Never" revisited: On branching time versus
linear time. Journal of the ACM, 33:151-178, 1986.

13. E.A. Emerson and Chin Laun~Lei. Modalities for model checking: Branching time strikes back. Twelfth
Symposium on Principles of • Languages, New Orleans, La., January 1985.

14. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specifica-
tion. In Proceedings of the Twelfth Annual ACM Symposium on Principles of Programming Languages,
January 1985.

15. A. J. Martin. The design of a self-timed circuit for distributed mutual exclusion. In H. F~ehs, editor,
Proceedings of the 1985 Chapel Hill Conference on Very Large Scale Integration, 1985.

16. K. L. MeMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. PhD thesis,
Carnegie Mellon University, 1992.

17. A. P. Sistla and E.M. Clarke. Complexity of propositional temporal logics. Journal of the ACM,
32(3):733-749, July 1986.

18. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In
Proceedings of the First Annual Symposium on Logic in Computer Science. IEEE Computer Society
Press, June 1986.

