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Abst rac t .  Symbolic trajectory evaluation (STE) is a method for effi- 
cient circuit verification [1]. In [2] a set of inference rules was introduced 
for combining STE results. These inference rules were also proven sound. 
In this paper we show that, with one additional inference rule, the infer- 
ence system is complete. Here, complete means that any formula A =~ C, 
that is valid in every model satisfying some collection �9 of STE asser- 
tions, can be derived from ~ by a finite applications of the inference rules. 
The completeness proof is based on the method of model construction-- 
given 4 i, a most general circuit model (in which every assertion in 
holds) can be generated. 

1 Introduction 

In [1], Seger and Bryant introduced the underlying theory for symbolic trajectory 
evaluation. In general, symbolic trajectory evaluation--as implemented in the 
Voss system [3] for example-- is  an efficient and highly automated circuit veri- 
fication method that  has been applied to the verification of quite complex and 
large VLSI circuits. However, in order to successfully verify modern large and 
complex circuits, a method of breaking down the verification task into smaller, 
more manageable pieces, is needed. One step towards this goal is developing 
inference rules that allow the user to combine "smaller" verification results in a 
safe and sound manner. In [2], such a set of inference rules was introduced and a 
special purpose theorem prover aimed specifically at manipulating STE results 
was discussed. Although the inference rules were shown to be sound, they were 
not shown to be complete. In this paper we remedy this by first adding one more 
inference rule and then prove that  the obtained inference system is complete. In- 
tuitively, complete in this context means that  the set of rules is powerful enough 
to derive all the logical consequences of a given set of trajectory assertions. 

* This research was supported, in part, by operating grants OGPO 109688 and OGPO 
046196 from the Natural Sciences and Engineering Research Council of Canada, 
fellowships from the Province of British Columbia Advanced Systems Institute, and 
by research contract 92-DJ-295 from the Semiconductor Research Corporation. 
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1.1 T r a j e c t o r y  Evaluation 

If the state space of a system (for example a circuit) can be embedded in a 
complete lattice, the behavior of the system can be expressed as a trajectory 
o" o "0 o *n ---- . . . . . .  , a sequence of values in the lattice determined by the initial 
state and the system functionality. We define a partial order between sequences 
of states by extending the partial order on the state space in a natural way. 

The model we use of a system is simple and general. A model structure is a 
tuple A4 - [(8, ___), Y], where (~g, E_) is a complete lattice (8  being the state 
space and ___ a partial order on S) and Y is a monotone successor function 
Y : S  --* 8. Intuitively, the ordering relation orders the state space according 
to "information content", and the monotonicity requirement guarantees that  
we cannot loose information about the future by adding information about the 
present. A sequence is a trajectory if and only if y(ai)  C_ a i+i for i ~ 0. 

The key to the efficiency of trajectory evaluation is the restricted language that  
can be used to phrase questions about the model structure. The basic specifica- 
tion language we use is very simple, but  expressive enough to capture many of 
the properties we would like to check. 

A predicate over $ is a mapping from $ to the lattice {0, 1}. Informally, a 
predicate describes a potential state of the system: e.g., a predicate might be 
(A is x) which says that  node A has the value x. A predicate is simple if it is 
monotonic and there is a unique weakest s E $ (measured by E), called the 
defining value, for which p(s) = 1. A special simple predicate is the unc, or "un- 
constrained", that  holds for every state in S and thus has I as defining value. 
A trajectory formula is defined recursively as: 

1. S i m p l e  p r e d i c a t e s :  Every simple predicate over S is a trajectory formula. 
2. C o n j u n c t i o n :  (FI A F2) is a trajectory formula if F1 and F2 are trajectory 

formulas. 
3. D o m a i n  r e s t r i c t i o n :  (e --~ F)  is a trajectory formula if F is a trajectory 

formula and e is either 1 or 0. 
4. N e x t  t ime :  ( N F )  is a trajectory formula if F is a trajectory formula. 

Note that,  in general, symbolic trajectory evaluation, as described in [1], gains 
its power from extending trajectory formulas to a symbolic domain- -and  thus 
concisely encode a very large collection of formulas. However, it should be empha- 
sized that the extension to a symbolic domain only increases the computational 
efficiency and not the expressiveness of the logic. Consequently, we will only deal 
with non-symbolic assertions in this paper. 

The depth of a formula F ,  written d(F), is defined recursively as: 

1. d(p) = 1 if p is a simple predicate. 
2. d(F1 A F2) = max(d(F1), d(F~)). 
3. d(e ---, F) = d(F). 
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4. d (NF)  = 1 + d(F). 

The depth of a formula is simply the maximum number of nested next time 
operators plus one. A trajectory formula is said to be instantaneous if it does not 
contain any N operators, i.e., if the depth of the formula is 1. It is straightforward 
to show that any trajectory formula, A, can be written in the form: 

A ~ A N A  1 A N~A 2 A ' " N ~ n A  m 

where N2A 2 is a shorthand for N(NA2)), etc., all A ~'s are instantaneous formu- 
las, and m is a natural number. 

The truth semantics of a trajectory formula is defined relative to a model struc- 
ture and a trajectory. Whether a trajectory ~ = ~0~ satisfies a formula F ,  
written o" ~,~ F ,  is defined recursively as: 

1. a~  ~ p iff p(a ~ = 1. 
2. o" ~,~ (F1AF2) i f f~  ~,~F1 and ~ ~.~F2 
3. (a) a ~ (0 ---* F)  always holds 

(b) o" ~ (1 --* F)  iff cr ~.~ r 
4. a08 ~ N F  i f f8  ~ , F .  

Given a model structure .M = [(8, E), Y], let ,$w denote the set of all infinite se- 
quences of elements from S. Before introducing the concept of defining sequences, 
it is convenient to introduce an infix "choice" function mapping {0, 1} • ,~w to 
,~w and which is defined as: 

e?o.= { ~  i f e = l  
_L.L... otherwise 

Given a formula F ,  we can define the defining sequence of F,  denoted by 6(F) 
as follows: 

1. 6(p) = ~ .L.L . . .  i fp  is a simple predicate with defining value p. 
2. 6(El ^ F2) = ~( f l )  U 6(F2). 
3. 6(e ---* F)  = e?&(F). 
4. 6(NF)  =.l_6(F). 

The defining trajecZory of F in the model structure .M = [(,.g, C), Y], denoted by 
r (F) ,  is a sequence defined as [1]: 

1. ~~ = ~~ 
2. ~+I (F)  = Y ( ~ ( F ) )  U ~ + l ( F )  for i > 0. 

When it becomes necessary to indicate explicitly that  it is the defining trajectory 
of the model structure A4 = [(,~, El,  Y], we use r~ (F) to denote the sequence. 

The fundamental result of STE is the following theorem [1]: 



289 

T h e o r e m l .  Assume A and C are two trajectory formulas. Let r(A) be the 
defining trajectory for formula A and 6(C) be the defining sequence for formula 
C. Then ~ A ~ C iff 6(C) E r(A). 

Finally, for somewhat technical reasons, define an assertion A =~ C to be prime 
if for every i > 0, 6(A i) n 6(C i) = 2_. Intuitively, by requiring the assertions to be 
prime, we avoid the trivial cases when we are both assuming and checking that 
a node has a particular value at the same time. Practically speaking, requiring 
assertions to be prime is no real restriction since non-prime assertions usually 
a r e  indications of some error(s) in the assertions. 

1.2 C i r c u i t  M o d e l  S t r u c t u r e  

In circuit verification, we restrict ourselves to a model structure of the form 

((I • v, El, r )  

where I and V are both complete lattices under partial orderings E l  and Ev  
respectively. Intuitively, I is the internal state space, and V is the space of visible 
nodes of a circuit, which is a space of cartesian products of {0, 1, 2-, T} and E_v 
is the cartesian (pair-wise) extension of the partial ordering _~: .L -~ 0, 1 _ T.  
When it is clear by the context, we will use _E to replace __.t and _ v ,  and use 2- 
to refer the bot tom elements of V and I, as well as the bot tom element of I x V. 
Given an element (i, v) E I • V, we use (i, v) ~I and (i, v) ~v to denote i and v 
respectively. 

Finally, we use the convention that  the simple predicates used in circuit verifica- 
tion can only refer to the visible state. Consequently, for any circuit trajectory 
formula A, 6(A) = (2-, v) for some v E V. We call the trajectory formulas which 
specify properties of the values in V the formulas defined on V. 

1.3 C o n v e n t i o n s  

Throughout  this paper, the following notational conventions are adopted: �9 de- 
notes a set of trajectory assertions. A, A1 , . . . ,C ,  C1,.. .  denote trajectory for- 
mulas. Also, for every trajectory formula A, we define: 

A = A ~ A N A  1 A N2A 2 A . . ' N m A  m 

where all A ~ are instantaneous formulas and m = d(A) - 1. Also, for 0 < i < m, 
let 

A <-i = A ~ A N A  1 A N2A 2 A . . . N I A  i 

and 
A >-i = A i A N A  i+1 A . . .  A N~-~A  '~. 

We use M ,  Ad~ to denote model structures. If an assertion ~ holds in a model 
structure M ,  we say A4 is a model structure of of 9. If every assertion in 
holds in a model A/t, we say that  �9 is a model structure of O. 
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M o d e l s  f r o m  T r a j e c t o r y  

In this section, we present a constructive method which generates a circuit model 
from a given set of trajectory assertions @ such that  every assertion of @ holds 
true in the model [4]. 

2.1 C i r cu i t  M o d e l  C o n s t r u c t i o n  

Given an assertion A ::*, C, the set of all suffixes of A ~ C, denoted by PA,C, 
is: 

PA,C = {(A >i, C >>J) I 0 < i < depth(C)-  1 }. 

Let A :r C be a prime assertion. The model structure constructed from A :* C, 
denoted by .A4A.C, is 

M A . c  = ((QA,c x V, C_), Ya,c) 

where 

- V = {0, 1,X, T }  n is the visible circuit state partially ordered as before, 
- QA,C is the largest subset of 2PA. c such that  for every q E QA,C, (A, C) E q, 
- C is a binary relation ofQA,c x V: for arbitrary ql, q2 E QA,C and vl, v2 E V, 

(ql, vl) C (q2, v2) if and only if ql _C q2 and vl C v2, and 
- YA,o : QA,C x V ~ QA,C x V is the next-state function of the model. For 

arbitrary q e QA.C and v E V, YA,C(q, v) = (q', v') where 

q t = {  (a_>l,c_>l) [ (a,c) E q a n d 6 ( a  O) ~v_Cv v }U{ (A,C) } 

and 
v ' =  I I ~( e~  (i) 

(a,e)eq ~ 

Let @ = {Aj =*, Cj I 0 _< j < n - 1 } be a set of n prime assertions. Define 

Pa--  U PA,C 
A~CE@ 

and Q~ as the largest subset of P~ such that  every q E Q~ contains @. The 
model structure constructed from @ is 

M s  = ((O, x V, E), Y~) 

where: 

- C_ i s  a binary relation of Q o  x V which is the pair-wise extension of C_ and 
Ev to Q~ x V. 
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- Y~ : Q~ • V ~ Q~ • V is the next-state function of the model. For any 
q E Q• and v �9 V, Yv(q, v) = (q', v') where v' is as in (1) and 

q' = { e I ( " , 0  �9 q, 6(aO) ~.vlZy v }u{  (Ai,C )[i = 0 , . . . , n - 1  } 

Given the above construction, the following properties can easily be shown: 

L e m m a 2 .  Lei �9 be a sei of prime irajectory formulas and A, C be arbitrary 
trajectory formulas. 

1. For every ta �9 ~, .~4~ ~ 9. 

2. Let ~L,(A) = (q,d) and A' ~ C' �9 ~, if for some k : 0 < k < i, 
(A '>-k, C '>-~:) �9 q, then 6(N~-kA '<-k) E 6(A). 

2.2 A n  E x a m p l e  o f  M o d e l  C o n s t r u c t i o n  

To illustrate the above construction, we will apply the method to the assertion 
A =~ C, where: 

A:  (a is 0) A (b is 0) A N ( a  is 0) A N(b is 0) 
C : N2(c is 1). 

We assume the visible nodes are a, b, and c, and consequently that the state of 
the visible components is drawn from {0, 1, X, T} 3. 

To construct the model structure .A,4A,C as defined earlier, we first need to com- 
pute the set of all suffixes of A =~ C. In our case we get: 

{(A, C), ((a is 0) A (b is 0), N l ( c  is 1)), (unc, (c is 1))) 

Therefore, QA,C = { Q1, Q2, Q3, Q4 }, where 

Q1 = {(A, C), ((a is 0) A (b is 0), N l ( c  is 1)), (unc, (c is 1))} 
Q2 = {(A, C), ((a is 0) A (b is 0), NX(c is 1))} 
Q3 = {(A, C), (unc, (e is 1))} 
Q4 = {(A, C)}. 

Note that Q4 c Qi and Qi c Qt for all Q~ �9 QA,C and that Q2 is neither a 
subset of nor a superset of Q3. Thus, Q4 is the bot tom element and Q1 is the 
top element in the partial order (QA,C, C). It follows trivially that  (QA,C, C) is 
a complete lattice. Consequently, 

SA,C = QA,C • {0, 1, X, T} z 

is also a complete lattice, where (a, b) _E (c, d) iff a C c and b _T d. 
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Finally, the function YA,V is defined as follows: For any q 
{0, 1, X, T} a, we have YA,C(q, d) = (q'(q, d), d'(q, d)), where 

and 

E Qa,c and d E 

Qi if q E {Qi, Q=} and (0, 0, X) _Er d 
q'(q, d) = Q2 if q E {Q3, Q4} and (0, 0, X) _Er d 

Q4 otherwise, 

(X,X, 1) i fqE{Qi ,Q2}  and(0,0 ,X)  E_Td 
d'(q, d) = (X, X, X) otherwise. 

To illustrate the use of this derived model structure, consider computing the 
defining trajectory in this model structure for the formula: 

A' = (a is 0) A (b is 0) A N(a is 0) A N(b is 0) A N~(a is 0) A N2(b is 0). 

First, by definition, 6(A') equals: 

(Q4, (o, o, x)) (Q,, (o, o, x)) (Q~, (o, o, x)) (Q~, (x, x, x)) (Q~, (x, x, x)) . . .  

By the definition of r, 

r~ ') = 

r l (A ') = 

r2(a ') = 

rS(A ') = 

r4(A ') = 

rh(A ') = 

6~ ') = (Q4, (0, 0 , [ -~)  
Y(Q4, (0, o, x ) )  u 6i(A ') 
(Q2, (x,  x ,  x ) )  u (Q4, (0, o, x ) )  
(Q2, (o, o,[-~)) 
Y(Q2, (0, 0, X)) U ~f2(A ') 
(Q1, (X, X, 1)) U (Q4, (o, o, x ) )  
(Ql,(o,o,[D) 
Y(Q1, (0, 0, 1)) U 6~, 
(Q1, (x, x, i)) u (Q,, (x, x, x)) 
( Q I , ( x , x , D )  
Y(Qi,  (X, X, 1)) U 64, 
(Q4, (X, X , X ~  U (Q4, (X, X, X)) 
(Q4, (x ,  X, XL~)) 
Y(Q4, (x ,  x ,  x ) )  U 6~, 
(Q4, (x, x,x~) u (Q4, (x, x, x)) 
(Q4, (x, x, x~)) 

The values surrounded by boxes represent the first 6 values on node "c". 

3 A S i m p l e  I n f e r e n c e  S y s t e m  

There are 7 inference rules in the system. They are presented in the form: 

q~ condl, cond2, . . . , condn 
A ~ C  

(2) 
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where ~ is a set of assertions which are premises of inferences. A, C are trajectory 
formulas. (2) reads: if the conditions condi, . . . ,  cond, are true, then A ::~ C can 
be derived from ~. 

Rule I. (Identity) 

R u l e  2. (TimeShift) 

{} A=~ A 

{A =~ C} N'A ~ N'C 

R u l e  3. (AntecedentStrengthen) 

{A =~ C} 6(A) E_ 6(AI) 
AI~C 

R u l e  4. (ConsequentWeaken) 

{A C} 6(cl) E_ ~(C) 
A ~ C ~  

R u l e  5. (Conjunct) 

t_>O 

{A ~ C1, A ~ C~} A ~ Ci A C~ 

R u l e  6. (Transitivity) 

{A1 =~ C1, As =~ C2} 6(A2) _E 6(C1) 
Ai ~ C 2  

R u l e  7. (AntecedentTruncate) 

Vi < depth(C). ~(A)' [3 6(6) ~ = • 
{A ::~ C} A<_t =~ C<_t+i t_>O 

For proofs of the soundness of Rules 1-6, see [2]. 

The soundness of AntecedentTruncate can be shown as follows: Let t > 0 and 
M be a model structure of A ~ C, i.e., 6(C) U r~a(A) (Theorem 1). 

1. Since 6(C) E r~(A) ,  6(C <') E r~a(A<-*). Therefore, M ~ A <, =~ C<L 
2. I f t  = 0, then A <~ = C <~ = unc. By the definition o f t ,  6(C) ~ E 6(A) ~ Be- 

cause ~ I"1 ~(A) ~ = _L, C o = unc. Therefore, AntecedentTruncate is reduced 
to 

{A ~ C} Vi < depth(C). 6(A) i [7 6(C) i = I t > 0 
unc ::~ unc 

which is trivially true. 
Assume t > 0. Because r~a(A ) depends only on A <-~, r~a(A ) = v~a(A<t). 
Therefore, 

6b E r~a(A <-') = Y(r~I(A<-'))Ua*A 
Since 6*A +i [7 8*c +i = 1, ~*c E Y(r~Vti(A<-*)). In both cases, 

A 4 ~  A < t = ~ N ~ C  ~ 
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Combining the results from 1 and 2 by Conjunct: 

A~ ~ A <t =v C <t+~ 1:3 

4 T h e  C o m p l e t e n e s s  o f  t h e  I n f e r e n c e  S y s t e m  

In this section, we prove the main result of this paper: the inference system 
given in Section 3 is powerful enough to derive all the logical consequences of r 
A logical consequence of �9 is an assertion which is true in every model structure 
of ~. We proved this claim by showing that if an assertion (~) is true in the 
model structure A ~ ,  then it can be derived by the inference system from ~. 

T h e o r e m  3. Let ~li be a set of trajectory formulas, A be any trajectory formula, 
C be any instantaneous trajectory formula, and m >. O. If.hd~ ~ A ~ N m C  
then ~ ~" A =r N'~C. 

A corollary of the theorem is the major conclusion of this paper: 

Corol lary4.  Let �9 be a set of trajectory assertions and .h4r be the model struc- 
ture of 4~. For any assertion A ::~ C, AJ~ ~ A =~ C if  and only i f  ~ ~- A ::v C. 

Proof ,  The proof that �9 t- A ::~ C implies A4# ~ A ~ C follows the soundness 
proofs of the inference rules. 

Assume J~4# ~ A =:~ C. For every t > 0, .A4# ~ A ==~ NtC  ~. By Theorem 3, 
t- A =~ NtC  t for every t ~ 0. Then by Conjunct (inference rule), 

b A =~ A N~Ct 
t>_0 

which is equivalent as saying that ~ t- A =~ C. O 

We now prove Theorem 3. Although the theorem is equally applicable to general 
trajectory assertions, the following proof assumes that �9 contains only prime 
assertions. 

Proof .  Prove by induction on m > O. 

The base case is when m = O. .h4~ ~ A =~ N ~  implies that 

6(C) ~ r ~  = ~  (3) 

Then (a) �9 P A ::~ A By the Identity Axiom 
(b) �9 ~- A =~ C By ConsequentWeaken and (a), (3) 

Assume m > 0, and for every i < m, .M~ ~ A =~ NiC implies �9 b A ::~ NiC. 
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Assume .M# ~ A =r C and let rm+l(A) = (q, d) where q is a set of suffixes of 
the assertions in ~: without losing generality, assume there exists l < n, such 
that 

q={(A>k',C'~ k') I 0 < i < l ,  l_<k,_<. , }  
By the definition of A4#, 

$(C) I::: d' = 5(A) m+l U U 5(C~') (4) 
i<_l 

By Lemma 2, r~+l(A) = (q,d) implies that for every i : 0 < i < l, 

5(Nm-k'+lA<k') E 6(A) 

Therefore, A4~ ~ A ~ Nrn-t*~+lA <k~,- . This means that for every j : 0 _< j _< 
ki - 1, .A4~ ~ A :ez N rn-k~+l NJA{. By the induction hypothesis, 

�9 t- A ~ Nm+J-k'+lA j 0 < j _< k~ - 1 (5) 

By Conjunct, (5) implies 

b A =~ Nra-k~+lA <k' (6) 

What follows derives that �9 t- A ::r Nm+ I C. 

Step 1. Because At ::r Ci E r for every i : 0 < i < i, by TimeShift, 

F- Nr"-k~+lAi :* Nm-k~+lCi 

Step 2. By ConsequentWeaken, (7) implies 

Therefore, 
b Nrn-ki+lAi =~ Nm+lc~i  

Step 3. By AntecedentTruncate, (8) implies 

4~ b Nm-k'+lA <k' =~ N'~+lC~ ' 

Step 4. By Transitivity, (6) and (9) imply 

~- A ~ Nm+IC~ ' 

Step 5. By Conjunct, (10) implies 

�9 ~- A ~  A 
0_~__3 

o < i < l (7) 

0 < i < /  

o < i < l (8) 

o < i < l (9) 

0 < i < 1  

Nr-+'  C~, 

(lO) 

(11) 
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Step 6.By Identity and ConsequentWeaken, 

I-- A =*. Nm+IA m+l 

By Conjunct, (11) and (12) imply 

1- A =~ Nm+IA m+l ^ i Nm+l c~ i 
0 ~  

Step 7. Let 

By the definition of 6, 

B = Nm+IA m+l A i Nm+l C~' 
0~_</ 

$(B) m+l = 6(A re+l) tl U C~' 
0<i<t 

(12) 

(13) 

Therefore, by (4) and ConsequentWeaken, (13) implies ~ k- A =~ Nm+Ic .  n 

5 M o d e l  C o n s t r u c t i o n  R e v i s i t e d  

When constructing a circuit model from a give set of assertions, we assumed 
that every assertion in the given set is prime and non-symbolic. However, the 
method can be extended to non-prime and symbolic assertions as well. 

First, a symbolic trajectory assertion can be viewed as a compact representation 
of a set of assertions. For example, an inverter specification: 

(a is z) =r N(b is -~r 

is equivalent to two assertions: 

(a is 0) =c. N(b is l) and (a is l) =~ N(b is 0) 

Therefore, a model of a symbolic assertion can be constructed by means of con- 
structing the model of the corresponding set of assertions. The following theorem 
relates models of general trajectory assertions to models of prime assertions. 

T h e o r e m  5. Let A =~ C be an arbitrary trajectory assertion defined on V. There 
exists a unique trajectory formula C' such that 

I. ~ n ~(c')  ~ = •  and ~(C') ~ E ~(C)' for every i > O. 

2. for any trajectory assertion A" =~ C", .A4A:~C ~ A" ~ C" if and only if 
.A4 a~,c, ~ A" =~ C ' .  
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It can be shown that  for any given formulas A and C defined on V, such a C ~ 
can be computed. Therefore, given a non-prime assertion A =~ C, its constructed 
model  structure is defined as that  o fA =:~ C ~. Note that,  in general, such C ~ may 
not exist in arbitrary lattices. Interested readers are referred to [4]. 

Finally, a consequence of Theorem 3 is that  given a set of trajectory assertions 
~, .h4~ is the most-abstract model structure of ~. 

T h e o r e m  6. Let ./t4 be an arbitrary model of ~. I f  A =~ C is an assertion of 
A4~ defined on the domain of ~, then A ~ C is also an assertion of.h4. 

Proof .  We prove the theorem by contradiction: assume there exists model struc- 
ture A4 of �9 and an assertion A =~ C of .bt~ such that  

A4~ ~ A ~ C but .Ad ~ A :::,. C 

By Corollary 4, M~ ~ A =~ C implies �9 }- A =~ C. By the soundness of 
the inference system, A ::~ C is an assertion of every model structure of ~. In 
particular, it is an assertion of A4, i.e., .hi ~ A =~ C. This contradicts to our 
assumption that  A~ ~: A =~ C. This ploves that  A4 ~ A =~ C. [] 

6 C o n c l u s i o n s  

There are two main results in this paper: the construction of a most general 
model structure from a set of trajectory assertions, and the soundness and com- 
pleteness proofs for the inference system. Although the completeness result is 
more of theoretical, than practical value, it is nevertheless useful in that  no 
further "basic" inference rules are needed. Consequently, a very safe--but still 
very practical--theorem prover for composing trajectory evaluation results can 
easily be constructed by simply implementing these few inference rules as an ab- 
stract data type and exporting only these construction functions, as pioneered 
by LCF[5] and extensively used by offsprings of LCF. 

The method of constructing the most-general circuit model from a given set of 
trajectory assertions ~ is interesting in its own right. For example, it makes 
it possible to "simulate" a specification. This is often very useful in avoiding 
simple errors in the specifications. Another interesting possibility is to use the 
construction to create a most general model structure for some part of the system 
that has not yet been designed. This model structure could then be composed 
with parts that  has been designed to allow verification of the complete system. 
However, for either of these applications to be practical, the construction must 
be implemented to work over a symbolic domain efficiently. We have in fact 
done so and are currently in the process of building a small prototylbe system to 
determine the practicality of the approach. 
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