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Abstract .  We present a state equivalence that is defined with respect 
to a given CTL formula. Since it does not attempt to preserve all CTL 
formulas, like bisimulation does, we can expect to compute coarser equiv- 
alences. We use this equivalence to manage the size of the transition re- 
lations encountered when model checking a system of interacting FSMs. 
Specifically, the equivalence is used to reduce the size of each compo- 
nent FSM, so that their product will be smaller. We show how to apply 
the method, whether an explicit representation is used for the FSMs, 
or BDDs are used. Also, we show that in some cases our approach can 
detect if a formula passes or fails, without composing all the component 
machines. The method is exact and fully automatic, and handles full 
CTL. 

1 I n t r o d u c t i o n  

Formal design verification is the process of verifying that  a design has certain 
properties that the designer intended. A well known verification technique is 
computation tree logic (CTL) model checking. In this approach, a design is 
modeled as a finite state machine (FSM), properties are stated using CTL for- 
mulas, and a "model checker" is used to prove that  the FSM satisfies the given 
CTL formulas [6]. The complexity of model checking a formula is linear in the 
number of states of the FSM. 

Oftentimes, large designs are constructed by linking together a set of FSMs. 
The straightforward approach to model checking such a design is to first form 
the product of the component FSMs to yield a single FSM, and then proceed 
to model check this single FSM. However, the size of the product machine can 
be exponential in the number of component machines, and hence the model 
checker may take exponential time. This is known as the "state explosion prob- 
lem" when using explicit representations, or the "representation explosion prob- 
lem" when using implicit representations, like ordered binary decision diagrams 
(BDDs). As it turns out, we cannot hope to do better than this in the worst 
case, because the problem of model checking a system of interacting FSMs is 
PSPACE-complete [1]. 

Our goal is to develop an algorithm that alleviates the explosion problem 
by identifying equivalent states in each component machine. These equivalent 
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states are then used to simplify the components before taking their product, thus 
leading to a smaller product machine. It is well known that  bisimulatiou equiva- 
lence is the coarsest (or weakest) equivalence that preserves the t ruth of all CTL 
formulas [4]. However, in general we are interested in model checking a system 
with respect to just a few formulas, and hence preserving all CTL formulas is 
stronger than needed. Thus, we investigate a formula-dependent equivalence that  
preserves the truth of a particular formula of interest, but possibly not of other 
formulas. This leads to a coarser equivalence, and thus to a greater opportunity 
for simplification. If an explicit representation is used for the FSMs, then this 
equivalence is used to form the quotient machines of the components. If BDDs 
are used, then the equivalence relation is used to define a range of permissible 
transition relations, among which we want to use the  one with the smallest BDD. 

Consider for example the FSM M described in Figure 1. The CTL formula 
r = VG(REQ -+ VFACK) expresses the property that  every request is eventually 
acknowledged. The behaviors from state 1 and 5 are different. However, since 
there are no behaviors from states 4 and 8 where REQ is produced, then r 
is always true at these states. Hence, states 1 and 5 can actually be merged, 
with respect to r Consequently, M can be replaced by the 5-state machine M~: 
verifying r on a product machine containing the component M is equivalent to 
verifying r on the product machine with M replaced by M ~. 

0 0 T 

REQ IDLE ACK EOT 

( 0 )  0 0 T 

REQ IDLE ACK IDLE 

M ! 
0 0 T 

REQ IDLE ACK IDLE 

Fig. 1. Finite state machine M with inputs 0 and 1 and outputs REQ, ACK, IDLE and 
E O T .  The symbol T means "true", the union of all input assignments. 

The approach we have developed can be applied to any formula of CTL. Thus, 
we can handle formulas that  refer to atomic propositions of any number of the 
component machines, and the formulas can be nested arbitrarily. The approach 
is fully automatic and it is exact, that  is, it returns exactly the set of product 
states satisfying the formula of interest. Finally, in some cases the approach 
can detect if a formula passes or fails, without composing all the component 
machines. 

Section 2 discusses related work, and Section 3 presents some preliminaries. 
In Section 4 we develop our formula-dependent equivalence, and in Section 5 
we discuss how this equivalence can be used to simplify compositional model 
checking. Finally, Section 6 mentions future work and gives conclusions. Proofs 
for the propositions and theorems can be found in [2]. 
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2 R e l a t e d  W o r k  

Other researchers have addressed the problem of reducing the complexity of 
model checking, As mentioned in the introduction, bisimulation preserves the 
truth of all CTL formulas, and hence can be used to identify equivalent states 
to derive smaller component machines. This technique has been used by [3]. 

Clarke el al. presented the interface rule, which can be applied when a CTL 
formula refers to the atomic propositions of just one machine, the "main" ma- 
chine [7]. In this case, the outputs of the other machines that cannot be sensed 
by the main machine, can be "hidden". After hiding such outputs, some states 
in the other machines may become equivalent, and hence the number of states 
can be reduced. This technique is orthogonal to our approach, and thus the two 
approaches could be combined. In general, any output  not referred to by the 
formula, and not observable by other machines, can be hidden. 

Griimberg et al. defined a subset of CTL, known as ACTL, which permits 
only universal path quantification, and not existential path quantification [11]. 
They go on to dev.elop an approach to compositional model checking for ACTL. 
If an ACTL formula is true of one component in a system, then it is true of 
the entire system. Thus, in some cases the full product machine can be avoided. 
However, the formula may be true of the entire system, without being true of any 
one component in isolation, i.e. their approach is conservative, and not exact. In 
this case, some components must be composed, and the procedure repeated. The 
user has the option of manually forming abstractions for some of the machines. 
If the formula is false, then the product machine must always be formed. An 
asset of this approach is that  it handles fairness constraints on the system. 

Dams et aL have also devised an approach using ACTL [9]. Like our method, 
they compute an equivalence with respect to a single formula. Although they 
are limited to formulas of ACTL, it may turn out that coarser equivalences 
are possible by restricting to a subset of CTL. They do not address how their 
equivalence can be used in compositional model checking, where a formula may 
refer to the atomic propositions of several interacting machines. 

Our experience indicates that existential path properties are useful for deter- 
mining if a system can exhibit a certain behavior. This is especially true when 
ascertaining if the environment for a system has been correctly modeled so that  
it can produce the stimuli of interest. Hence, we are interested in techniques that  
can handle full CTL. 

The work of Chiodo et al. [5] has similar aims as ours, and the current work 
can be seen as an outgrowth of that  work. Both approaches are exact, fully 
automatic, and formula dependent. We have extended Chiodo's method (see 
Section 5.2), and have cast our extension as an equivalence on states. 

3 P r e l i m i n a r i e s  

3.1 F i n i t e  S t a t e s  M a c h i n e s  

The systems that we want to verify are synchronous, interacting FSMs. Each 
component FSM receives a set of binary-valued inputs, and produces another 
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set of binary-valued outputs. Formally, an FSM is a 5-tuple M = (S, I,  J, T, O), 
where S is a finite set of states, I = { a l , . . . ,  am} is a set of m inputs supplied 
by the environment of the FSM, J = {~1 , . . . ,  fin} is a set of n outputs, T is the 
transition relation, and O is the output  function. T relates a starting state, an 
assignment to the inputs, and an ending state, i.e. T C S • Z • S, where Z = 2 I. 
We require the transition relation to be complete, so that for each a E E and 
x E S, there exists at least one y E S such that  (x, a, y) E T. The output  function 
takes a state in S and returns an assignment to the outputs, i.e. O : S --* 2 J. 
Our definition of FSM is equivalent to that  of a Moore machine in [11]. 

Composition is defined in the usual way. In composing two interacting FSMs, 
some inputs of each machine may be equal to the outputs of the other machine, 
whereas other inputs may come from the environment of the composed FSM. 
Thus, the inputs of the composition are the inputs of the components that are not 
outputs of either component. The outputs of the composition are all the outputs 
of the components. Figure 2 shows an example, where M1 has states {1, 2, 3}, 
and/1,/2 has states {1', 2'}. The sets of inputs and outputs for M1 are {a, q} and 
{p} respectively; and for M~ are {a, p} and {q} respectively. For the composition 
M1 • M2, the sets of inputs and outputs are {a} and {p, q} respectively. 

ap q 

]1/[2 

T -4 

. 

aq T 

P p -~ 

M1 

P, q P, 

p,-q -d P,-4 ~ 

T 

P, q 

~ a  M1 • M2 

a g 

Fig. 2. Example of FSM composition: p is the output of M1, q is the output of M2, 
and a is an external input. @ is shorthand for the subset {{a}} C 2 {a,q}. The union 
of aq, aq and aq is denoted by a+q. 

3.2 C o m p u t a t i o n  T r e e  Log ic  

Computation tree logic is a language used to describe properties of state tran- 
sition systems. We are interested in checking CTL formulas that describe prop- 
erties of the composition of a set of interacting FSMs. Since the composition of 
a set of FSMs is again an FSM, we give the syntax and semantics of  CTL for a 
single FSM M. We allow two types of atomic propositions: 

1. each output variable is an atomic proposition, and 
2. each subset of states is an atomic proposition 
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The second type arises naturally when recursively checking formulas. With this, 
the set of CTL formulas is defined inductively as follows: 

- p is a CTL formula, where p is an output  variable or a subset of states, and 
- if r and r are CTL formulas, then so are -~r r V r 3Xr 3Gr and 

3[r v r 

Note that  inputs are not allowed as atomic propositions. However, by modeling 
an input by an FSM whose output  describes the expected behavior of the input, 
one can implicitly use an input as an atomic proposition. 

The semantics of CTL is usually defined on finite Kripke structures, which 
are directed graphs where each node is labeled by a set of atomic proposi- 
tions [6]. To extend these semantics to  FSMs, we just  ignore the labels on the 
transitions of the FSMs, and we view the outputs as atomic propositions. Let 
M =. (S, I, J, T, 0 )  be an FSM. A path from state x0 is an infinite sequence 
of states z 0 z l x 2 . . ,  such that for every i, there exists an a E /Y such that  
(zi, a, xi+l) 6 T. The notation M, z0 ~ r means that  r is true in state z0 
of FSM M. The semantics of CTL is defined inductively as follows: 

- M, z 0 ~  
- M, x 0 ~  
- M,  z o ~  
- M ,  z o ~  
- M, z 0 ~  
- M, z 0 ~  

r 

p, where p 6 J,  i f fp  60(x0). 
p, where p C S, iff z0 6 p. 
-~r iff M, z0 ~ -'r 
r V r i f fM,  z0 ~ r or M, z0 ~ r 
3Xr iff there exists a path z 0 z l z 2 . . ,  such that M, xl ~ r 
3Gr iff there exists a path z 0 z l z 2 . .  �9 such that for all i, M, zi 

- M, Zo ~ 3[r U r iff there exists a path z 0 z l z 2 . . ,  and some i > 0 such 
that  M, zi ~ r and for all j < i, M, zj ~ r 

For example in machine M1 x M2 of Figur~ 2, state (1, 2') satisfies the formula 
3G(-',p A --q), whereas none of the other state do. The expression 3 F r  is an 
abbreviation for 3[true U r where true is a logical tautology. Lastly, we define 
the CTL model checking problem as the problem of determining all states of the 
system that  satisfy a given formula.1 

4 F o r m u l a - D e p e n d e n t  E q u i v a l e n c e  

Our goal is to define an equivalence on the states of each component machine 
that  is as coarse as possible with respect to a given CTL formula r while being 
efficiently computable. Section 5 explains how we intend to apply this equiv- 
alence to model checking, but the main idea is to merge equivalent states to 
minimize the size of each component. The minimized machines are then com- 
posed. Optionally, the product can be computed incrementally by composing a 

1 If a set of initial states is known, then we can restrict our attention to the reachable 
state space. In this case, we can apply known techniques for exploiting the unreach- 
able states, such as minimizing the transition relation with respect to unreachable 
states; .these techniques are orthogonal to those discussed in this paper. 



329 

few of the minimized machines, and then computing a new equivalence for this 
sub-product. When the top level is reached and just a single machine remains, 
the usual CTL model checking algorithm is applied to determine the states tha t  
satisfy ~. 

Our formula dependent equivalence can be best explained by comparing it 
to bisimulation. ("strong bisimulation" of Milner [12, p. 88]) Given an FSM 
M = (S, I, J, T, 0 ) ,  the bisimulation equivalence relation, denoted by ,~, is the 
coarsest equivalence relation satisfying the following: 

For all x, y 6 S, x ,,~ y implies 
�9 0(~)  = O(y) and 
�9 for all a 6 Z (recall from Section 3 that  ~7 = 2 I )  

- whenever x a t, then for some w, y .2, w and t ,~ w, and 
- whenever y a w, then for some t, x a t and t ,~ w. 

The  soundness of this definition follows from the observation that  the class of 
equivalence relations satisfying the above definition contains the identity, and 
is closed under union. Intuitively, two states are bisimilar if their corresponding 
infinite computat ion trees 2 "match".  This means that  the two states have the 
same outputs,  and on each input, the two states have next states whose infinite 
computat ion trees again match.  

We use the notion of PASS and FAIL states to ease the strict requirement 
of bisimulation that  the infinite computat ion trees of two states match.  Loosely, 
if a s tate is a PASS  ~ state with respect to a CTL formula ~, then it satisfies 
r in all environments; likewise, if a state is FAIL r then it does not satisfy r 
in any environment. Given PASS r and FAIL ~ states, the first modification to 
bisimulation we make is that  subtrees rooted at FAIL r states are ignored. This  
means that  transitions to FAIL r states from one state need not be matched by 
the other state. This works because only potential  witnesses to a formula need 
to be preserved. The second modification is that  two states are equivalent if 
they are both PASS ~ states. A consequence of this is that  whereas bisimulation 
requires the infinite computat ion trees of next states to match,  now it is sufficient 
that  the next states are both PASS r states. This is what we mean by two infinite 
trees matching up to PASS r states. Essentially then, we say that  two states are 
equivalent with respect to ~ if 

1. they are equivalent with respect to the immediate  subformulas of r and 
2. either they are both  PASS r states or both FAIL r states, or the infinite 

computat ion trees of the two states match up to PASS ~ states, ignoring all 
subtrees rooted at FAIL r states. 

Before formally defining our equivalence relation, we define the PASS  r and 
FAIL r sets. For a given formula ~b, PASS r and FAIL r sets are defined for each 
component.  In the following definition, we assume a system of just  two compo- 
nents, M and M' .  In defining the PASS r and FAIL r sets for M, M ' is referenced 
because the atomic propositions in r may refer to M ~. The symbols Po and Pi 

2 The infinite computation tree of a state is formed by "unrolling" the FSM starting 
from that state. 
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are used to distinguish those output atomic propositions produced by M and 
those produced by M'.  

Def in i t ion  1. Let M = (S, I, J, T, O) and M '  = (S', I ' ,  J ' ,  T', O') be FSMs, and 
let r be a CTL formula. Let po E J, Pi E J',  and p~ C S • S ~. PASS r and FAIL r 
for M are subsets of S, as follows: 

r 
Pi PASS v 

FAIL ~ 
po PASS ~ 

FAIL ~ 
ps PASS r 

FAIL ~ 
-~r PASSV 

FAIL ~ 
r V r PASS ~ 

FAIL ~ 

3Xr  PASS r 
FAIL ~ 

3Gr  PASS r 

FAIL ~ 

~[r162 

FAIL ~ 

0 
0 
{~ e Slpo ~ o(~)} 
S\ PA SS ~ 

{~ e SlW' e s', (~, ~') e p, } 
{~ 6 SlW' e s,, (~, ~') ~ p, } 
FAIL ~ 

PASS ~ U PASS r 
FAIL w f3 FAIL ~2 

{x E SIVa E Z,  3t s.t. x a t  a n d t  E PASS c} 
{x0 E Slfor every path xox lx2 . . . ,  xl E FAIL ~} 
greatest fixed-point of: R0 = PASSV; 

Ri+l = Ri r3 {z E SiVa E Z ,  3t s.t. z ~ t and t E Ri} 
{x0 E Sifor every path xoxlx2 . . . ,  there exists i > 0 

s.t. xi E FAIL r } 
least fixed-point of: R0 = PASSW; 
Ri+l = Ri U {z E Six 6 PASS r , and Va E ~U, 9t 

s.t. x a t and t E Ri}  
{x0 E Slfor every path X0ZlX2... , either 

1) there exists i >_ 0 s.t. xi E FAIL r and 
Vj <_ i, xj E FAIL r or 

2) Vi > 0, zi E FAIL r } 

As an example of PASS r and FAIL r consider the FSM in Figure 3. For 
r = p, states 1, 2, 3, 5, 6 and 7 lie in PASS r and states 4 and 8 lie in FAIL r 
For r = 3Gp, states 3 and 7 lie in PASS ~, while states 4 and 8 lie in FAIL ~, and 
states 1, 2, 5 and 6 lie in neither. The following proposition says that,  indeed, if 
x is in PASS r then any product state with x as a component satisfies r 

a ~  T ~ ~ a - - ~  T 

- ' P  T ~  P 

T~ ~ 
Fig. 3. Illustrating PASS r and FAIL ~, and the fact that s is coarser than bisimulation. 



331 

Proposition2. Let r be a CTL formula, let x be a state of M,  and let t be 
a state of any FSM M ~. If  x E PASS r then M x M ~, (x, t) ~ r Likewise, if 
x E FAIL ~, then M x M ~, (x, t) ~ r 

Note that  the converse is not true. For example, consider a component  M 
and the formula r -- qA-~q, where q is an output  of some other component.  Then 
FAIL ~ for M is empty  (because FAILq and PASS q are empty  by case pi), even 
though r is not satisfiable (i.e. for any component  M ~, no state in M •  M ~ satisfies 
r In fact, by generalizing this reasoning, we can show that  if FAIL ~ were defined 
in such a way that  the converse of Proposit ion 2 did hold, then FAIL ~ would 
be EXPTIME=hard to compute. The reduction is from CTL satisfiability, which 
is known to be EXPTIME-comple te  [10]. To check if a formula r is satisfiable, 
compute FAIL ~ for the component M shown in Figure 4, where p is some atomic 
proposition not in r We can show that  x E FAIL ~ if and only if r is not 
satisfiable, and thus satisfiability can be answered if we could compute FAIL r 
exactly. Similarly, since x E FAIL r if and only if x E PASS ~r the same reduction 
shows that  PASS ~ would also be EXPTIME-ha rd  to compute.  

~ T 

P 

Fig. 4. Component machine used to show that computing FAIL ~ exactly is EXP- 
TIME-hard. 

Now we formally define our equivalence relation. Let M = (S, I ,  J, T, O) 
and M ~ -- (S',  I ' ,  J~, T ~, O ~) be FSMs, and let r be a CTL formula. Following 
Milner's development of bisimulation, we define the equivalence relation gr on 
the states of FSM M as the coarsest equivalence relation satisfying the following: 

For x, y E S, Er y) iff: 
C a s e  r  (x ,y)  E S x S. 
C a s e  r = po: x E PASS r and y E PASS r or x E FAIL r and y E FAIL r 
C a s e  r = p , :  for all s' E S', (x ,s ' )  Ep ,  iff (y, s ' )  Ep~. 
C a s e  r = -~r gO(x, y). 
Case  r = r v y) and y). 
C a s e  r = 3X~b: gr y) and 

1. x E FAIL r and y E FAIL r or x E PASS r and y E PASS r or 
2. O(x) = O(y), and for all a E X: 

�9 whenever x a t and t ~ FAIL r 3w s.t. y a w and gr  w), and 

�9 whenever y a w and w ~ FAIL r 3t s.t. x 2.  t and gr  w). 
C a s e  r = 3G~: gr y) a n d  

1. x E FAIL r and y E FAIL r or x E PASS r and y E PASS r or 
2. O(x) = O(y), and for all a E Z 

�9 whenever x 2+ t and t ~ FAIL ~, 3w s.t. y -% w and E~(t, w), and 

�9 whenever y 2 .  w and w r FAIL r 3t s.t. x ~ t and gr w). 
C a s e  r = 3[r V r Er Y) and gr y) and 
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1. x E FAIIJ' and y E FAIL r or z E PASS r and y E PASS  r or 
2. O(x) = O(y), and for all a e E 

a 

* whenever x a t and t ~ FAIL r 3w s.t. y --~ w and E~(t, w), and 

, whenever y a w and w ~ FAIL ~, 3t s.t. x -~ t and Er w). 

In a manner similar to Milner, we can show that Er is the maximum fixed- 
point of a certain functional. Hence, using a standard fixed-point computation, 
g~ can be computed in polynomial time. 

Notice that  Er requires equivalence on all subformulas. As the following 
example shows, this requirement is warranted. Consider M1 in Figure 5. For 
r = 3F(p A 3F(~ A q)), states 2, 3 and 5 lie in FAILr because p is false in these 
states. So with respect to r the infinite computation trees of 1 and 4 match when 
FAIL ~ states are ignored, and if we did not require equivalence on subformulas, 
they would be Er However, if we were to compose M1 with M2, r 
holds in state (1, 1') but  does not hold in state (4, 1'). Thus, it would be wrong 
to have 1 and 4 be E~-equivalent. Requiring equivalence on all subformulas fixes 
this problem. 

T 

ap ap -d p 

T 

ap a p 

M1 
M2 

T 

ap~ ap~ "a~ 

T 

ap~ apq  apq  

M1 x M~ 

Fig. 5. Equivalence on subformulas is required. Only the states reachable from (1, 1') 
and (4, 1') are shown in M1 x/142. 

Since we define CTL so that  formulas may refer directly to states via atomic 
propositions, then any formula-independent equivalence (e.g. bisimulation) wi l l  
distinguish every pair of states, whereas E r may make some states equivalent. 
However, even if we could not refer to states, E r is still coarser than bisimulation. 
As stated earlier, one reason for this is that  the subtrees rooted at FAIL r states 
are ignored. This is illustrated in Figure 3: if r = 3Gp, then 4 is a FAIL r state, 
and thus 1 and 5 are Er however, they are not bisimilar. 

On the other hand, there are cases where E ~ distinguishes two states that  can 
actually be merged. Consider the FSM M1 in Figure 6 and the formula r -- qGq, 
where q is an output of some component not shown. Since q is an input to M1, 
the sets PASS r and FAIL r are empty, and hence E ~ reduces to bisimulation. 
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States 1 and 3 are not bisimilar because 2 and 4 have different outputs, and 
thus 1 and 3 are not Er However, q must be false to reach states 2 
and 4, and thus the difference between states 1 and 3 does not affect the validity 
of r Hence, states 1 and 3 can be merged with respect to r but gr will not 

0 

P P M1 P P 

merge them. 

Fig. 6. s equivalence is incomplete. The input to M1 is q, and the output is p. States 1 
and 3 can be safely merged with respect to the formula ~b = 3Gq. 

The following proposition says that  Er states cannot be distin- 
guished, with respect to r by any environment. This is key in proving Theo- 
rem 4, the theorem of correctness. 

P r o p o s i t i o n  3. Let r be a CTL formula, and let x and y be states of M such 
that  Er y). Then for any state t of any FSM M ~, the following holds: M • 
M' , (x , t~  ~ r i f f M  x M', (y,t) ~ r 

As an aside, note that the converse of Proposition 3 is not true. In fact, just 
because two states cannot be distinguished with respect to r by any environment, 
this does not imply that they can be merged. For example, consider M1 in 
Figure 5, and the formula r = 3F(p A 3F(~ A q)). As stated earlier, states 2 
and 5 lie in FAIL r and thus for any state t of any FSM M ~, M1 • M ~, (2, t) 
r iff M1 • M' ,  (5, t) ~ r (i.e. by Proposition 2, neither (2, t) nor (5, t) satisfies 
~b). However, if we were to merge states 2 and 5 into a single state, states 1 and 
4 would become equivalent. But, as discussed earlier, it would be wrong to have 
1 and 4 be Er 

Ultimately, the purpose of computing s162 is to be able to merge equivalent 
states, thus leading to smaller component machines. Given an equivalence rela- 
tion on the states of an FSM, we define the quotient machine in the usual way. 
As we describe in the next section, if we are using an explicit representation for 
FSMs, then we use the quotient machine of each FSM in place of the original 
component. The following theorem asserts that  doing this does not alter the 
result returned by the model checker. If we are using an implicit representation, 
then we use ~r to define a range of permissible transition relations for each 
component, among which we want to use the smallest. 

T h e o r e m  4. Let r be a CTL formula, and let M1 , . . . ,  Mn be FSMs. Let Mi/E~ 
be the quotient of Mi with respect to E r and let [si] denote the equivalence class 
of E r containing sl. Then for all product states ( s l , . . . ,  sn), 

M1 •  • Mn, ( s l , . . . , s~)  ~ r iff M1/~ r •  • Mn/C r ([sl] , . . . , [sn])  ~ r 
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5 C o m p o s i t i o n a l  M o d e l  C h e c k i n g  

The equivalence relation Er can be used to manage the size o f  the transition 
relations encountered in compositional model checking. The assumptions are 
that  each component machine is relatively small and easy to manipulate, and 
that  the full product machine is too large to build and manipulate. The general 
idea is to minimize each component machine, with respect to gr for that machine, 
before composing it with other machines. We can incrementally build the product 
machine by composing machines into clusters, and again applying minimization 
to each cluster. When just one machine remains, we apply a standard CTL model 
checker. Figure 7 outlines a procedure for this approach. 

funct ion  compositional_model_checker(C, M1,. . . ,  M.) { 
if (n = 1) 

r e t u r n  modeLchecker(r M1); 
for (i = 1;i < n;i ++) 

M* = minimize(M~, r 
M~, . . . , M[ = form_clusters(M1*,..., M,~); 
compositional_model_checker(C, M~,. . . ,  M[); 

} 

Fig. 7. Outline of procedure for compositional model checking: minimize and form 
product incrementally. 

The question of how to minimize a component with respect to gr depends 
on what sort of data representation is used for the transition relations. If an 
explicit representation is used (e.g. adjacency lists), then minimization is simply 
a mat ter  of forming the quotient machines M i / g i  r After the model checker is 
applied to the product of the quotient machines, Theorem 4 can be directly 
applied to recover the product states in the original state space that satisfy r 

If an implicit representation is used, then minimization becomes more com- 
plicated. We focus on the case where BDDs are used. There is no correlation 
between the size of the BDD for a transition relation, and the number of tran- 
sitions in the relation. Thus, the idea behind minimization in this case is to use 
E r to define a range of transition relations, any of which can be used in place of 
the original transition relation, and then choose the relation in this range with 
the smallest BDD. It should be noted however, that  smaller component BDDs 
do not guarantee a smaller product BDD-- th i s  is only a heuristic. 

For a component M, we take the upper bound of the range to be T ma=, 

which is the relation formed by adding to T any transition between two states 
for which there exists a transition between equivalent states (e.g. if s -% s' is 
in T and s162 s) and s162 s'), then x -% x' is added). The lower bound is T 
itself. Given these bounds, a heuristic like restr ict  [8] is used to find a small BDD 
between T and T "~a=. It can be shown that  any transition relation between T 
and T " ~  can be used without altering the result returned by the model checker. 
Alternatively, instead of looking for a small relation between T and T rna=, we 
can just use T "~i'~, which is the transition relation of the quotient machine, if it 
turns out that  T rain is small. 
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5.1 Early Pass/Fail Detection 

Sometimes the model checking problem is posed as: given a formula r and a 
subset of product states Q, is Q contained in the set of states satisfying r 
For example, Q may be the set of initial states. Since our method returns all 
states satisfying r a simple containment check answers the question: However, 
in some cases, we may be able to answer the question without composing all the 
machines, yielding a further savings in time. This is known as early pass / fa i l  
detection. 

Let Q = {ql, q2, . . . ,  am}, where qJ is the product state (~ ,  ~ , . . . ,  s J}, and 
let FAIL~ be the FAIL r states in component i. If ~ E FAIL r then any product 
state ( t s , . . . ,  ti- 1, ~ ,  t i+l , ,  �9 tn) does not satisfy r so in particular, qJ does not 
satisfy r Hence, the answer to the above question is "no". So in summary, if for 
any i, FAIL~ intersects the ith state component of the set Q, then the answer 
is "no". 

On the other hand, to reach an early "yes" answer, we need each state in Q 
to be "covered" by at least one PASS r state. If ~ E PASS~i, then every state in 
Q with ~ as its ith component is guaranteed to satisfy r So in summary, if for 
every state in Q, at least one of its component states is a PASS r state, then the 
answer is "yes". 

5.2 P r o c e s s i n g  S u b f o r m u l a s  

As the number of subformulas in r increases, the equivalence s162 becomes finer 
because equivalence on all subformulas is required. However, if some of the sub- 
formulas of r are first replaced by fresh atomic propositions representing the 
product states satisfying the subformutas, then this may lead to a coarser equiv- 
alence. This follows since knowing which product states satisfy a subformula 
adds information to what was originally known, information that  can be used at 
the component level in computing gr (for the new r 

This is illustrated by the system in Figure 2, where r = (3G(p A q)) A Q, 
and Q is the set {{1, 1'), (2, 1')} of product states. Lines 1 through 6 of Table I 
show the equivalence classes calculated for M1 on the subformulas of r The end 
result (line 6) is that no states are equivalent; hence, we have gained nothing. 
Instead of processing all of r we could stop after computing the equivalence 
for 3G(p A q). In this case, states 2 and 3 are equivalent (line 4), and thus a 
smaller machine can be built for M1. When this quotient machine is composed 
with M2 and the model checker is applied, we discover that no product states 
satisfy 3G(p A q). At this point, we can create a fresh atomic proposition, Q', to 
represent this (empty) set of states. Then when we calculate the equivalence on 
Mi for Q' A Q (which is the same as the original r we see that states 1 and 2 
are now equivalent (line 8), so we can again construct a smaller machine for M1. 

Thus, we may want to follow a strategy where a nested fornmla is recursively 
decomposed into simpler subfornmlas, and the compositional model checker of 
Figure 7 is applied to each subformula. Note that whereas Chiodo et al. [5] recur- 
sively decompose a formula into its immediate subformulas, we can decompose 
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I I d: IPASS~I FAILq)I equiv classesl 
1 q ~ r {1,2,3} 
2 ,. {2 3} {I} {I},{2,3} 
3 pAq ~ {1} {i}, {2,3} 
4 3G(p ^ q) q} {i} {I}, {2, 3} 
5Q 0 {3} {1,2},{3} 
6 (2G(pAq))AQ 0 {1,3} {1},{2},{3} 

VQ' r {1,2,a} {1,2,3} 
8Q'AQ r {1,2,3} {1,2},{3} 
Equivalence classes for/1//1 of Figure 2 on (3G(p A q)) A Q. Table 1. 

a formula into arbitrary subformulas, since our equivalence works on nested for- 
mulas. 

Of course, even though we may be able to compute coarser equivalences 
with this strategy, the drawback is that  a reduced product machine must be 
reconstructed for each subformula. Experiments are required to determine how 
to decompose a formula to achieve a balance between these conflicting demands. 

6 F u t u r e  W o r k  a n d  C o n c l u s i o n s  

We have presented a formula-dependent equivalence that can be used to manage 
the size of the transition relations encountered in compositional CTL model 
checking. We have yet to implement the method, and the ultimate effectiveness of 
the method can be confirmed only by experimentation. Given an arbitrary CTL 
formula r the method works by first computing an equivalence on the states 
of each component machine, which preserves r If an explicit representation 
for transition relations is used, then the quotient machine is constructed for 
each component, and the quotient machines are used to build a smaller product 
machine. 

If BDDs are used, then the equivalence for each component is used to deter- 
mine a range of permissible transition relations. More work remains to derive a 
procedure for efficiently choosing a relation from this range that  will ultimately 
lead to a smaller product machine. 

Our approach can be applied incrementally to build the product machine by 
clustering some minimized machines, forming their product, and repeating the 
equivalence computation. Research is needed to understand how best to cluster 
the components to achieve the smallest sub-products. Also, we outlined how our 
approach can be applied to the subformulas of a formula, to achieve a coarser 
equivalence. We need to devise a heuristic to intelligently decompose a formula 
into subformulas to take advantage of this. 

An important  part of a CTL model checker is the ability to generate counter- 
examples. Since we are altering the product machine, a counter-example in the 
altered product may not actually exist in the full product. A method needs to 
be developed to handle this. Finally, we plan to extend our method to fair- 
CTL model checking, and we would like to apply similar ideas to the language 
containment paradigm. 
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