
Symbol ic Verification with Periodic Sets*

Bernard Boigelot** and Pierre Wolper

Universit~ de Liege, Institut Montefiore, B28, 4000 Liege Sart Tilman, Belgium.
Email : {pw,boigelot}@montefiore.ulg.ac.be

A b s t r a c t . Symbolic approaches attack the s tate explosion problem by
introducing implicit representations that allow the simultaneous manip-
ulation of large sets of states. The most commonly used representation
in this context is the Binary Decision Diagram (BDD). This paper takes
the point of view that other structures than BDD's can be useful for
representing sets of values, and that combining implicit and explicit rep-
resentations can be fruitful. It introduces a representation of complex
periodic sets of integer values, shows how this representation can be ma-
nipulated, and describes its application to the state-space exploration of
protocols. Preliminary experimental results indicate that the method can
dramatically reduce the resources required for state-space exploration.

1 I n t r o d u c t i o n

Verification by state-space exploration is an old technique [Wes78] whose many
advantages have long been outweighed by its main drawback: the state ex-
plosion problem. However, in recent years, this central problem has been at-
tacked from several directions with sufficient success to give, if not the hope
of total victory, at least the possibility of containment in some contexts. Two
main tactics have been used against the state explosion problem. The first is
to limit the search to a reduced state-space that is still sufficient for verify-
ing the property of interest. Among these, one can cite on-the-fly approaches
[Ho185, VW86, J J89, FM91, CVWY92], partial-order methods [Val90, God90,
HGP92, McM92, GW93, Pe193, WG93], and abstraction techniques [GL93]. The
second tactic avoids handling each state individually by using symbolic repre-
sentations. This makes it possible to manipulate very large sets of states simul-
taneously [BCM+90, CMB90].

The main representation of sets of states that has been used in symbolic
verification is the Binary Decision Diagram (BDD) [Bry92]. While this repre-
sentation is simple and general, and can be extremely effective [BCM+90], it
is not a panacea. Indeed, for fundamental reasons, not all sets of states can be

* This work was supported by the Esprit BRA action REACT and by the Belgian
Incentive Program "Information Technology" - Computer Science of the future, ini-
tiated by the Belgian State - Prime Minister's Office - Science Policy Office. The
scientific responsibility is assumed by its authors.

. . . . Aspirant" (Research Assistant) for the National Fund for Scientific Research
(Belgium).

56

represented by small BDD's. Whether BDD's will be effective or not depends on
the nature and structure of the sets of states that have to be represented. Symp-
tomatically of this, there are more success stories about the use of BDD's for
hardware verification than for other applications such as protocol verification.

Another family of verification approaches that can broadly be classified as
symbolic are those that have been developed for the verification of real-time
properties [ACD93]. Indeed, in these approaches, sets of time values are repre-
sented with the help of polyhedra rather than explicitly. However, as opposed
to what is done with BDD's the rest of the state information is represented
explicitly rather than symbolically.

The work we present here is based on a similar intuition: it can be fruitful
to represent states partly explicitly and partly symbolically. The question then
is: which symbolic representation can be used effectively in such a combined
approach?

This paper at tempts to give an answer to this question in a specific context:
protocols using integer variables. Indeed, when analyzing protocols, it often turns
out that the state space explodes due to the presence of integer variables used
for instance as counters. Even though this cause of state explosion is often not
inherent to the protocol design, it is resistant to existing techniques. However, a
close look at the sets of values taken by these variables reveals that they often are
periodic or projected from a periodic set. Based on this motivation, we introduce
a representation of periodic subsets of Z '~ (which we name periodic vector sets)
as a tool to be used in protocol verification.

The representation we propose is derived fairly naturally from the main
source of periodicity in sets of reachable integer values: the iteration of lin-
ear transformations. It allows the representation of finite and infinite sets and
is based on a few simple concepts: linear combinations, linear constraints, and
projection. We show that it is closed under the application of iterated linear
transformations. Moreover, we establish that it can also represent the compo-
sition of transformations, as well as their iterations, though not always their
nested iterations.

Next, we turn to the use of our new representation in the context of the ex-
ploration of the state-space of protocols. There are several approaches to using
a representation of periodic vector sets in this context. We present one that is
based on the selective precomputation of the fixpoint of some program transi-
tions. These fixpoints are then added as generalized transitions to the program,
and a traditional search of this modified program is then performed with the
help of our representation of periodic sets. This can dramatically reduce the
resources needed for the state-space search compared to a simple enumerative
exploration. Moreover, state reachability questions can still be fully answered,
which makes it possible to use the method for the verification of a large class of
properties [CVWY92].

Finally, we present some experimental results that were obtained with a
preliminary implementation, compare our method to existing work, and discuss
its benefits and limits.

57

2 D e f i n i n g P e r i o d i c V e c t o r S e t s

Consider the simple program represented in Figure 1, where x is an integer vari-
able. Although its number of control states is limited to four, it is easily seen that

x <= 1 0 0 0 0 0 0

X := 0 . ~ / ~ ~ X > i00000~

X := X + 2

Fig. 1. A simple program.

its s tate-space contains more than one million reachable states. However, this
does not make it impractical to deal with this set of states: it is straightforwardly
represented as follows

S -- { (O, _l_), (Q , 2k), (| 2k + 2), (Q , 1000002)[k 6 N A 0 < k < 500000}

Moreover, this "symbolic" description of the set of reachable states can be used
to validate simple properties of the state-space, for instance the reachability of
(@,456).

Intuitively, the reason for which the set of reachable states of the program
of Figure 1 can be easily represented is that it has a periodic structure. Such
periodic sets of reachable states are due to the repeated execution of instructions
forming a cycle in the control graph. For instance, the set { 2 k l k 6 N A 0 <_
k _< 500000} of reachable values at control state Q may be seen as the result
of multiple executions of the cycle Q - Q - Q , start ing with the initial reachable
value 0.

Our goal is to provide a general symbolic representation system for sets
of values such as those appearing in the example above. This system has to
be able to represent single values as well as periodic sets resulting from cyclic
executions, and it should allow elementary operations to be easily applied to the
representations. The requirements on the representation and on the operations
it supports are linked to the operations that are allowed in the programs to be
analyzed. Let us thus briefly define the programming formalism within which we
will work.

We consider extended finite-state machines with unbounded integer variables
on which the only allowed operations are constant assignment (x := k), adding
a constant to a variable (x := x + k), and testing linear equalities (x <= 2y +
z - 1). In other words, each transition between control states can be labeled
with a normalized instruction of the form T x < u --~ x := Ax + b, where each
component of the vector x is a variable, T x < u is the set of linear inequalities
serving as precondition to the transition and x := Ax + b is the linear trans-
formation associated with the transition. A is a diagonal matr ix whose non-zero
elements are equal to 1 and b is an integer vector.

58

Such normalized instructions have nice properties. First, it is always possi-
ble to express the composition 3 of two instructions as a normalized instruction.
Hence, the body of any cycle in the control graph is always equivalent to a single
instruction whose representation may easily be computed by successive compo-
sitions. Second, given that the matr ix A is idempotent (A 2 = A), executing such
an instruction repeatedly always leads to a periodic set 4. Indeed, for a vector Xo
of initial values, the sequence of values obtained by the repeated execution of a
normalized instruction is

Ax0 + b, Axo + Ab + b, Axo + 2Ab + b, . . . , A x 0 + kAb + b, . . . , (1)

which is periodic with period Ab (the periodicity vector of the set). The constant
k appearing in an element Axo + kAb + b of the set is called the repetition count
of that element. Notice that only a subset of (1) is generally reached. Indeed, the
iteration process only proceeds up to repetition counts for which Ax0 + kAb + b
satisfies the precondition T x < u. Notice that this last condition can be written
as a set of linear inequalities to be satisfied by k: TAxo + k T A b + Tb < u.
Generalizing this to multiple periodicity vectors and repetition counts, we obtain
our definition of a periodic vector set.

D e f i n i t i o n 1. A periodic vector set is a set of vectors x E Z ~ such that

3 k E Z m : x = C k + d A P k < q .

In this definition, m periodicity vectors are grouped in the matr ix C, and
k gathers the corresponding repetition counts. Similarly, the linear equalities
bounding the repetition are gathered into a single linear system P k < q. To
represent a periodic vector set, one needs to represent the values of m, C and d
as well as the linear system P k _< q. For the latter, it is often useful for efficiency
reasons to use representations other than the direct syntactic one.

The set of solutions of a linear system of the form P k < q is a closed convex
polyhedron (or polyhedron, for short) which can be represented as follows [CH78,
Hal93]. It is the set of points v satisfying

with the constraints

a p 6

v = E (A i s l) + E (# j r j) + E (p k d k)
i----1 j = l k----1

{ 0_~Ai i = l , 2 , . . . , a
~-~i=1 Ai = 1
O<_#j j = l , 2 , . . . , p

3 The composition of two instructions is the instruction equivalent to their sequential
execution.

4 Actually, it is possible to extend the set of operations allowed in instructions as long
as this leads to an idempotent matrix A. Going further in this direction, one can
allow any linear assignment in instructions, and then apply the method we describe
only to transitions for which A is idempotent.

59

where V = { s l , s 2 , . . . , s ~) is the set of vertices, R = { r l , r 2 , . . . , r p } is the set
of rays, and D = { d l , d 2 , . . . ,d~} is the set of lines of the polyhedron. Thus a
polyhedron is entirely characterized by the sets V, R, and D. In practice, we
maintain both the direct representation of the system of linear inequalities as
well as the sets V, R, and D characterizing the corresponding polyhedron. This
allows us to choose the most convenient representation for each operation that
has to be performed.

3 O p e r a t i o n s o n P e r i o d i c V e c t o r S e t s

The use of periodic vector sets in verification involves applying a number of
operations to these sets. In this section, we describe the required operations as
well as the corresponding algorithms.

3.1 E x e c u t i o n o f a Single Instruction

Given the representation of a periodic vector set S and a normalized instruction
I , our goal is to compute the representation of the set of values that is obtained
by applying I to each element x of S, i.e. the set S t = {I(x) : x E S}. Recall
that S is the set of all the points x satisfying

3 k E Z m : x = C k + d A P k < q .

Consequently, the image of S obtained by applying the instruction Tx < u
x := Ax + b is the set of all x t such that

k c Z "~ : x t = A C k + (A d + b) A T (C k + d) _ < u A P k _ ~ q .

Each element x t of S' thus satisfies

3 k E Z m : x t = C ' k + d t A P I k < qt,

with C t = A C , d t = Ad + b, and where the linear system P ' k _< qt is the
conjunction of the systems T C k _~ u - T d and P k < q. There are known effec-
tive algorithms for computing the intersection of the corresponding polyhedra
described by their vertices, rays and lines [CH78, Hal93, LeV92].

3.2 R e p e a t e d E x e c u t i o n of an I n s t r u c t i o n

The purpose of this operation is to compute the set S t of all values resulting
from executing one or more times a normMized instruction I on a given periodic
vector set S. In other words, we have S' = I+(S) , where I + (X) denotes the
infinite union I (X) U I 2 (X) U I3(X) U The set S t can be viewed as the
least fixpoint containing I (S) of f (X) = X U I (X) .

If Ax + b is the linear transformation of I and A is idempotent, the elements
of S ~ are of the form x t = Ax + k A b + b for x E S (cf Equation 1 in Section 2).
Now, for a given x E S, such an element is only in S t for values of k (the

60

repetition count) such that the enabling condition T x _< u of the instruction is
satisfied before each execution of the instruction, in other words if

T x _ < u A V i E { 0 , 1 , k - l } : T (A x + i A b 4 - b) _ < u .

It can easily be seen that , given that we are dealing with convex sets of con-
straints, this expression can be rewritten as

(k = 0 ^ T x < u)
V (k > O A T x <_ u A T (A x 4- b) < u A T (A x 4 - (k - 1) A b 4 - b) _ < u)

Since this expression is disjunctive, it cannot in general be represented by a closed
convex polyhedron. To avoid this problem, we notice that the te rm (k -- 0 h T x
u) is needed only to ensure that all values resulting from a single execution of
the instruction I are represented. So, dropping this term amounts at most to
dropping part of I (S) , i.e. of computing a set S ' such that I I + (S) C S ~ C I + (S).
This is not a real problem since the whole of I + (S) can always be obtained by
computing separately I (S) and our approximation S ~.

Recalling that the periodic vector set S is the set of all x satisfying 3 k E
Z '~ : x = C k 4- d A P k <_ q, the set S ~ we are computing can be expressed as
the set of all x ~ such that

3 k E Z m, k E z : x ' = A C k + kAb 4- Ad 4- b A P k <_ q ^ k >_ O
A T (C k + d) <_ u
A T (A C k + Ad + b)_< u
^ T (A C k + (k - 1) A b + A d + b) g u. (2)

Thus, each element x t of S ~ satisfies 3 k t E Z m+l : x ~ = Ctk ~ + d ~ A P~k ~ _< q~,

where we have k~ = [k] , c t = [AC;Ab], d~ = Ad 4- b, and where the system

p~k ~ _< qt represents the conjunction of the constraints present in (2). Hence,
we have a direct method of computing the representation of S ~ given S and
I . Notice that one of the effects of applying an iterative transformation to a
periodic vector set is the creation of a n e w column in its C matr ix. In practice,
it is often possible to limit the size of C by first checking whether the new column
is identical to an existing one, and simplifying the linear system accordingly.

3.3 Repeated Execution of Nested Instructions

Programs often contain nested loops. If we want to apply the construction de-
scribed in the previous section in this context, we need to be able to compute a
normalized instruction that is equivalent to the body of a cycle, itself containing
a cycle. In this section, we show that this can be done provisionally. One condi-
tion that needs to be satisfied is that the precondition and the exit condition of
a cycle are mutually exclusive (not at all uncommon in practice). For instance,
let us consider the program depicted in Figure 2 where the cycle (~)-| has
the precondition y < x and the exit condition y > x. Any repeated execution of
the cycle, s tart ing in O and followed by the transition ending in O , is equivalent

61

x :: i0;

y :: O;

<
y >: X

<

X := X - 1 <

y :=y+l

y < x

Fig. 2. A program with nested loops.

y := 0

to the simpler instruction y := x. We present a systematic way of computing
such an equivalent instruction.

Formally, given a cycle instruction I and an exit condition +, we are looking
for a normalized instruction I ' such that for each periodic vector set S we have
I ' (S) = ~#(I+(S)), where ~ (X) denotes the subset of X containing the values
satisfying +. Using the results of the previous section 5 I ' (S) is the set of all x ~
such that

<o,

where T ' and u ' are a linear system equivalent to the conjunction of k > O,
T x <_ u, T (A x + b) < u, T (A x + (k - 1)Ab + b) < u and ~(Ax + kAb + b).

Assume now that the linear system defined by T ' and u r contains at least
one equation a l -x + akk =/3 for which ak # 0. This means that the number of
i terations is determined by the initial values, i.e. that the loop is deterministic. In
this situation, k can be expressed as a linear function k(x) = ~_~_k (/3_ a ~ l �9 x), and
if all the coefficients in k(x) are integers, the values x ' 6 I ' (S) can be expressed
a s

ix] 3 x 6 S : x ' = A x + (k (x) A b + b) A T ' k(x) - < u ' '

which can be turned into the canonical form of a normalized instruction by
expanding k(x). In practice, the equation used to compute k(x) is chosen at
random among the suitable ones. These are obtained straightforwardly from the
representation of the system [CH78, Hal93, LeV92].

5 The same approximation applies, namely that we compute a set S' such that
II+(S) C S' C I+(S).

62

3.4 Inclus ion Be twee n Periodic Vector Sets

Testing inclusion between periodic vector sets is essential for detecting termina-
tion of a state-space exploration. Unfortunately, it is a very difficult problem.
We take the pragmatic approach of using an approximate test which never gives
false positives (claims that there is inclusion when there is not) but which can
give false negatives (not detecting inclusion when it actually occurs). This is not
too bothersome given the way we use periodic vector sets (see next section): false
negatives when testing inclusion can lengthen the exploration of the state-space,
but will never lead to incorrect results.

Consider a periodic vector set S, i.e. the set of all x such that 3 k E Z m �9
x --- Ck + d A P k < q. We want to test whether all elements of this set are
included in a periodic vector set S t = {x I 3 k E Z "~ : x = Crk + d r A P rk <
qr}. If we manage to find an integer matr ix M and an integer vector n such
that d - d ~ = C n and C = C~M, wehavefor a l l x i n S : 3 k E Z m : x =
Cr(Mk + n) + d ~ A P k <_ q. Hence, if all the solutions of P k _< q are solutions
o f P r (M k + n) < q ~ , w e h a v e 3 k ~E Z "r : x = C t k r + d ~ A P r k ~ _ < q ~ a n d x
belongs to S ~.

The existence of suitable M and n is related to the possibility of expressing
each periodicity vector of S, as well as the difference of initial values d - d ~, as
linear combinations of the periodicity vectors of S r. This allows us to associate
a vector of repetition counts of S ~ to each point of S. The inclusion test can be
carried out by first finding M and n and thereafter performing an inclusion test
between linear systems of inequalities. The lat ter problem is equivalent to an
inclusion test between polyhedra and can be easily solved in the dual represen-
tat ion of polyhedra [CH78, Hai93]. The former is equivalent to solving a general
linear diophantine equation where each component of M and n is considered as
a variable. This problem can be simplified by looking only for solutions where
n and each column of M have no more than one non-zero component. In that
case, each column of C is constrained to be an integer multiple of a column of
C r and the computat ion of M is reduced to determining the coefficients of the
mapping. This heuristic has shown itself to be powerful enough in most cases.

3.5 T e s t i n g for E m p t i n e s s

A periodic vector set is called empty if it does not contain any point. Testing for
emptiness is useful, for instance, in order to determine if there exists a reachable
state belonging to a reachable group of states. A periodic vector set is empty if
and only if its linear system "of inequalities P k _< q does not admit any integer
solution (in other words, the polyhedron determined by this linear system does
not contain any integer point). The test of emptiness can thus be reduced to an
integer programming problem [Mur76, Gre71].

4 V e r i f i c a t i o n w i t h P e r i o d i c V e c t o r S e t s

The simplest way to explore the state-space of a program is to use a search to
enumerate all reachable states one-by-one. Of course, this approach fails when

63

the state-space is too large. In what follows we describe how periodic vector sets
can be used to significantly extend its applicability.

All enumerative state-space searches are based on a common principle, they
spread the reachability information along the transitions of the system to be
analyzed. The exploration process starts with the initial state of the system, and
tries at every step to enlarge its current set of reachable states by propagating
these states through transitions. The procedure terminates when a stable set is
reached.

The idea behind the use of periodic vector sets is to process sets of states
rather than individual states which makes it possible to reach a stable set faster.
The problem is that, starting with a single state, and applying only deterministic
transitions to individual states, one never generates sets of states that can be
manipulated simultaneously. A solution is the use of meta-transitions able to
generate large sets of reachable states from a single reachable state. This is
exactly what we have done while computing the effect of the repeated application
of a transition. So, we have the tools for using the following approach.

One first analyses the cycles and nested cycles of the control graph of the
program. For each cycle of interest, a corresponding meta-transition is added to
the program. Now, the state-space search algorithm is rewritten in a such a way
that it works with sets of states (represented as a finite union of periodic vector
sets) rather than with individual states. One still starts with a single initial state,
but each time a meta-transition is encountered a periodic vector set is produced.
It is thus a good heuristic to give priority to meta-transitions. The exploration
terminates when the representation of the set of reachable states stabilizes. This
happens when every new deductible periodic vector set is included in the cur-
rent list of reachable sets. Notice that all approximations we have made in the
implementation of operations on periodic vector sets are conservative. They will
reduce the benefit of using periodic vector sets, but will not lead to states being
missed or to states being incorrectly considered as reachable.

In general, finding all cycles in a graph is an NP-hard problem. However,
the cycle analysis needed to introduce meta-transitions does not need to be
exhaustive and there are a number of techniques that can be used to make it
reasonably efficient. Many programming languages include explicit instructions
for loops, and thus allow cycles to be detected during the compilation of the
program into a transition system. Another idea is to make the most of the
exploration algorithm; for instance, if a depth-first search of the control state-
space is used, one may detect duplicate control states on the search stack and
compute the periodicity vector of the corresponding cycle.

5 E x p e r i m e n t a l R e s u l t s

An experimental system that allows the manipulation of periodic vector sets
has been implemented. This system has been used to do state-space searches
for programs represented as extended finite-state machines. The method that

64

was used to introduce meta-transitions was to consider only the cycles found by
detecting duplicate control states on the search stack during a depth-first search.

The first results are quite encouraging. As an example, we applied our method
to the analysis of the lift program described in [Val89]. This program is com-
posed of two parallel processes intended to model the interaction between the
motor of a lift and one of its control panels. Each process is represented by an ex-
tended finite-state machine, and communicates with its counterpart via global
integer variables. The interleaving semantics of parallelism is assumed, hence
there exists an easily derivable extended finite-state machine equivalent to the
parallel composition of the two processes. The program, expressed in a Promela-
like language 6 [Hol91], is given in Figure 3. The global variable c is intended to

intc = 1, g = 1, a = O, N = 10;

process motor

do

:: atomic { a == I -> a = O; c = c + i }

:: atomic { a =-- 2 -> a = O; c = c - I }

od

process control {

do

:: atomic { c < g -> a -- 1 } ; a == 0 ->

:: atomic { c > g -> a = 2 } ; a == 0 ->

:: atomic { c == g ->

do

:: g < N-> g = g + i

:: g > I -> g = g - i

: : break

od)

od

)

Fig. 3. The lift example program.

store at any time the current floor. The moto r program works by waiting for an
order from the control part, expressed as a non-zero value of the aim variable a,
then by updating c accordingly. The control program repeatedly compares the
values of c and g, the latter expressing the goal floor, then sends appropriate
commands to the motor, and finally chooses a new goal floor at random when

6 The purpose of atomic statements is to define sequences of states that cannot be
interleaved.

65

the current one is reached. The valid floor numbers are the integers between 1
and the value of the constant N.

It can be shown that the number of reachable states of this program grows
quadratically with N, and exceeds 20000 for N -- 50. Using our implementation,
we were able to construct a representation of these reachable states in only 43
analysis steps and by consuming less than one second of CPU time. A noteworthy
observation was the independence between the analysis time and the value of N.

6 C o n c l u s i o n s and Comparison with O t h e r W o r k

We have suggested periodic vector sets as a representation of the sets of data-
values a program can generate. This representation was developed pragmatically
with the goal of improving the efficiency of state-space exploration. It can rep-
resent sets with a complex periodic structure, whether they are finite or infinite.
It is far from perfect. We have been able to show how a number of operations
can be applied to periodic vector sets, but we sometimes have had to make con-
servative approximations. Moreover, we cannot claim good general worst-case
complexity bounds on the operations. The positive side is that , it works! We
have been able to analyze systems for which enumerative methods are hopeless.

One major advantage of our representation, and of the way we suggest using
it, is that it is very flexible and perfectly compatible with a number of other
techniques. First, there is complete flexibility as to which part of the state de-
scriptors is represented as a periodic vector set. Second, since verification is
viewed as a form of extended enumerative state-space search, the techniques
that have been developed for the latter approach can still be used in conjunction
with periodic vector sets. This is for instance the case for partial-order methods
[Val90, God90, HGP92, McM92, GW93, Pe193, WG93]. The approach we have
presented thus allows the combination of symbolic and partial-order approaches
which could be extremely fruitful. In summary, periodic vector sets are not the
solution to the state-space explosion problem, but rather a useful technique that
can give excellent results for particular types of large sets of states and, crucially,
can be combined with other techniques.

Linear constraints have been repeatedly suggested as a useful tool in program
analysis and verification [CH78, Kri93, Lub84] and, recently for the verification
of real-time properties of systems [Hal93, YL93]. The work presented here is
definitely in this tradition. The main innovation in our work is the introduction
of periodicity in the representation which technically amounts to working with
the projection of linear transformations of convex polyhedra bounded sets of
integers. Representation systems for periodic sets of integers have already been
proposed for instance in [Mer90], but only in the framework of single-dimensional
spaces and in the particular case of infinite periodic sets. These systems are thus
unable to deal with polyhedral boundaries involving more than one variable. A
type of representation much closer to our work has also been considered in the
context of temporal databases [KSW90]. However, the representation introduced
there is more restrictive than ours and would be unsufficient for our verification

66

goal. The idea of analyzing cycles also appears in [Kri93], [Lub84] and [Va189]. In
[Kri93] transitions do not have preconditions which substantially simplifies the
problem. Moreover, no systematic representation of periodic sets is introduced.
In [Lub84] and [Va189], cycles are treated with an inductive argument rather
than with a powerful representation. The method presented there thus does not
have the advantage of being a direct extension of a systematic state-space search.

R e f e r e n c e s

[ACD93]

[BCM+90]

[Bry92]

[CH78]

[CMB90]

[CVWY921

[FM91]

[GL93]

[God90]

[Gre71]
[GW93]

[Hal93]

[HGP92]

R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2-34, May 1993.
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 1020 states and beyond. In Proceedings of the 5th
Symposium on Logic in Computer Science, pages 428-439, Philadelphia,
June 1990.
Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293-318, 1992.
P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proc. 5th A CM Symposium on Prin-
ciples of Programming Langages, 1978.
O. Coudert, J. C. Madre, and C. Berthet. Verifying temporal properties
of sequential machines without building their state diagram. In Proc. 2nd
Workshop on Computer Aided Verification, volume 531 of Lecture Notes in
Computer Science, pages 23-32, Rutgers, June 1990. Springer-Verlag.
C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory ef-

ficient algorithms for the verification of temporal properties. Formal Meth-
ods in System Design, 1:275-288, 1992.
J.C. Fernandez and L. Mounier. On the fly verification of behavioural
equivalences and preorders. In Proc. 3rd Workshop on Computer Aided
Verification, volume 575 of Lecture Notes in Computer Science, pages 181-
191, Aalborg, July 1991.
S. Graf and C. Loiseaux. A tool for symbolic program verification and
abstraction. In Computer Aided Verification, Proc. 5th Int. Workshop,
volume 697, pages 71-84, Elounda, Crete, June 1993. Lecture Notes in
Computer Science, Springer-Verlag.
P. Godefroid. Using partial orders to improve automatic verification meth-
ods. In Proc. 2nd Workshop on Computer Aided Verification, volume 531
of Lecture Notes in Computer Science, pages 176-185, Rutgers, June 1990.
Springer-Verlag.
H. Greenberg. Integer Programming. Academic Press, New York, 1971.
P. Godefroid and P. Wolper. Using partial orders for the efficient verifica-
tion of deadlock freedom and safety properties. Formal Methods in System
Design, 2(2):149-164, April 1993.
N. Halbwachs. Delay analysis in synchronous programs. In Proc. 5th Work-
shop on Computer Aided Verification, volume 697, Elounda, Crete, June
1993. Lecture Notes in Computer Science, Springer-Verlag.
G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduc-
tion strategies for reachability analysis. In Proc. 12th International Sym-

67

[Ho185]

[Sol91]

[J J89]

[Kri93]

[KSW90]

[LeV92]

[Lub84]

[McM92]

[Mer90]

[Mur76]

[Pe193]

[Va189]

[VM90]

[VW861

[Wes78]

[wa93]

[YL93]

posium on Protocol Specification, Testing, and Verification, Lake Buena
Vista, Florida, June 1992. North-Holland.
G.J . Holzmann. Tracing protocols. ATSJT Technical Journal,
64(12):2413-2434, 1985.
G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall
International Editions, 1991.
C. Jard and T. Jeron. On-line model-checking for finite linear temporal
logic specifications. In Automatic Verification Methods for Finite State Sys-
tems, Proc. Int. Workshop, Grenoble, volume 407, pages 189-196, Grenoble,
June 1989. Lecture Notes in Computer Science, Springer-Verlag.
A.S. Krishnakumar. Reachability and recurrence in extended finite state
machines: Modular vector addition systems. In Proc. 5th Workshop on
Computer Aided Verification, volume 697, pages 110-122, Elounda, Crete,
June 1993. Lecture Notes in Computer Science, Springer-Verlag.
F. Kabanza, J.-M. St6venne, and P. Wolper. Handling infinite temporal
data. In Proc. of the 9th A C M Symposium on Principles of Database Sys-
tems, pages 392-403, Nashville Tennessee, 1990.
H. LeVerge. A note on Chernikova's algorithm. Research Report 1662,
INRIA, Rennes, April 1992.
B. Lubachevsky. An approach to automating the verification of compact
parallel coordination programs. I. Acta Informatica, 21:125-169, 1984.
K. McMillan. Using unfolding to avoid the state explosion problem in the
verification of asynchronous circuits. In Proc. 4th Workshop on Computer
Aided Verification, Montreal, June 1992.
N. Mercouroff. Analyse s6mantique de communications entre processus
de programmes parall~les. Rapport de Recherche LIX/RR/90/09, Ecole
Polytechnique, Palaiseau, France, September 1990.
K. Murty. Linear and Combinatorial Programming. Wiley, New York,
1976.
D. Peled. All from one, one for all: on model checking using representatives.
In Proc. 5th Conference on Computer Aided Verification, Elounda, June
1993. Lecture Notes in Computer Science, Springer-Verlag.
A. Valmari. State space generation with induction. In Proc. Scandinavian
Conference on Artificial Intelligence - 89, pages 99-115, Tampere, Finland,
June 1989.
A. Valmari. A stubborn attack on state explosion. In Proc. 2nd Workshop
on Computer Aided Verification, volume 531 of Lecture Notes in Computer
Science, pages 156-165, Rutgers, June 1990. Springer-Verlag.
M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logic in
Computer Science, pages 322-331, Cambridge, June 1986.
C.H. West. Generalized technique for communication protocol validation.
IBM J. of Res. and Devel., 22:393 404, 1978.
P. Wolper and P. Godefroid. Partial-order methods for temporal verifica-
tion. In Proc. CONCUR '93, volume 715 of Lecture Notes in Computer
Science, pages 233-246, Hildesheim, August 1993. Springer-Verlag.
M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time
transition systems. In Proc. 5th Workshop on Computer Aided Verification,
volume 697, pages 210-224, Elounda, Crete, June 1993. Lecture Notes in
Computer Science, Springer-Verlag.

