
Formula-Dependent Equivalence for
Compositional CTL Model Checking

Adnan Aziz Thomas R. Shiple Vigyan Singhal
Alberto L. Sangiovanni-Vincentelli

Emaih {adrian, shiple, vigyan, alberto}@ic, eecs. berkeley, edu

Department of EECS, University of California, Berkeley, CA 94720

Abstract . We present a state equivalence that is defined with respect
to a given CTL formula. Since it does not attempt to preserve all CTL
formulas, like bisimulation does, we can expect to compute coarser equiv-
alences. We use this equivalence to manage the size of the transition re-
lations encountered when model checking a system of interacting FSMs.
Specifically, the equivalence is used to reduce the size of each compo-
nent FSM, so that their product will be smaller. We show how to apply
the method, whether an explicit representation is used for the FSMs,
or BDDs are used. Also, we show that in some cases our approach can
detect if a formula passes or fails, without composing all the component
machines. The method is exact and fully automatic, and handles full
CTL.

1 I n t r o d u c t i o n

Formal design verification is the process of verifying that a design has certain
properties that the designer intended. A well known verification technique is
computation tree logic (CTL) model checking. In this approach, a design is
modeled as a finite state machine (FSM), properties are stated using CTL for-
mulas, and a "model checker" is used to prove that the FSM satisfies the given
CTL formulas [6]. The complexity of model checking a formula is linear in the
number of states of the FSM.

Oftentimes, large designs are constructed by linking together a set of FSMs.
The straightforward approach to model checking such a design is to first form
the product of the component FSMs to yield a single FSM, and then proceed
to model check this single FSM. However, the size of the product machine can
be exponential in the number of component machines, and hence the model
checker may take exponential time. This is known as the "state explosion prob-
lem" when using explicit representations, or the "representation explosion prob-
lem" when using implicit representations, like ordered binary decision diagrams
(BDDs). As it turns out, we cannot hope to do better than this in the worst
case, because the problem of model checking a system of interacting FSMs is
PSPACE-complete [1].

Our goal is to develop an algorithm that alleviates the explosion problem
by identifying equivalent states in each component machine. These equivalent

325

states are then used to simplify the components before taking their product, thus
leading to a smaller product machine. It is well known that bisimulatiou equiva-
lence is the coarsest (or weakest) equivalence that preserves the t ruth of all CTL
formulas [4]. However, in general we are interested in model checking a system
with respect to just a few formulas, and hence preserving all CTL formulas is
stronger than needed. Thus, we investigate a formula-dependent equivalence that
preserves the truth of a particular formula of interest, but possibly not of other
formulas. This leads to a coarser equivalence, and thus to a greater opportunity
for simplification. If an explicit representation is used for the FSMs, then this
equivalence is used to form the quotient machines of the components. If BDDs
are used, then the equivalence relation is used to define a range of permissible
transition relations, among which we want to use the one with the smallest BDD.

Consider for example the FSM M described in Figure 1. The CTL formula
r = VG(REQ -+ VFACK) expresses the property that every request is eventually
acknowledged. The behaviors from state 1 and 5 are different. However, since
there are no behaviors from states 4 and 8 where REQ is produced, then r
is always true at these states. Hence, states 1 and 5 can actually be merged,
with respect to r Consequently, M can be replaced by the 5-state machine M~:
verifying r on a product machine containing the component M is equivalent to
verifying r on the product machine with M replaced by M ~.

0 0 T

REQ IDLE ACK EOT

(0) 0 0 T

REQ IDLE ACK IDLE

M !
0 0 T

REQ IDLE ACK IDLE

Fig. 1. Finite state machine M with inputs 0 and 1 and outputs REQ, ACK, IDLE and
E O T . The symbol T means "true", the union of all input assignments.

The approach we have developed can be applied to any formula of CTL. Thus,
we can handle formulas that refer to atomic propositions of any number of the
component machines, and the formulas can be nested arbitrarily. The approach
is fully automatic and it is exact, that is, it returns exactly the set of product
states satisfying the formula of interest. Finally, in some cases the approach
can detect if a formula passes or fails, without composing all the component
machines.

Section 2 discusses related work, and Section 3 presents some preliminaries.
In Section 4 we develop our formula-dependent equivalence, and in Section 5
we discuss how this equivalence can be used to simplify compositional model
checking. Finally, Section 6 mentions future work and gives conclusions. Proofs
for the propositions and theorems can be found in [2].

326

2 R e l a t e d W o r k

Other researchers have addressed the problem of reducing the complexity of
model checking, As mentioned in the introduction, bisimulation preserves the
truth of all CTL formulas, and hence can be used to identify equivalent states
to derive smaller component machines. This technique has been used by [3].

Clarke el al. presented the interface rule, which can be applied when a CTL
formula refers to the atomic propositions of just one machine, the "main" ma-
chine [7]. In this case, the outputs of the other machines that cannot be sensed
by the main machine, can be "hidden". After hiding such outputs, some states
in the other machines may become equivalent, and hence the number of states
can be reduced. This technique is orthogonal to our approach, and thus the two
approaches could be combined. In general, any output not referred to by the
formula, and not observable by other machines, can be hidden.

Griimberg et al. defined a subset of CTL, known as ACTL, which permits
only universal path quantification, and not existential path quantification [11].
They go on to dev.elop an approach to compositional model checking for ACTL.
If an ACTL formula is true of one component in a system, then it is true of
the entire system. Thus, in some cases the full product machine can be avoided.
However, the formula may be true of the entire system, without being true of any
one component in isolation, i.e. their approach is conservative, and not exact. In
this case, some components must be composed, and the procedure repeated. The
user has the option of manually forming abstractions for some of the machines.
If the formula is false, then the product machine must always be formed. An
asset of this approach is that it handles fairness constraints on the system.

Dams et aL have also devised an approach using ACTL [9]. Like our method,
they compute an equivalence with respect to a single formula. Although they
are limited to formulas of ACTL, it may turn out that coarser equivalences
are possible by restricting to a subset of CTL. They do not address how their
equivalence can be used in compositional model checking, where a formula may
refer to the atomic propositions of several interacting machines.

Our experience indicates that existential path properties are useful for deter-
mining if a system can exhibit a certain behavior. This is especially true when
ascertaining if the environment for a system has been correctly modeled so that
it can produce the stimuli of interest. Hence, we are interested in techniques that
can handle full CTL.

The work of Chiodo et al. [5] has similar aims as ours, and the current work
can be seen as an outgrowth of that work. Both approaches are exact, fully
automatic, and formula dependent. We have extended Chiodo's method (see
Section 5.2), and have cast our extension as an equivalence on states.

3 P r e l i m i n a r i e s

3.1 F i n i t e S t a t e s M a c h i n e s

The systems that we want to verify are synchronous, interacting FSMs. Each
component FSM receives a set of binary-valued inputs, and produces another

327

set of binary-valued outputs. Formally, an FSM is a 5-tuple M = (S, I, J, T, O),
where S is a finite set of states, I = { a l , . . . , am} is a set of m inputs supplied
by the environment of the FSM, J = {~1 , . . . , fin} is a set of n outputs, T is the
transition relation, and O is the output function. T relates a starting state, an
assignment to the inputs, and an ending state, i.e. T C S • Z • S, where Z = 2 I.
We require the transition relation to be complete, so that for each a E E and
x E S, there exists at least one y E S such that (x, a, y) E T. The output function
takes a state in S and returns an assignment to the outputs, i.e. O : S --* 2 J.
Our definition of FSM is equivalent to that of a Moore machine in [11].

Composition is defined in the usual way. In composing two interacting FSMs,
some inputs of each machine may be equal to the outputs of the other machine,
whereas other inputs may come from the environment of the composed FSM.
Thus, the inputs of the composition are the inputs of the components that are not
outputs of either component. The outputs of the composition are all the outputs
of the components. Figure 2 shows an example, where M1 has states {1, 2, 3},
and/1,/2 has states {1', 2'}. The sets of inputs and outputs for M1 are {a, q} and
{p} respectively; and for M~ are {a, p} and {q} respectively. For the composition
M1 • M2, the sets of inputs and outputs are {a} and {p, q} respectively.

ap q

]1/[2

T -4

.

aq T

P p -~

M1

P, q P,

p,-q -d P,-4 ~

T

P, q

~ a M1 • M2

a g

Fig. 2. Example of FSM composition: p is the output of M1, q is the output of M2,
and a is an external input. @ is shorthand for the subset {{a}} C 2 {a,q}. The union
of aq, aq and aq is denoted by a+q.

3.2 C o m p u t a t i o n T r e e Log ic

Computation tree logic is a language used to describe properties of state tran-
sition systems. We are interested in checking CTL formulas that describe prop-
erties of the composition of a set of interacting FSMs. Since the composition of
a set of FSMs is again an FSM, we give the syntax and semantics of CTL for a
single FSM M. We allow two types of atomic propositions:

1. each output variable is an atomic proposition, and
2. each subset of states is an atomic proposition

328

The second type arises naturally when recursively checking formulas. With this,
the set of CTL formulas is defined inductively as follows:

- p is a CTL formula, where p is an output variable or a subset of states, and
- if r and r are CTL formulas, then so are -~r r V r 3Xr 3Gr and

3[r v r

Note that inputs are not allowed as atomic propositions. However, by modeling
an input by an FSM whose output describes the expected behavior of the input,
one can implicitly use an input as an atomic proposition.

The semantics of CTL is usually defined on finite Kripke structures, which
are directed graphs where each node is labeled by a set of atomic proposi-
tions [6]. To extend these semantics to FSMs, we just ignore the labels on the
transitions of the FSMs, and we view the outputs as atomic propositions. Let
M =. (S, I, J, T, 0) be an FSM. A path from state x0 is an infinite sequence
of states z 0 z l x 2 . . , such that for every i, there exists an a E /Y such that
(zi, a, xi+l) 6 T. The notation M, z0 ~ r means that r is true in state z0
of FSM M. The semantics of CTL is defined inductively as follows:

- M, z 0 ~
- M, x 0 ~
- M, z o ~
- M , z o ~
- M, z 0 ~
- M, z 0 ~

r

p, where p 6 J, i f fp 60(x0).
p, where p C S, iff z0 6 p.
-~r iff M, z0 ~ -'r
r V r i f fM, z0 ~ r or M, z0 ~ r
3Xr iff there exists a path z 0 z l z 2 . . , such that M, xl ~ r
3Gr iff there exists a path z 0 z l z 2 . . �9 such that for all i, M, zi

- M, Zo ~ 3[r U r iff there exists a path z 0 z l z 2 . . , and some i > 0 such
that M, zi ~ r and for all j < i, M, zj ~ r

For example in machine M1 x M2 of Figur~ 2, state (1, 2') satisfies the formula
3G(-',p A --q), whereas none of the other state do. The expression 3 F r is an
abbreviation for 3[true U r where true is a logical tautology. Lastly, we define
the CTL model checking problem as the problem of determining all states of the
system that satisfy a given formula.1

4 F o r m u l a - D e p e n d e n t E q u i v a l e n c e

Our goal is to define an equivalence on the states of each component machine
that is as coarse as possible with respect to a given CTL formula r while being
efficiently computable. Section 5 explains how we intend to apply this equiv-
alence to model checking, but the main idea is to merge equivalent states to
minimize the size of each component. The minimized machines are then com-
posed. Optionally, the product can be computed incrementally by composing a

1 If a set of initial states is known, then we can restrict our attention to the reachable
state space. In this case, we can apply known techniques for exploiting the unreach-
able states, such as minimizing the transition relation with respect to unreachable
states; .these techniques are orthogonal to those discussed in this paper.

329

few of the minimized machines, and then computing a new equivalence for this
sub-product. When the top level is reached and just a single machine remains,
the usual CTL model checking algorithm is applied to determine the states tha t
satisfy ~.

Our formula dependent equivalence can be best explained by comparing it
to bisimulation. ("strong bisimulation" of Milner [12, p. 88]) Given an FSM
M = (S, I, J, T, 0) , the bisimulation equivalence relation, denoted by ,~, is the
coarsest equivalence relation satisfying the following:

For all x, y 6 S, x ,,~ y implies
�9 0(~) = O(y) and
�9 for all a 6 Z (recall from Section 3 that ~7 = 2 I)

- whenever x a t, then for some w, y .2, w and t ,~ w, and
- whenever y a w, then for some t, x a t and t ,~ w.

The soundness of this definition follows from the observation that the class of
equivalence relations satisfying the above definition contains the identity, and
is closed under union. Intuitively, two states are bisimilar if their corresponding
infinite computat ion trees 2 "match". This means that the two states have the
same outputs, and on each input, the two states have next states whose infinite
computat ion trees again match.

We use the notion of PASS and FAIL states to ease the strict requirement
of bisimulation that the infinite computat ion trees of two states match. Loosely,
if a s tate is a PASS ~ state with respect to a CTL formula ~, then it satisfies
r in all environments; likewise, if a state is FAIL r then it does not satisfy r
in any environment. Given PASS r and FAIL ~ states, the first modification to
bisimulation we make is that subtrees rooted at FAIL r states are ignored. This
means that transitions to FAIL r states from one state need not be matched by
the other state. This works because only potential witnesses to a formula need
to be preserved. The second modification is that two states are equivalent if
they are both PASS ~ states. A consequence of this is that whereas bisimulation
requires the infinite computat ion trees of next states to match, now it is sufficient
that the next states are both PASS r states. This is what we mean by two infinite
trees matching up to PASS r states. Essentially then, we say that two states are
equivalent with respect to ~ if

1. they are equivalent with respect to the immediate subformulas of r and
2. either they are both PASS r states or both FAIL r states, or the infinite

computat ion trees of the two states match up to PASS ~ states, ignoring all
subtrees rooted at FAIL r states.

Before formally defining our equivalence relation, we define the PASS r and
FAIL r sets. For a given formula ~b, PASS r and FAIL r sets are defined for each
component. In the following definition, we assume a system of just two compo-
nents, M and M' . In defining the PASS r and FAIL r sets for M, M ' is referenced
because the atomic propositions in r may refer to M ~. The symbols Po and Pi

2 The infinite computation tree of a state is formed by "unrolling" the FSM starting
from that state.

330

are used to distinguish those output atomic propositions produced by M and
those produced by M'.

Def in i t ion 1. Let M = (S, I, J, T, O) and M ' = (S', I ' , J ' , T', O') be FSMs, and
let r be a CTL formula. Let po E J, Pi E J', and p~ C S • S ~. PASS r and FAIL r
for M are subsets of S, as follows:

r
Pi PASS v

FAIL ~
po PASS ~

FAIL ~
ps PASS r

FAIL ~
-~r PASSV

FAIL ~
r V r PASS ~

FAIL ~

3Xr PASS r
FAIL ~

3Gr PASS r

FAIL ~

~[r162

FAIL ~

0
0
{~ e Slpo ~ o(~)}
S\ PA SS ~

{~ e SlW' e s', (~, ~') e p, }
{~ 6 SlW' e s,, (~, ~') ~ p, }
FAIL ~

PASS ~ U PASS r
FAIL w f3 FAIL ~2

{x E SIVa E Z, 3t s.t. x a t a n d t E PASS c}
{x0 E Slfor every path xox lx2 . . . , xl E FAIL ~}
greatest fixed-point of: R0 = PASSV;

Ri+l = Ri r3 {z E SiVa E Z , 3t s.t. z ~ t and t E Ri}
{x0 E Sifor every path xoxlx2 . . . , there exists i > 0

s.t. xi E FAIL r }
least fixed-point of: R0 = PASSW;
Ri+l = Ri U {z E Six 6 PASS r , and Va E ~U, 9t

s.t. x a t and t E Ri}
{x0 E Slfor every path X0ZlX2... , either

1) there exists i >_ 0 s.t. xi E FAIL r and
Vj <_ i, xj E FAIL r or

2) Vi > 0, zi E FAIL r }

As an example of PASS r and FAIL r consider the FSM in Figure 3. For
r = p, states 1, 2, 3, 5, 6 and 7 lie in PASS r and states 4 and 8 lie in FAIL r
For r = 3Gp, states 3 and 7 lie in PASS ~, while states 4 and 8 lie in FAIL ~, and
states 1, 2, 5 and 6 lie in neither. The following proposition says that, indeed, if
x is in PASS r then any product state with x as a component satisfies r

a ~ T ~ ~ a - - ~ T

- ' P T ~ P

T~ ~
Fig. 3. Illustrating PASS r and FAIL ~, and the fact that s is coarser than bisimulation.

331

Proposition2. Let r be a CTL formula, let x be a state of M, and let t be
a state of any FSM M ~. If x E PASS r then M x M ~, (x, t) ~ r Likewise, if
x E FAIL ~, then M x M ~, (x, t) ~ r

Note that the converse is not true. For example, consider a component M
and the formula r -- qA-~q, where q is an output of some other component. Then
FAIL ~ for M is empty (because FAILq and PASS q are empty by case pi), even
though r is not satisfiable (i.e. for any component M ~, no state in M • M ~ satisfies
r In fact, by generalizing this reasoning, we can show that if FAIL ~ were defined
in such a way that the converse of Proposit ion 2 did hold, then FAIL ~ would
be EXPTIME=hard to compute. The reduction is from CTL satisfiability, which
is known to be EXPTIME-comple te [10]. To check if a formula r is satisfiable,
compute FAIL ~ for the component M shown in Figure 4, where p is some atomic
proposition not in r We can show that x E FAIL ~ if and only if r is not
satisfiable, and thus satisfiability can be answered if we could compute FAIL r
exactly. Similarly, since x E FAIL r if and only if x E PASS ~r the same reduction
shows that PASS ~ would also be EXPTIME-ha rd to compute.

~ T

P

Fig. 4. Component machine used to show that computing FAIL ~ exactly is EXP-
TIME-hard.

Now we formally define our equivalence relation. Let M = (S, I , J, T, O)
and M ~ -- (S', I ' , J~, T ~, O ~) be FSMs, and let r be a CTL formula. Following
Milner's development of bisimulation, we define the equivalence relation gr on
the states of FSM M as the coarsest equivalence relation satisfying the following:

For x, y E S, Er y) iff:
C a s e r (x ,y) E S x S.
C a s e r = po: x E PASS r and y E PASS r or x E FAIL r and y E FAIL r
C a s e r = p , : for all s' E S', (x ,s ') Ep , iff (y, s ') Ep~.
C a s e r = -~r gO(x, y).
Case r = r v y) and y).
C a s e r = 3X~b: gr y) and

1. x E FAIL r and y E FAIL r or x E PASS r and y E PASS r or
2. O(x) = O(y), and for all a E X:

�9 whenever x a t and t ~ FAIL r 3w s.t. y a w and gr w), and

�9 whenever y a w and w ~ FAIL r 3t s.t. x 2. t and gr w).
C a s e r = 3G~: gr y) a n d

1. x E FAIL r and y E FAIL r or x E PASS r and y E PASS r or
2. O(x) = O(y), and for all a E Z

�9 whenever x 2+ t and t ~ FAIL ~, 3w s.t. y -% w and E~(t, w), and

�9 whenever y 2 . w and w r FAIL r 3t s.t. x ~ t and gr w).
C a s e r = 3[r V r Er Y) and gr y) and

332

1. x E FAIIJ' and y E FAIL r or z E PASS r and y E PASS r or
2. O(x) = O(y), and for all a e E

a

* whenever x a t and t ~ FAIL r 3w s.t. y --~ w and E~(t, w), and

, whenever y a w and w ~ FAIL ~, 3t s.t. x -~ t and Er w).

In a manner similar to Milner, we can show that Er is the maximum fixed-
point of a certain functional. Hence, using a standard fixed-point computation,
g~ can be computed in polynomial time.

Notice that Er requires equivalence on all subformulas. As the following
example shows, this requirement is warranted. Consider M1 in Figure 5. For
r = 3F(p A 3F(~ A q)), states 2, 3 and 5 lie in FAILr because p is false in these
states. So with respect to r the infinite computation trees of 1 and 4 match when
FAIL ~ states are ignored, and if we did not require equivalence on subformulas,
they would be Er However, if we were to compose M1 with M2, r
holds in state (1, 1') but does not hold in state (4, 1'). Thus, it would be wrong
to have 1 and 4 be E~-equivalent. Requiring equivalence on all subformulas fixes
this problem.

T

ap ap -d p

T

ap a p

M1
M2

T

ap~ ap~ "a~

T

ap~ apq apq

M1 x M~

Fig. 5. Equivalence on subformulas is required. Only the states reachable from (1, 1')
and (4, 1') are shown in M1 x/142.

Since we define CTL so that formulas may refer directly to states via atomic
propositions, then any formula-independent equivalence (e.g. bisimulation) wi l l
distinguish every pair of states, whereas E r may make some states equivalent.
However, even if we could not refer to states, E r is still coarser than bisimulation.
As stated earlier, one reason for this is that the subtrees rooted at FAIL r states
are ignored. This is illustrated in Figure 3: if r = 3Gp, then 4 is a FAIL r state,
and thus 1 and 5 are Er however, they are not bisimilar.

On the other hand, there are cases where E ~ distinguishes two states that can
actually be merged. Consider the FSM M1 in Figure 6 and the formula r -- qGq,
where q is an output of some component not shown. Since q is an input to M1,
the sets PASS r and FAIL r are empty, and hence E ~ reduces to bisimulation.

333

States 1 and 3 are not bisimilar because 2 and 4 have different outputs, and
thus 1 and 3 are not Er However, q must be false to reach states 2
and 4, and thus the difference between states 1 and 3 does not affect the validity
of r Hence, states 1 and 3 can be merged with respect to r but gr will not

0

P P M1 P P

merge them.

Fig. 6. s equivalence is incomplete. The input to M1 is q, and the output is p. States 1
and 3 can be safely merged with respect to the formula ~b = 3Gq.

The following proposition says that Er states cannot be distin-
guished, with respect to r by any environment. This is key in proving Theo-
rem 4, the theorem of correctness.

P r o p o s i t i o n 3. Let r be a CTL formula, and let x and y be states of M such
that Er y). Then for any state t of any FSM M ~, the following holds: M •
M' , (x , t~ ~ r i f f M x M', (y,t) ~ r

As an aside, note that the converse of Proposition 3 is not true. In fact, just
because two states cannot be distinguished with respect to r by any environment,
this does not imply that they can be merged. For example, consider M1 in
Figure 5, and the formula r = 3F(p A 3F(~ A q)). As stated earlier, states 2
and 5 lie in FAIL r and thus for any state t of any FSM M ~, M1 • M ~, (2, t)
r iff M1 • M' , (5, t) ~ r (i.e. by Proposition 2, neither (2, t) nor (5, t) satisfies
~b). However, if we were to merge states 2 and 5 into a single state, states 1 and
4 would become equivalent. But, as discussed earlier, it would be wrong to have
1 and 4 be Er

Ultimately, the purpose of computing s162 is to be able to merge equivalent
states, thus leading to smaller component machines. Given an equivalence rela-
tion on the states of an FSM, we define the quotient machine in the usual way.
As we describe in the next section, if we are using an explicit representation for
FSMs, then we use the quotient machine of each FSM in place of the original
component. The following theorem asserts that doing this does not alter the
result returned by the model checker. If we are using an implicit representation,
then we use ~r to define a range of permissible transition relations for each
component, among which we want to use the smallest.

T h e o r e m 4. Let r be a CTL formula, and let M1 , . . . , Mn be FSMs. Let Mi/E~
be the quotient of Mi with respect to E r and let [si] denote the equivalence class
of E r containing sl. Then for all product states (s l , . . . , sn),

M1 • • Mn, (s l , . . . , s~) ~ r iff M1/~ r • • Mn/C r ([sl] , . . . , [sn]) ~ r

334

5 C o m p o s i t i o n a l M o d e l C h e c k i n g

The equivalence relation Er can be used to manage the size o f the transition
relations encountered in compositional model checking. The assumptions are
that each component machine is relatively small and easy to manipulate, and
that the full product machine is too large to build and manipulate. The general
idea is to minimize each component machine, with respect to gr for that machine,
before composing it with other machines. We can incrementally build the product
machine by composing machines into clusters, and again applying minimization
to each cluster. When just one machine remains, we apply a standard CTL model
checker. Figure 7 outlines a procedure for this approach.

funct ion compositional_model_checker(C, M1,. . . , M.) {
if (n = 1)

r e t u r n modeLchecker(r M1);
for (i = 1;i < n;i ++)

M* = minimize(M~, r
M~, . . . , M[= form_clusters(M1*,..., M,~);
compositional_model_checker(C, M~,. . . , M[);

}

Fig. 7. Outline of procedure for compositional model checking: minimize and form
product incrementally.

The question of how to minimize a component with respect to gr depends
on what sort of data representation is used for the transition relations. If an
explicit representation is used (e.g. adjacency lists), then minimization is simply
a mat ter of forming the quotient machines M i / g i r After the model checker is
applied to the product of the quotient machines, Theorem 4 can be directly
applied to recover the product states in the original state space that satisfy r

If an implicit representation is used, then minimization becomes more com-
plicated. We focus on the case where BDDs are used. There is no correlation
between the size of the BDD for a transition relation, and the number of tran-
sitions in the relation. Thus, the idea behind minimization in this case is to use
E r to define a range of transition relations, any of which can be used in place of
the original transition relation, and then choose the relation in this range with
the smallest BDD. It should be noted however, that smaller component BDDs
do not guarantee a smaller product BDD-- th i s is only a heuristic.

For a component M, we take the upper bound of the range to be T ma=,

which is the relation formed by adding to T any transition between two states
for which there exists a transition between equivalent states (e.g. if s -% s' is
in T and s162 s) and s162 s'), then x -% x' is added). The lower bound is T
itself. Given these bounds, a heuristic like restr ict [8] is used to find a small BDD
between T and T "~a=. It can be shown that any transition relation between T
and T " ~ can be used without altering the result returned by the model checker.
Alternatively, instead of looking for a small relation between T and T rna=, we
can just use T "~i'~, which is the transition relation of the quotient machine, if it
turns out that T rain is small.

335

5.1 Early Pass/Fail Detection

Sometimes the model checking problem is posed as: given a formula r and a
subset of product states Q, is Q contained in the set of states satisfying r
For example, Q may be the set of initial states. Since our method returns all
states satisfying r a simple containment check answers the question: However,
in some cases, we may be able to answer the question without composing all the
machines, yielding a further savings in time. This is known as early pass / fa i l
detection.

Let Q = {ql, q2, . . . , am}, where qJ is the product state (~ , ~ , . . . , s J}, and
let FAIL~ be the FAIL r states in component i. If ~ E FAIL r then any product
state (t s , . . . , ti- 1, ~ , t i+l , , �9 tn) does not satisfy r so in particular, qJ does not
satisfy r Hence, the answer to the above question is "no". So in summary, if for
any i, FAIL~ intersects the ith state component of the set Q, then the answer
is "no".

On the other hand, to reach an early "yes" answer, we need each state in Q
to be "covered" by at least one PASS r state. If ~ E PASS~i, then every state in
Q with ~ as its ith component is guaranteed to satisfy r So in summary, if for
every state in Q, at least one of its component states is a PASS r state, then the
answer is "yes".

5.2 P r o c e s s i n g S u b f o r m u l a s

As the number of subformulas in r increases, the equivalence s162 becomes finer
because equivalence on all subformulas is required. However, if some of the sub-
formulas of r are first replaced by fresh atomic propositions representing the
product states satisfying the subformutas, then this may lead to a coarser equiv-
alence. This follows since knowing which product states satisfy a subformula
adds information to what was originally known, information that can be used at
the component level in computing gr (for the new r

This is illustrated by the system in Figure 2, where r = (3G(p A q)) A Q,
and Q is the set {{1, 1'), (2, 1')} of product states. Lines 1 through 6 of Table I
show the equivalence classes calculated for M1 on the subformulas of r The end
result (line 6) is that no states are equivalent; hence, we have gained nothing.
Instead of processing all of r we could stop after computing the equivalence
for 3G(p A q). In this case, states 2 and 3 are equivalent (line 4), and thus a
smaller machine can be built for M1. When this quotient machine is composed
with M2 and the model checker is applied, we discover that no product states
satisfy 3G(p A q). At this point, we can create a fresh atomic proposition, Q', to
represent this (empty) set of states. Then when we calculate the equivalence on
Mi for Q' A Q (which is the same as the original r we see that states 1 and 2
are now equivalent (line 8), so we can again construct a smaller machine for M1.

Thus, we may want to follow a strategy where a nested fornmla is recursively
decomposed into simpler subfornmlas, and the compositional model checker of
Figure 7 is applied to each subformula. Note that whereas Chiodo et al. [5] recur-
sively decompose a formula into its immediate subformulas, we can decompose

336

I I d: IPASS~I FAILq)I equiv classesl
1 q ~ r {1,2,3}
2 ,. {2 3} {I} {I},{2,3}
3 pAq ~ {1} {i}, {2,3}
4 3G(p ^ q) q} {i} {I}, {2, 3}
5Q 0 {3} {1,2},{3}
6 (2G(pAq))AQ 0 {1,3} {1},{2},{3}

VQ' r {1,2,a} {1,2,3}
8Q'AQ r {1,2,3} {1,2},{3}
Equivalence classes for/1//1 of Figure 2 on (3G(p A q)) A Q. Table 1.

a formula into arbitrary subformulas, since our equivalence works on nested for-
mulas.

Of course, even though we may be able to compute coarser equivalences
with this strategy, the drawback is that a reduced product machine must be
reconstructed for each subformula. Experiments are required to determine how
to decompose a formula to achieve a balance between these conflicting demands.

6 F u t u r e W o r k a n d C o n c l u s i o n s

We have presented a formula-dependent equivalence that can be used to manage
the size of the transition relations encountered in compositional CTL model
checking. We have yet to implement the method, and the ultimate effectiveness of
the method can be confirmed only by experimentation. Given an arbitrary CTL
formula r the method works by first computing an equivalence on the states
of each component machine, which preserves r If an explicit representation
for transition relations is used, then the quotient machine is constructed for
each component, and the quotient machines are used to build a smaller product
machine.

If BDDs are used, then the equivalence for each component is used to deter-
mine a range of permissible transition relations. More work remains to derive a
procedure for efficiently choosing a relation from this range that will ultimately
lead to a smaller product machine.

Our approach can be applied incrementally to build the product machine by
clustering some minimized machines, forming their product, and repeating the
equivalence computation. Research is needed to understand how best to cluster
the components to achieve the smallest sub-products. Also, we outlined how our
approach can be applied to the subformulas of a formula, to achieve a coarser
equivalence. We need to devise a heuristic to intelligently decompose a formula
into subformulas to take advantage of this.

An important part of a CTL model checker is the ability to generate counter-
examples. Since we are altering the product machine, a counter-example in the
altered product may not actually exist in the full product. A method needs to
be developed to handle this. Finally, we plan to extend our method to fair-
CTL model checking, and we would like to apply similar ideas to the language
containment paradigm.

337

Acknowledgments

We wish to thank the reviewers for their helpful comments. This work was sup-
ported by SRC grant 94-DC-008, SRC contract 94-DC-324, and NSF/DARPA
grant MIP-8719546. In addition, the second author was supported by an SRC
Fellowship.

References

1. A. Aziz and R. K. Brayton. Verifying interacting finite state machines. Technical
Report UCB/ERL M93/52, Electronics Research Laboratory, College of Engineer-
ing, University of California, Berkeley, July 1993.

2. A. Aziz, T .R . Shiple, V. Singhal, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli. Formula-dependent equivalence for compositional CTL model check-
ing. Technical report, Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, 1994.

3. A. Bouajjani, J.-C. Fernandez, N Halbwachs, P. Raymond, and C. Ratel. Minimal
state graph generation. Science of Computer Programming, 18(31:247-271, 1992.

4. M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing Kripke structures
in temporal logic. Technical Report CS 87-104, Department of Computer Science,
Carnegie Mellon University, 1987.

5. M. Chiodo, T. R. Shiple, A. L. Sangiovanni-Vincentelli, and R. K. Brayton. Au-
tomatic compositional minimization in CTL model checking. In Proe. Int'l Conf.
on Computer-Aided Design, pages 172-178, Nov. 1992.

6. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. A CM Trans. on Pro-
gramming Languages and Systems, 8(2):244-263, Apr. 1986.

7. E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In
4th Annual Symposium on Logic in Computer Science, Asilomar, CA, June 1989.

8. O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In J. Sifakis, editor, Proceedings of the
Workshop on Automatic Verification Methods for Finite State Systems, volume
407 of Lecture Notes in Computer Science, pages 365-373. Springer-Verlag, June
1989.

9. D. Dams, O. Grumberg, and R. Gerth. Generation of reduced models for checking
fragments of CTL. In C. Courcoubetis, editor, Proceedings of the Con]erence on
Computer-Aided Verification, volume 697 of Lecture Notes in Computer Science,
pages 479-490. Springer-Verlag, June 1993.

10. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 995-1072. Elsevier Science Pubfishers B.V.,
1990.

11. O. Grumberg and D.E. Long. Model checking and modular verification. In
J. C. M. Baeten and J. F. Groote, editors, CONCUR '91, International Con]er-
ence on Concurrency Theory, volume 527 of Lecture Notes in Computer Science.
Springer-Verlag, Aug. 1991.

12. R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

