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A b s t r a c t  

Relational Coarsest Partition Problems (RCPPs) play a vital role in verify- 

ing concurrent systems. It is known that RCPPs are P-complete and hence it 

may not be possible to design polylog time parallel algorithms for these prob- 

lems. 

In this paper, we present a parallel algorithm for RCPP, in which its asso- 

da ted  label transition system is assumed to have m transitions and n states. 

This algorithm runs in O(n TM) time using ~ EREW PRAM processors, for 
n �9 

any fixed e < 1. This algorithm is analogous and optimal with respect to the 

sequential algorithm of Kanellakis and Smolka. The same algorithm runs in 

time O(n log n) using ~ log log n CRCW PRAM processors. We also describe 

implementation and experimental results on performance of our algorithm. 

1 I n t r o d u c t i o n  

Relat ional  Coarsest Par t i t ion Problems (RCPPs)  play an impor tan t  role in verifying 

concurrent systems in the form of equivalence checking. In their  pioneering work, 

Kanellakis  and Smolka [6] presented an efficient algori thm for the  RCPP with mult iple  

relations.  Their algori thm had a run t ime of O(mn), where m is the number of 

t ransi t ions and n is the  number of states in the RCPP.  This algori thm has been used 

in pract ice to verify systems with thousands of states.  Our  work is to extend the 

appl icabi l i ty  of this algori thm with the  use of parallelism. 

In a recent work of Zhang and Smolka [9], an a t t empt  has been made to parallelize 

the  classical Kanellakis-Smolka algorithm. However, the  main  thrust  of this work was 

from pract ical  considerations. In part icular ,  complexi ty analysis has not been provided �9 
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and was not the main Concern of the paper. On the other hand, it has been shown 
that RCPP (even when there is only a single function) is 7~-complete [1]. P-complete 
problems are presumed to be problems that are hard to efficiently parallelize. It is 
widely believed that there may not exist polylog time parallel algorithms for any of 
the ~-complete problems that use only a polynomial number of processors. 

Since RCPP has been proven to be 7~-complete, we restrict our attention to de- 
signing polynomial time algorithms. In this paper we present a parallel algorithm 
for RCPP: This algorithm runs in O(n TM) time using ~ EREW (Exclusive-Read 
Exclusive-Write) PRAM processors for any fixed e < 1. This algorithm is optimal with 
respect to the Kanellakis-Smolka algorithm. We say a parallel algorithm that runs in 
time T using P processors is optimal with respect to a sequential algorithm with a run 
time of S, if PT = O(S), i.e., the work done by the parallel algorithm is asymptoti- 
cally the same as that of the sequential algorithm. The same algorithm runs in t ime 
O(nlogn)  using ~ l o g l o g n  CRCW (Concurrent-Read Concurrent-Write) PRAM 
processors. The parallel algorithm described in this paper is for single-relation RCPP. 
It can, however, be easily extended for multiple-relation RCPP without changing the 
asymptotic run-time complexity or processor bound. 

The rest of the paper is organized as follows. In Section 2, we state the problem 
and provide some useful facts about parallel computation. Section 3 gives details 
of our parallel algorithm and Section 4 describes an example that explains how our 
algorithm works. Section 5 presents analysis of our algorithm and Section 6 reports 
our implementation results. Section 7 concludes the paper. 

2 P r o b l e m  S t a t e m e n t  

Defin i t ion  1 A labeled transition system (LTS) M is (Q, Qo, T), where Q is a set 
of states, Qo c Q is a set of initial states, and T C_ Q x Q is a transition relation. 

Defin i t ion  2 For any state p E Q, let T(p) = {q e Q[(p,q) E r } .  Also for any 
subset B of Q, let T(B) stand for UpesT(p). Similarly define T-l(p) and T- I (B)  for 
any p E (2 a. rid for any B c Q. 

The Relational Coarsest Partitioning Problem (RCPP) is defined as follows: 

I n p u t :  An LTS M = (Q, Q0, T) with a finite state set Q, an initial partition ~r0 of Q 
and a relation T on Q x Q. 

O u t p u t :  the coarsest (having the fewest blocks) partition 7r = {B1,.--,Bz} of Q 
such that 

1. ~r is a refinement of ~r0, and 

2. for every p, q in block Bi, and for every block Bj in % 

T(p) n Bj 7~ ~ iff T(q) n Bj 7~ 

That is, either B~- C T-I(Bi)  or B i n  T-I(B;) = ~. 
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2.1 Parallel Computat ion  Models  

A large number of parallel machine models have been proposed. Some of the widely 
accepted models are: 1) fixed connection machines, 2) shared memory models, 3) the 
boolean circuit model, and 4) the parallel comparison trees. Of these we'll focus on 1) 
and 2) only. The time complexity of a parallel machine is a function of its input size. 
Precisely, time complexity is a function g(n) that is the maximum over all inputs of 
size n of the time elapsed when the first processor begins execution until the time the 
last processor stops execution. 

A fixed connection network is a directed graph G(V, E) whose nodes represent 
processors and whose edges represent communication links between processors. Usu- 
ally we assume that the degree of each node is either a constant or a slowly increasing 
function of the number of nodes in the graph. Fixed connection networks are sup- 
posed to be the most practical models. The Connection Machine, Intel Hypercube, 
ILLIAC IV, Butterfly, etc. are examples of fixed connection machines. 

In shared memory models (also known as PRAMs, i.e., Parallel Random Access 
Machines), processors work synchronously communicating with each other with the 
help of a common block of memory accessible by all. Each processor is a random access 
machine. Every step of the algorithm is an arithmetic operation, a comparison, or a 
memory access. Several conventions are possible to resolve read or write conflicts that 
might arise while accessing the shared memory. EREW (Exclusive Read Exclusive 
Write) PRAM is the shared memory model where no simultaneous read or write 
is allowed on any cell of the shared memory. CREW (Concurrent Read Exclusive 
Write) PRAM is a variation which permits concurrent read but not concurrent write. 
And finally, CRCW (Concurrent Read Concurrent Write) PRAM model allows both 
concurrent read and concurrent write. Write conflicts in the above models are taken 
care of with a priority scheme. 

The parallel run time T of any algorithm for solving a given problem can not be 
less than ~ where P is the number of processors employed and S is the run time of 
the best known sequential algorithm for solving the same problem. We say a parallel 
algorithm is.optimal if it satisfies the equality: P T  = O(S). The product P T  is 
referred to: as work done by the parallel algorithm. 

The model assumed in this paper is the PRAM. Though no PRAM machines exist, 
it is easy to describe algorithms on this model and usually algorithms developed for 
this model can be easily mapped on to more practical models. 

2 . 2  S o m e  U s e f u l  F a c t s  

In this section, we state some well-known results which are used to analyze algorithms 
presented in this paper. 

L e m m a  1 [3] I f  W is the total number of operations performed by all the processors 
using a parallel algorithm in time T, we can simulate this algorithm using P processors 
such that the new algorithm runs in time [wj + T. 
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As a consequence of the above Lemma we can also get: 

L e m m a  2 I f  a problem can be solved in time T usin 9 P processors, we can solve the 
same problem using P '  processors (for any P'  < P )  in time 0 (-~, ) .  

Given a sequence of numbers kl, k2 , . . . ,  k , ,  the problem of prefix sums computation 

is to output  the numbers  kx, kl + k2 , . . . ,  ka + k2 + . . .  + kn. The following Lemma  is 
a folklore [5]: 

L e m m a  3 Prefix sums of a sequence of n numbers can be computed in O(log n) time 
using ~ E R E W  P R A M  processors. 

The following L e m m a  is due to Cole [4] 

L e m m a  4 Sorting of  n numbers can be done in O(log n) time using n E R E W  P R A M  

processors. 

The following L e m m a  concerns with the problem of sorting numbers from a small 
universe: 

L e m m a  5 [2] n numbers in the range [0,n r can be sorted in O(log n) time using 
n l~n log log n C R C W  P R A M  processors, as long as c is a constant. 

This problem can also be solved in O(n ~) t ime for any fixed e < 1, using ~ E R E W  
P R A M  processors. 

3 A Parallel  A l g o r i t h m  Based  on Kane l lak i s -Smolka  

A l g o r i t h m  

The KaneUakis-Smolka algorithm runs sequentially in O(nm) time, where n is the 
number  of states and m is the number of transitions. The basic idea behind the 
Kanellakis-Smolka algorithm is to split a block in the current part i t ion if not all 
states in the block can go to the same set of blocks. 

Figure 1 outlines our parallel algorithm which is based on the Kanellakis-Smolka 
algorithm. The algorithm uses known parallel algorithms for sorting and prefix sums. 
We describe the da ta  structures used in the algorithm and then the steps of the 
algorithm. 

D a t a  S t r u c t u r e s .  Let T(p) stand for {q e Q I (P,q) E T}, i.e., T(p) is the set 
of states to which there is a transition from p. We also define T - l (p )  to be {q C 
Q [ (q ,p)  G T}. 

The current part i t ion is represented as an array P A R T I T I O N .  It is an array of 
size n with (block id, state) pairs. For example, a pair (i, q) represents that  the state 
q currently belongs to the i th block. We maintain the array P A R T I T I O N  such that  
states belonging to the same block appear consecutively. 
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7r := r0; split := true 

wh i l e  split do  

split := false; let 7r = {B1, B 2 , . . . ,  Be} 

Unmark  B1, B2, �9 �9 �9 Bt 

1. fo r  / := 1 to  n in p a r a l l e l  do  

TEMP[i] := TSIZE[PARTITION[i] .s tate]  
2. Compute  the prefix sums of TEMP[1], TEMP[2], . . . ,  TEMP[n] 

Let the sums be Vl~V2,... ,Vn 

3. fo r  i := 1 t o  n in p a r a l l e l  do  

si := PARTITION[i] .s tate  
Let T[si] be {q l , . - - ,  qk} 

fo r  j := 1 to  k in p a r a l l e l  do  

Let processor in-charge of transition (si, qj) write (B[sl], Y[si], B[qj]) in L[vi-1 + j] 
4. Sort the sequence L in lexicographic order. 

5. fo r  / := 1 to  m in pa r a l l e l  do  if L[i] = L[i + 1] t h e n  L[i] := 0 

6. Compress the list L using a prefix computat ion 

7. fo r  each  block Bi (1 < / < e) in pa ra l l e l  do  

fo r  each  j ,  2 < j < ni in pa ra l l e l  do  

if  [q~,j] ~ [qi,1] t h e n  mark  Bi 

8. if  there is at least one marked block t h e n  

split := true; s := s + 1 

Pick one of the marked blocks (say Bi) arbitrarily 

for  each  p in Bi do  

if  [p] ~ [qi,,] t h e n  

B[p] := s  1 

Change the corresponding entry in P A R T I T I O N  to (p, g + 1) 

/*"Bt+I := Bi - {p E Bi:  [/9] -- [qi,1]} and Bi := Bi - Bl+l */ 

Using a prefix computat ion,  modify P A R T I T I O N  such that  all tuples 

corresponding to the same block are in successive positions. 

When the array P A R T I T I O N  is modified, positions of some 

states q's might change; inform the processors associated with 

the corresponding T(q) 's  of this change. 

Figure 1: Parallel Algorithm Based on Kanellakis-Smolka Algorithm 
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The array T R A N S I T I O N S  is used to store the relation T of the LTS. In partic- 
ular, the array is of size m and each entry contains the (from-state,  to-state) pair. In 
the array T R A N S I T I O N S ,  we store the transitions of T(1),  followed by the transi- 
tions of T(2),  and so on. T S I Z E  is an array of size n such that  TSIZE[q] stands for 
[T(q)l for each q in Q. Note that  the arrays T R A N S I T I O N S  and T S I Z E  are never 
altered during the algorithm. 

We also mainta in  an array B such that  for each state p in Q, B[p] is the id of a 
block to which p belongs in the current parti t ion r .  In addition, for each state p E Q, 
we let [p] stand for the set, {B[q] I a e T(p)}.  We emphasize here that  no repetit ion 
of elements is permi t ted  in [p]. For any state q in Q, we let [T(q)] stand for the 
sequence B[pl], P Ip2 ] , . . . ,  B[pt], where T(q) = {Pl,P~,. . .  ,Pt}. Notice that  IT(q)] can 
have multiple occurrences of the same element. Also, let V[s] stand for the position 
of state s within its block. We let nl = IBil for any block Bi in the current parti t ion 
and denote the j t h  element of block Bi by qi,j. 

As an example  to illustrate our data structures, consider the following initial par- 

tition, 
~ro = {{a,b,c},  { d , e , f } ,  {g ,h , i }} .  

Let the transition relation T be defined as follows: T(a) = {d, f } ,  T(b) = {d}, 
T(c) = {e , / } ,  T(d) = {g,i},  T(e) = {a,b}, T ( f )  = {g}, T(g) = {a}, 
T(h) = {b,c,d}, T(i)  = {a,b}. Table 1 shows the contents of P A R T I T I O N ,  
T R A N S I T I O N S ,  B,  and T S I Z E  at the beginning. 

P A R T I T I O N  (1,a) (1,b) (1,c) (2, d) (2, e) (2, f )  . . .  

T R A N S I T I O N S  (a,d) (a , f )  (b,d) (c,e) (c , f )  (d,g) . . .  

B 1 1 1 2 2 2 . . .  

T S I Z E  2 1 2 2 2 1 . . .  

Table 1: Contents of Data  Structures: An Example 

At the beginning, P A R T I T I O N  has tuples corresponding to the initial partition. 
The array T R A N S I T I O N S  never gets modified in the algorithm. The array 13 is 
also initialized appropriately. For any state q, processors associated with T(q) keep 
track of the position of state q in the array P A R T I T I O N .  

The algorithm repeats as long as there is a possibility of splitting at least one of 
the blocks in the current partition. Steps 1-3 are to construct a sequence L of triples. 
Each state contributes a triple corresponding to each one of transitions going out of 
the state. If s~ is any s tate  such that  T(s~) = {ql, q~, . . . ,  qk}, then the corresponding 
triples are (B[si], Y[s,], B[qj]), for j = 1 , 2 , . . . ,  k. 

Steps 4-6 are to el iminate duplicates in L and compress the array L. At the end of 
Step 6, the array L contains [p] for every state p in each block in the current partition. 
Furthermore,  for each block B = {P l , . - . ,  Pk}, [Pl], [P2],. . . ,  [Pk] appear consecutively 
in L. 
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Step 7 identifies blocks that can be split. Note that  even if there is a single j 
such that  [ql,j] ~ [qi4], we may end up splitting the block Bi and thus the block Bi is 
marked. 

Step 8 picks one of the marked blocks arbitrarily and splits it. If the block Bi 
is chosen, then B~ is split into Bi and Bt+~, where B~+I = {p E B~I[p] ~ [q~,l]} and 
Bi is updated to be Bi - Bt+l. After the splitting, we update PARTITION such 
that  states belonging to the same block appear consecutively. Note that we could 
have split in parallel all those blocks that  are marked instead of just one such block 
as done in Step 8; even then, the worst case run-time of the algorithm would be the 
same.  

4 A n  Il lustrative Exam p le  

We now illustrate our algorithm with an example. The example considered is the 
same as above. The initial partition T0 is given by {{a, b, c} {d, e, f}  {g, h,/}}. The 
transition relation is defined as: 

T(a) = {d,f};  T(b) = {d}; T(c) = {e,/};  T(d) = {g,i}; T(e) = {a,b}; 

T(f) = {g}; T(g) = {a}; T(h)= {b,c,d}; T(i)= {a,b}. 

The initial contents of various data structures are shown in Table 1. We call each 
run of the while loop as a phase of the algorithm. 
Phase I: At the end of Step 3 the list L looks like: 

(1,1,2),(1,1,2),(1,2,2),(1,3,2),(1,3,2),(2,1,3),(2,1,3),(2,2,1),(2,2,1), 

(2, 3, 3), (3, 1, 1), (3, 2, 1), (3, 2, 1), (3, 2, 2), (3, 3, 1), (3,3, 1) 

In Step 4, L is sorted in lexicographic order. The above L happens to be in sorted 
order already. Steps 5 and 6 compress L as follows. 

(1,1,2),(1,2,2),(1,3,2),(2,1,3),(2,2,1),(2,3,3),(3,1,1),(3,2,1),(3,2,2),(3,3,1) 

In Step 7, the algorithm realizes that: [q2,2] # [q2,,]; [q3.2] # [q3,1]. Therefore, the 
blocks B~ and B3 will be marked. 

In Step 8, one of the marked blocks is picked arbitrarily. Let B2 be the picked 
block. B2 gets split into two blocks namely {d, f}  and {e}. PARTITION gets 
modified to: 

(1,a) (1, b)(1,c)(2, d)(2, f ) (4,  e)(3,g)(3, h)(3, i) 

Phase II: The list L after Step 3 looks like: 

(1, 1, 2), (1, 1, 2), (1,2, 2), (1, 3,4), (1,3,2), (2, 1, 3), (2, 1, 3), (2, 2, 3), (4, 1,1), 
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(4, i, I), (3, i, i), (3, 2, I), (3, 2, I), (3, 2, 2), (3, 3, I), (3, 3, i) 
After L gets sorted and compressed (in Steps 4 through 6), L becomes: 

(I, I, 2), (1, 2, 2), (i, 3, 2), (1, 3, 4), (2, 1, 3), (2, 2, 3), 

(3,1,1),(3,2,1),(3,2,2),(3,3,1),(4,1,1) 
In Step 7, blocks B, and B3 get marked. In Step 8, one of the marked blocks (say 

B1) gets chosen. As a result, P A R T I T I O N  gets modified as follows: 

(1,a) (1,b) (5, c) (2,d) (2, f )  (4, e) (3,g) (3, h) (3, i) 

Phase III: The list L gets formed in Step 3: 

(1, 1, 2), (1, 1, 2), (1, 2, 2), (5, 1,4), (5, 1,2), (2, 1,3), (2, 1,3), (2, 2, 3), (4, 1,1), 

(4, 1, 1), (3, 1, 1), (3, 2, 1), (3, 2, 5), (3, 2, 2), (3, 3, 1), (3, 3, 1) 

In Steps 4 through 6, L gets modified as follows: 

(I, 1, 2), (I, 2, 2), (2, i, 3), (2, 2, 3), (3, I, 1), (3, 2, I), (3, 2, 2), (3, 2, 5), (3, 3, 1), 

(4,1, 1), (5, 1,2)(5,1, 4) 

In Step 7, B3 gets marked and hence is chosen in Step 8 for splitting. P A R T I T I O N  
now becomes: 

(1,a) (1,b)(5, c)(2, d) (2, f )  (4, e)(3,g) (3, i) (6, h) 

Phase IV: No block gets marked in this phase and hence the algorithm terminates to 
yield the final partition of: {{a,b} {c} {d,f} {e} {g,i} {h}}. 

5 Analysis 

We assume that there are n + m processors, one for each state and one for each 
transition. 

Step 1 takes O(1) time using n processors. Steps 3,5,7 also take O(1) time but 
need m processors. In Step 2, prefix computation can be done using log~ EREW 
PRAM processors in O(logn) time (by Lemma 3). In Step 4, we need to sort m 
numbers in the range [0, n3], and hence, we apply Lemma 5 to infer that it can be 
done in O(log m) = O(log n) time using ~ loglog n CRCW PRAM processors, or 
in n ~ time using ~ EREW PRAM processors for any fixed ~ < 1. Step 6 takes 
O(logm) = O(log n) time using ~ EREW PRAM processors (by Lemma 3). In 
Step 8, prefix computation takes O(log n) time using ~ EREW PRAM processors 
and the rest of the computation can be completed in O(1) time using n processors. 

Thus, each run of the while loop can be completed in either: 1) O(log n) time with 
a total work of mloglog n on the CRCW PRAM, or 2) O(n ~) time with a total work 
of O(m) on the EREW PRAM. Since the while loop can be executed at most n times, 
we get the following theorem (using Lemmas 1 and 2): 
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T h e o r e m  1 R C P P  with m transitions and n states can be solved 1) in O(n log n) time 
using ~o-~ loglogn C R C W  P R A M  processors, or 2) in O(n TM) time and ~, E R E W  

P R A M  processors, for  any fixed e < 1. 

The same algorithm can be modified easily to the case of multiple-relation RCPP 
to use quadruples instead of triples in the list L. The stated processor and time 
bounds still hold, where m is the total number of transitions in all the relations. 

6 Implementat ion Details 

We have implemented our parallel algorithm on two parallel machines, CM2 and CM5 
of the Thinking Machines Corp. We employed the CM2 located in the CIS department 
of the University of Pennsylvania for program development. CM2 is a SIMD machine 
and has 4096 processing elements. Input and output are through a front end (which 
is a sun 3/60 work station). Each processing element is bit serial and can compute 
any boolean function that maps three bits into two bits. On the other hand, CM5 
is a MIMD machine with 512 processing elements. Unlike the CM2 processors, CM5 
processors are quite powerful; each processing element is comparable to a work station 
in computing power. We accessed the CM5 located in the CS department of University 
of Illinois at Urbana-Champaign through internet. 

Both CM2 and CM5 provide a routing network for the processors to communicate. 
In CM2 the underlying routing network has a topology of a hypercube; whereas in 
CM5, the routing network takes the topology of a fat tree. There are special hardware 
to handle operations such as scan, broadcast, etc., in both of these machines. 

In CM5, we can choose a subset of the processors to work with at any time. We 
have exploited this facility to study the scalability of our parallel program. Though 
CM2 supports virtual processors, it does not support selection of a subset. One could 
run programs written for CM2 on CM5 without much effort. We have coded our 
algorithm in C* (a parallel programming language supported by CM2 which is very 
similar to C). The same program runs on CM5. The main objective of this experiment 
was to study the behavior of the program when the number of processors used changes. 

Input to the program was generated as follows: We fix the number of states (call 
it N) and the number of initial blocks in the Relational Coarsest Partition Problem. 
States in each block were chosen randomly (under a uniform distribution). Transitions 
were also picked randomly. Transition Probability, Tp, is a parameter that the user 
can choose. Each possible transition is picked with this probability. 

Figure 2 Shows the results of our experiment with N = 10,000 and Tp = 0.05. 
The number of initial blocks was 50. The program was run with various number 
of processors: 32, 64, 128, 256 and 512. For each processor configuration, the time 
indicated is the average of 5 independent runs. 

Solid lines correspond to total execution time of the program, whereas the dotted 
lines correspond to the time spent on just sorting (in Step 4). 65 to 70 % of the total 
execution time is spent on sorting. Since the execution time of our program is always 
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Figure 2: Execution Times on CM5 

bounded below by how fast the parallel machine can sort, we are currently exploring 
ways of substituting sorting with some other operations. 

T C o n c l u s i o n s  

We have presented a simple parallel algorithm for RCPP and its implementation. An 
interesting open problem is to design faster versions of this algorithm. The bottleneck 
in this algorithm is the use of sorting. Since RCPP is known to be 7~-complete, a 
reasonable time to aim for will be O(n~), for any fixed e < 1. In [7], we present 
an efficient algorithm for RCPP which runs in time O(n log n) using ~ log n CREW 
PRAM processors. This algorithm is based on the sequential algorithm of Paige and 
Tarjan (whose run time is O(mlogn)) [8]. Due to lack of space, we are unable to 
provide details of this algorithm. 

Acknowledgements 
We are grateful to Inhye Kang for many stimulating discussions. We are also grateful 
to Angela Lal and D.R. Mani for their wonderful help in implementing our algorithm. 

R e f e r e n c e s  

[1] C. Alvarez, J.L. Balcazar, J. Gabarro, and M. Santha. Parallel Complexity in the 
Design and Analysis of Concurrent Systems. In PARLE '91. Parallel Architectures 
and Languages Europe, Vol 1. Springer-Verlag LNCS 505, 1991. 



414 

[2] P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, and S. Saxena. 
Improved Deterministic Parallel Integer Sorting. Information and Computation, 
pages 29-47, 1991. 

[3] R.P. Brent. The Parallel Evaluation of General Arithmetic Expressions. Journal 
of the ACM, 21(2):201-208, 1974. 

[4] R. Cole. Parallel Merge Sort. SIAM Journal on Computing, 17:770-785, 1988. 

[5] J. Js Js Parallel Algorithms: Design and Analysis. Addison-Wesley Publishers, 
1992. 

[6] P.C. Kanetlakis and S.A. Smolka. CCS Expressions, Finite State Processes, and 
Three Problems of Equivalence. Information and Computation, 86:43-68, 1990. 

[7] I. Lee and S. Rajasekaran. Parallel Algorithms for Relational Coarsest Partition 
Problems. Technical Report MS-CIS-93-71, Dept. of CIS, Univ. of Pennsylvania, 

. July 1993. 

[8] R. Paige and R.E. Tarjan. Three Partition Refinement Algorithms. SIAM Journal 
on Computing, 16(6):973-989, 1987. 

[9] S. Zhang and S.A. Smolka. Towards efficient parallelization of equivalence checking 
algorithms. Unpublished Manuscript, 1993. 


