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A b s t r a c t .  Symbolic approaches attack the  s tate  explosion problem by 
introducing implicit representations that allow the simultaneous manip- 
ulation of large sets of states. The most commonly used representation 
in this context is the Binary Decision Diagram (BDD). This paper takes 
the point of view that other structures than BDD's can be useful for 
representing sets of values, and that combining implicit and explicit rep- 
resentations can be fruitful. It introduces a representation of complex 
periodic sets of integer values, shows how this representation can be ma- 
nipulated, and describes its application to the state-space exploration of 
protocols. Preliminary experimental results indicate that the method can 
dramatically reduce the resources required for state-space exploration. 

1 I n t r o d u c t i o n  

Verification by state-space exploration is an old technique [Wes78] whose many  
advantages have long been outweighed by its main drawback: the state ex- 
plosion problem. However, in recent years, this central problem has been at- 
tacked from several directions with sufficient success to give, if not the hope 
of total  victory, at least the possibility of containment in some contexts. Two 
main tactics have been used against the state explosion problem. The first is 
to limit the search to a reduced state-space that  is still sufficient for verify- 
ing the property of interest. Among these, one can cite on-the-fly approaches 
[Ho185, VW86, J J89, FM91, CVWY92], partial-order methods [Val90, God90, 
HGP92,  McM92, GW93, Pe193, WG93], and abstraction techniques [GL93]. The 
second tactic avoids handling each state individually by using symbolic repre- 
sentations. This makes it possible to manipulate very large sets of states simul- 
taneously [BCM+90, CMB90]. 

The main representation of sets of states that  has been used in symbolic 
verification is the Binary Decision Diagram (BDD) [Bry92]. While this repre- 
sentation is simple and general, and can be extremely effective [BCM+90], it 
is not a panacea. Indeed, for fundamental  reasons, not all sets of states can be 
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represented by small BDD's. Whether  BDD's will be effective or not depends on 
the nature and structure of the sets of states that have to be represented. Symp- 
tomatically of this, there are more success stories about the use of BDD's for 
hardware verification than for other applications such as protocol verification. 

Another family of verification approaches that  can broadly be classified as 
symbolic are those that  have been developed for the verification of real-time 
properties [ACD93]. Indeed, in these approaches, sets of time values are repre- 
sented with the help of polyhedra rather than explicitly. However, as opposed 
to what is done with BDD's the rest of the state information is represented 
explicitly rather than symbolically. 

The work we present here is based on a similar intuition: it can be fruitful 
to represent states partly explicitly and partly symbolically. The question then 
is: which symbolic representation can be used effectively in such a combined 
approach? 

This paper at tempts to give an answer to this question in a specific context: 
protocols using integer variables. Indeed, when analyzing protocols, it often turns 
out that the state space explodes due to the presence of integer variables used 
for instance as counters. Even though this cause of state explosion is often not 
inherent to the protocol design, it is resistant to existing techniques. However, a 
close look at the sets of values taken by these variables reveals that  they often are 
periodic or projected from a periodic set. Based on this motivation, we introduce 
a representation of periodic subsets of Z '~ (which we name periodic vector sets) 
as a tool to be used in protocol verification. 

The representation we propose is derived fairly naturally from the main 
source of periodicity in sets of reachable integer values: the iteration of lin- 
ear transformations. It allows the representation of finite and infinite sets and 
is based on a few simple concepts: linear combinations, linear constraints, and 
projection. We show that it is closed under the application of iterated linear 
transformations. Moreover, we establish that it can also represent the compo- 
sition of transformations, as well as their iterations, though not always their 
nested iterations. 

Next, we turn to the use of our new representation in the context of the ex- 
ploration of the state-space of protocols. There are several approaches to using 
a representation of periodic vector sets in this context. We present one that  is 
based on the selective precomputation of the fixpoint of some program transi- 
tions. These fixpoints are then added as generalized transitions to the program, 
and a traditional search of this modified program is then performed with the 
help of our representation of periodic sets. This can dramatically reduce the 
resources needed for the state-space search compared to a simple enumerative 
exploration. Moreover, state reachability questions can still be fully answered, 
which makes it possible to use the method for the verification of a large class of 
properties [CVWY92]. 

Finally, we present some experimental results that  were obtained with a 
preliminary implementation, compare our method to existing work, and discuss 
its benefits and limits. 



57 

2 D e f i n i n g  P e r i o d i c  V e c t o r  S e t s  

Consider the simple program represented in Figure 1, where x is an integer vari- 
able. Although its number  of control states is limited to four, it is easily seen that  

x <= 1 0 0 0 0 0 0  

X := 0 . ~ / ~ ~ X  > i00000~ 

X := X + 2 

Fig. 1. A simple program. 

its s tate-space contains more than one million reachable states. However, this 
does not make it impractical  to deal with this set of states: it is straightforwardly 
represented as follows 

S -- { (O,  _l_), (Q ,  2k), ( |  2k + 2), (Q ,  1000002)[ k 6 N A 0 < k < 500000} 

Moreover, this "symbolic" description of the set of reachable states can be used 
to validate simple properties of the state-space, for instance the reachability of 
(@,456).  

Intuitively, the reason for which the set of reachable states of the program 
of Figure 1 can be easily represented is that  it has a periodic structure. Such 
periodic sets of reachable states are due to the repeated execution of instructions 
forming a cycle in the control graph. For instance, the set { 2 k l k  6 N A 0 <_ 
k _< 500000} of reachable values at control state Q may be seen as the result 
of multiple executions of the cycle Q - Q - Q ,  start ing with the initial reachable 
value 0. 

Our goal is to provide a general symbolic representation system for sets 
of values such as those appearing in the example above. This system has to 
be able to represent single values as well as periodic sets resulting from cyclic 
executions, and it should allow elementary operations to be easily applied to the 
representations. The requirements on the representation and on the operations 
it supports  are linked to the operations that  are allowed in the programs to be 
analyzed. Let us thus briefly define the programming formalism within which we 
will work. 

We consider extended finite-state machines with unbounded integer variables 
on which the only allowed operations are constant assignment (x := k), adding 
a constant to a variable (x := x + k), and testing linear equalities (x <= 2y + 
z - 1). In other words, each transition between control states can be labeled 
with a normalized instruction of the form T x  < u --~ x := Ax + b, where each 
component  of the vector x is a variable, T x  < u is the set of linear inequalities 
serving as precondition to the transition and x := Ax + b is the linear trans- 
formation associated with the transition. A is a diagonal matr ix  whose non-zero 
elements are equal to 1 and b is an integer vector. 
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Such normalized instructions have nice properties. First, it is always possi- 
ble to express the composition 3 of two instructions as a normalized instruction. 
Hence, the body of any cycle in the control graph is always equivalent to a single 
instruction whose representation may easily be computed by successive compo- 
sitions. Second, given that  the matr ix  A is idempotent  (A 2 = A), executing such 
an instruction repeatedly always leads to a periodic set 4. Indeed, for a vector Xo 
of initial values, the sequence of values obtained by the repeated execution of a 
normalized instruction is 

Ax0 + b, Axo + Ab + b, Axo + 2Ab + b, . . . , A x 0  + kAb + b, . . . ,  (1) 

which is periodic with period Ab (the periodicity vector of the set). The constant 
k appearing in an element Axo + kAb + b of the set is called the repetition count 
of that  element. Notice that  only a subset of (1) is generally reached. Indeed, the 
iteration process only proceeds up to repetition counts for which Ax0 + kAb + b 
satisfies the precondition T x  < u. Notice that  this last condition can be written 
as a set of linear inequalities to be satisfied by k: TAxo + k T A b  + Tb  < u. 
Generalizing this to multiple periodicity vectors and repetition counts, we obtain 
our definition of a periodic vector set. 

D e f i n i t i o n  1. A periodic vector set is a set of vectors x E Z ~ such that  

3 k E Z  m : x = C k + d  A P k < q .  

In this definition, m periodicity vectors are grouped in the matr ix  C, and 
k gathers the corresponding repetition counts. Similarly, the linear equalities 
bounding the repetition are gathered into a single linear system P k  < q. To 
represent a periodic vector set, one needs to represent the values of m, C and d 
as well as the linear system P k  _< q. For the latter,  it is often useful for efficiency 
reasons to use representations other than the direct syntactic one. 

The set of solutions of a linear system of the form P k  < q is a closed convex 
polyhedron (or polyhedron, for short) which can be represented as follows [CH78, 
Hal93]. It  is the set of points v satisfying 

with the constraints 

a p 6 

v = E ( A i s l )  + E ( # j r j )  + E ( p k d k )  
i----1 j = l  k----1 

{ 0_~Ai i = l , 2 , . . . , a  
~-~i=1 Ai = 1 
O<_#j j = l , 2 , . . . , p  

3 The composition of two instructions is the instruction equivalent to their sequential 
execution. 

4 Actually, it is possible to extend the set of operations allowed in instructions as long 
as this leads to an idempotent matrix A. Going further in this direction, one can 
allow any linear assignment in instructions, and then apply the method we describe 
only to transitions for which A is idempotent. 
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where V = { s l , s 2 , . . . , s ~ )  is the set of vertices, R = { r l , r 2 , . . . , r p }  is the set 
of rays, and D = { d l , d 2 , . . .  ,d~} is the set of lines of the polyhedron. Thus a 
polyhedron is entirely characterized by the sets V, R, and D. In practice, we 
maintain both the direct representation of the system of linear inequalities as 
well as the sets V, R, and D characterizing the corresponding polyhedron. This 
allows us to choose the most convenient representation for each operation that 
has to be performed. 

3 O p e r a t i o n s  o n  P e r i o d i c  V e c t o r  S e t s  

The use of periodic vector sets in verification involves applying a number of 
operations to these sets. In this section, we describe the required operations as 
well as the corresponding algorithms. 

3.1 E x e c u t i o n  o f  a Single Instruction 

Given the representation of a periodic vector set S and a normalized instruction 
I ,  our goal is to compute the representation of the set of values that is obtained 
by applying I to each element x of S, i.e. the set S t = {I(x) : x E S}. Recall 
that  S is the set of all the points x satisfying 

3 k E Z  m : x = C k + d  A P k < q .  

Consequently, the image of S obtained by applying the instruction Tx  < u 
x := Ax + b is the set of all x t such that 

k c Z  "~ : x t = A C k + ( A d + b )  A T ( C k + d ) _ < u  A P k _ ~ q .  

Each element x t of S'  thus satisfies 

3 k  E Z m : x t = C ' k  + d t A P I k  < qt, 

with C t = A C ,  d t = Ad + b, and where the linear system P ' k  _< qt is the 
conjunction of the systems T C k  _~ u - T d  and P k  < q. There are known effec- 
tive algorithms for computing the intersection of the corresponding polyhedra 
described by their vertices, rays and lines [CH78, Hal93, LeV92]. 

3.2 R e p e a t e d  E x e c u t i o n  of  an  I n s t r u c t i o n  

The purpose of this operation is to compute the set S t of all values resulting 
from executing one or more times a normMized instruction I on a given periodic 
vector set S. In other words, we have S'  = I+(S) ,  where I + ( X )  denotes the 
infinite union I ( X )  U I 2 ( X )  U I3(X)  U ... .  The set S t can be viewed as the 
least fixpoint containing I ( S )  of f ( X )  = X U I ( X ) .  

If Ax + b is the linear transformation of I and A is idempotent, the elements 
of S ~ are of the form x t = Ax + k A b  + b for x E S (cf Equation 1 in Section 2). 
Now, for a given x E S, such an element is only in S t for values of k (the 
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repetition count) such that  the enabling condition T x  _< u of the instruction is 
satisfied before each execution of the instruction, in other words if 

T x _ < u  A V i E { 0 , 1  . . . .  , k - l }  : T ( A x + i A b 4 - b ) _ < u .  

It  can easily be seen that ,  given that  we are dealing with convex sets of con- 
straints, this expression can be rewritten as 

( k = 0  ^ T x <  u) 
V (k > O A T x  <_ u A T ( A x  4- b) < u A T ( A x 4 - ( k - 1 ) A b 4 - b ) _ < u )  

Since this expression is disjunctive, it cannot in general be represented by a closed 
convex polyhedron. To avoid this problem, we notice that  the te rm (k -- 0 h T x  
u) is needed only to ensure that  all values resulting from a single execution of 
the instruction I are represented. So, dropping this term amounts  at most to 
dropping part  of I (S ) ,  i.e. of computing a set S '  such that  I I  + (S) C S ~ C I + (S). 
This is not a real problem since the whole of I + (S) can always be obtained by 
computing separately I (S )  and our approximation S ~. 

Recalling that  the periodic vector set S is the set of all x satisfying 3 k E 
Z '~ : x = C k  4- d A P k  <_ q, the set S ~ we are computing can be expressed as 
the set of all x ~ such that  

3 k  E Z m, k E z : x ' = A C k  + kAb  4- Ad  4- b A P k  <_ q ^ k >_ O 
A T ( C k  + d) <_ u 
A T ( A C k  + Ad  + b)_< u 
^ T ( A C k +  ( k -  1 ) A b + A d + b )  g u. (2) 

Thus, each element x t of S ~ satisfies 3 k  t E Z m+l : x ~ = Ctk  ~ + d ~ A P~k ~ _< q~, 

where we have k~ = [ k ] ,  c t  = [AC;Ab], d~ = Ad  4- b, and where the system 

p~k ~ _< qt represents the conjunction of the constraints present in (2). Hence, 
we have a direct method of computing the representation of S ~ given S and 
I .  Notice that  one of the effects of applying an iterative transformation to a 
periodic vector set is the creation of a n e w  column in its C matr ix.  In practice, 
it is often possible to limit the size of C by first checking whether the new column 
is identical to an existing one, and simplifying the linear system accordingly. 

3.3 Repeated  Execution of  Nested  Instructions 

Programs often contain nested loops. If we want to apply the construction de- 
scribed in the previous section in this context, we need to be able to compute a 
normalized instruction that  is equivalent to the body of a cycle, itself containing 
a cycle. In this section, we show that  this can be done provisionally. One condi- 
tion that  needs to be satisfied is that  the precondition and the exit condition of 
a cycle are mutually exclusive (not at all uncommon in practice). For instance, 
let us consider the program depicted in Figure 2 where the cycle (~)-| has 
the precondition y < x and the exit condition y > x. Any repeated execution of 
the cycle, s tart ing in O and followed by the transition ending in O ,  is equivalent 
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x :: i0; 

y :: O; 

< 
y >: X 

< 

X := X - 1 < 

y :=y+l 

y < x  

Fig. 2. A program with nested loops. 

y := 0 

to the simpler instruction y := x. We present a systematic way of computing 
such an equivalent instruction. 

Formally, given a cycle instruction I and an exit condition +, we are looking 
for a normalized instruction I '  such that  for each periodic vector set S we have 
I ' (S)  = ~#(I+(S)), where ~ (X)  denotes the subset of X containing the values 
satisfying +. Using the results of the previous section 5 I ' (S)  is the set of all x ~ 
such that  

<o, 

where T '  and u '  are a linear system equivalent to the conjunction of k > O, 
T x  <_ u, T ( A x  + b) < u, T ( A x  + (k - 1)Ab + b )  < u and ~(Ax + kAb  + b). 

Assume now that  the linear system defined by T '  and u r contains at least 
one equation a l  -x  + akk =/3  for which ak # 0. This means that  the number  of 
i terations is determined by the initial values, i.e. that  the loop is deterministic. In 
this situation, k can be expressed as a linear function k(x) = ~_~_k (/3_ a ~ l  �9 x), and 
if all the coefficients in k(x) are integers, the values x '  6 I ' (S)  can be expressed 
a s  

ix ]  3 x 6 S  : x ' = A x + ( k ( x ) A b + b )  A T '  k(x) - < u ' '  

which can be turned into the canonical form of a normalized instruction by 
expanding k(x).  In practice, the equation used to compute k(x) is chosen at 
random among the suitable ones. These are obtained straightforwardly from the 
representation of the system [CH78, Hal93, LeV92]. 

5 The same approximation applies, namely that we compute a set S' such that 
II+(S) C S' C I+(S). 
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3.4 Inclus ion Be twee n  Periodic  Vector Sets  

Testing inclusion between periodic vector sets is essential for detecting termina- 
tion of a state-space exploration. Unfortunately, it is a very difficult problem. 
We take the pragmatic  approach of using an approximate  test which never gives 
false positives (claims that  there is inclusion when there is not) but which can 
give false negatives (not detecting inclusion when it actually occurs). This is not 
too bothersome given the way we use periodic vector sets (see next section): false 
negatives when testing inclusion can lengthen the exploration of the state-space, 
but will never lead to incorrect results. 

Consider a periodic vector set S, i.e. the set of all x such that  3 k E Z m �9 
x --- Ck  + d A P k  < q. We want to test whether all elements of this set are 
included in a periodic vector set S t = {x I 3 k  E Z "~ : x = Crk + d r A P rk  < 
qr}. If we manage to find an integer matr ix  M and an integer vector n such 
that  d - d  ~ = C n  and C = C~M, wehavefor a l l x i n  S :  3 k  E Z m : x = 
Cr(Mk + n) + d ~ A P k  <_ q. Hence, if all the solutions of P k  _< q are solutions 
o f P r ( M k + n )  < q ~ , w e h a v e 3 k  ~E Z "r : x = C t k  r + d  ~ A P r k ~ _ < q ~ a n d x  
belongs to S ~. 

The existence of suitable M and n is related to the possibility of expressing 
each periodicity vector of S, as well as the difference of initial values d - d ~, as 
linear combinations of the periodicity vectors of S r. This allows us to associate 
a vector of repetition counts of S ~ to each point of S. The inclusion test can be 
carried out by first finding M and n and thereafter performing an inclusion test 
between linear systems of inequalities. The lat ter  problem is equivalent to an 
inclusion test between polyhedra and can be easily solved in the dual represen- 
tat ion of polyhedra [CH78, Hai93]. The former is equivalent to solving a general 
linear diophantine equation where each component of M and n is considered as 
a variable. This problem can be simplified by looking only for solutions where 
n and each column of M have no more than one non-zero component.  In that  
case, each column of C is constrained to be an integer multiple of a column of 
C r and the computat ion of M is reduced to determining the coefficients of the 
mapping. This heuristic has shown itself to be powerful enough in most cases. 

3.5 T e s t i n g  for  E m p t i n e s s  

A periodic vector set is called empty if it does not contain any point. Testing for 
emptiness is useful, for instance, in order to determine if there exists a reachable 
state belonging to a reachable group of states. A periodic vector set is empty  if 
and only if its linear system "of inequalities P k  _< q does not admit  any integer 
solution (in other words, the polyhedron determined by this linear system does 
not contain any integer point). The test of emptiness can thus be reduced to an 
integer programming problem [Mur76, Gre71]. 

4 V e r i f i c a t i o n  w i t h  P e r i o d i c  V e c t o r  S e t s  

The simplest way to explore the state-space of a program is to use a search to 
enumerate all reachable states one-by-one. Of course, this approach fails when 
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the state-space is too large. In what follows we describe how periodic vector sets 
can be used to significantly extend its applicability. 

All enumerative state-space searches are based on a common principle, they 
spread the reachability information along the transitions of the system to be 
analyzed. The exploration process starts with the initial state of the system, and 
tries at every step to enlarge its current set of reachable states by propagating 
these states through transitions. The procedure terminates when a stable set is 
reached. 

The idea behind the use of periodic vector sets is to process sets of states 
rather than individual states which makes it possible to reach a stable set faster. 
The  problem is that,  starting with a single state, and applying only deterministic 
transitions to individual states, one never generates sets of states that  can be 
manipulated simultaneously. A solution is the use of meta-transitions able to 
generate large sets of reachable states from a single reachable state. This is 
exactly what we have done while computing the effect of the repeated application 
of a transition. So, we have the tools for using the following approach. 

One first analyses the cycles and nested cycles of the control graph of the 
program. For each cycle of interest, a corresponding meta-transition is added to 
the program. Now, the state-space search algorithm is rewritten in a such a way 
that  it works with sets of states (represented as a finite union of periodic vector 
sets) rather than with individual states. One still starts with a single initial state, 
but each time a meta-transition is encountered a periodic vector set is produced. 
It is thus a good heuristic to give priority to meta-transitions. The exploration 
terminates when the representation of the set of reachable states stabilizes. This 
happens when every new deductible periodic vector set is included in the cur- 
rent list of reachable sets. Notice that all approximations we have made in the 
implementation of operations on periodic vector sets are conservative. They will 
reduce the benefit of using periodic vector sets, but will not lead to states being 
missed or to states being incorrectly considered as reachable. 

In general, finding all cycles in a graph is an NP-hard problem. However, 
the cycle analysis needed to introduce meta-transitions does not need to be 
exhaustive and there are a number of techniques that can be used to make it 
reasonably efficient. Many programming languages include explicit instructions 
for loops, and thus allow cycles to be detected during the compilation of the 
program into a transition system. Another idea is to make the most of the 
exploration algorithm; for instance, if a depth-first search of the control state- 
space is used, one may detect duplicate control states on the search stack and 
compute the periodicity vector of the corresponding cycle. 

5 E x p e r i m e n t a l  R e s u l t s  

An experimental system that  allows the manipulation of periodic vector sets 
has been implemented. This  system has been used to do state-space searches 
for programs represented as extended finite-state machines. The method that  
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was used to introduce meta-transitions was to consider only the cycles found by 
detecting duplicate control states on the search stack during a depth-first search. 

The first results are quite encouraging. As an example, we applied our method 
to the analysis of the lift program described in [Val89]. This program is com- 
posed of two parallel processes intended to model the interaction between the 
motor of a lift and one of its control panels. Each process is represented by an ex- 
tended finite-state machine, and communicates with its counterpart  via global 
integer variables. The interleaving semantics of parallelism is assumed, hence 
there exists an easily derivable extended finite-state machine equivalent to the 
parallel composition of the two processes. The program, expressed in a Promela- 
like language 6 [Hol91], is given in Figure 3. The global variable c is intended to 

intc = 1, g = 1, a = O, N = 10; 

process motor 

do 

:: atomic { a == I -> a = O; c = c + i } 

:: atomic { a =-- 2 -> a = O; c = c - I } 

od 

process control { 

do 

:: atomic { c < g -> a -- 1 } ; a == 0 -> 

:: atomic { c > g -> a = 2 } ; a == 0 -> 

:: atomic { c == g -> 

do 

:: g < N-> g = g + i 

:: g > I -> g = g - i 

: : break 

od ) 

od 

) 

Fig. 3. The lift example program. 

store at any time the current floor. The moto r program works by waiting for an 
order from the control part, expressed as a non-zero value of the aim variable a, 
then by updating c accordingly. The control program repeatedly compares the 
values of c and g, the latter expressing the goal floor, then sends appropriate 
commands to the motor, and finally chooses a new goal floor at random when 

6 The purpose of atomic statements is to define sequences of states that cannot be 
interleaved. 
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the current one is reached. The valid floor numbers are the integers between 1 
and the value of the constant N. 

It can be shown that  the number of reachable states of this program grows 
quadratically with N, and exceeds 20000 for N -- 50. Using our implementation, 
we were able to construct a representation of these reachable states in only 43 
analysis steps and by consuming less than one second of CPU time. A noteworthy 
observation was the independence between the analysis time and the value of N. 

6 C o n c l u s i o n s  and Comparison with O t h e r  W o r k  

We have suggested periodic vector sets as a representation of the sets of data- 
values a program can generate. This representation was developed pragmatically 
with the goal of improving the efficiency of state-space exploration. It can rep- 
resent sets with a complex periodic structure, whether they are finite or infinite. 
It is far from perfect. We have been able to show how a number of operations 
can be applied to periodic vector sets, but we sometimes have had to make con- 
servative approximations. Moreover, we cannot claim good general worst-case 
complexity bounds on the operations. The positive side is that ,  it works! We 
have been able to analyze systems for which enumerative methods are hopeless. 

One major advantage of our representation, and of the way we suggest using 
it, is that  it is very flexible and perfectly compatible with a number of other 
techniques. First, there is complete flexibility as to which part of the state de- 
scriptors is represented as a periodic vector set. Second, since verification is 
viewed as a form of extended enumerative state-space search, the techniques 
that  have been developed for the latter approach can still be used in conjunction 
with periodic vector sets. This is for instance the case for partial-order methods 
[Val90, God90, HGP92, McM92, GW93, Pe193, WG93]. The approach we have 
presented thus allows the combination of symbolic and partial-order approaches 
which could be extremely fruitful. In summary, periodic vector sets are not the 
solution to the state-space explosion problem, but rather a useful technique that  
can give excellent results for particular types of large sets of states and, crucially, 
can be combined with other techniques. 

Linear constraints have been repeatedly suggested as a useful tool in program 
analysis and verification [CH78, Kri93, Lub84] and, recently for the verification 
of real-time properties of systems [Hal93, YL93]. The work presented here is 
definitely in this tradition. The main innovation in our work is the introduction 
of periodicity in the representation which technically amounts to working with 
the projection of linear transformations of convex polyhedra bounded sets of 
integers. Representation systems for periodic sets of integers have already been 
proposed for instance in [Mer90], but only in the framework of single-dimensional 
spaces and in the particular case of infinite periodic sets. These systems are thus 
unable to deal with polyhedral boundaries involving more than one variable. A 
type of representation much closer to our work has also been considered in the 
context of temporal databases [KSW90]. However, the representation introduced 
there is more restrictive than ours and would be unsufficient for our verification 
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goal. The idea of analyzing cycles also appears in [Kri93], [Lub84] and [Va189]. In 
[Kri93] transitions do not have preconditions which substantially simplifies the 
problem. Moreover, no systematic representation of periodic sets is introduced. 
In [Lub84] and [Va189], cycles are treated with an inductive argument rather 
than with a powerful representation. The method presented there thus does not 
have the advantage of being a direct extension of a systematic state-space search. 
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