
A
A

GENERIC APPROACH TO SUPPORT
WAY-OF-WORKING DEFINITION

Mario Moreno, Colette Rolland, Carine Souveyet

Universit~ de Paris 1 Panth~.on-Sorborme
Centre de Recherches en Informatique

17 Rue de Tolbiac, 75013 Paris
{ moreno I rolland I souveyet }@masi.ibp.fr

Abst rac t . Information System Engineering has made the assumption that an Information
System is supposed to capture some excerpt of the real world history and hence has concentrated
on systems modelling. Very little attention has been paid to the conceptual modelling process.
However the emphasis on system modelling is shifting to process modelling. The particular
process modelling approach being presented in this paper advocates the definition of a way-of-
working (i.e. process models) to control and guide developers. The paper introduces a
classification of the various kinds of evolution of objects and presents a decision-oriented
process meta model to structure ways-of-working. We also describe some guidelines, related to
our classification of object evolutions, to support method engineers in the task to define a way-
of-working.

1 Introduction

All recent developments in the field of Software Engineering, Databases and Information
Systems seem to show that support for the various stakeholders involved in Software
projects can be provided by capturing the history about the design decisions, in the early
stages o f the systems development life cycle, in a structured manner. Much of this
knowledge which we call the process knowledge is nowadays lost in the course of
engineering and maintaining such systems. In large projects, in the course of time and
with changing development groups, the rationale for and context of key design decisions
are confused and even lost [3]. This is particularly true in Information System Engineering
which has made the assumption that an information system (IS) is supposed to capture
some excerpt of the real world history and hence has concentrated on systems modelling. It
is usual to view an information system as "a model of some slice of the reality of an
organisation" [9] and even to regard the IS development as a problem of models
construction and description. This practice provides an answer of sorts to the fundamental
question : what does the information handled by an information system means? It also
tends to draw the attention away from another equally fundamental question : how to
define which information has to be handled by an information system?

The emphasis on product[11] i.e. the system models has hidden the importance of process
i.e. the route to deliver the product. A large variety of models and especially conceptual
models by which an IS can be modelled in high level terms have been developed. In
contrast, very little attention has been paid to the modelling process which has the
purpose of investigating the requirements of the users community and abstracting from
them the conceptual specification of the IS (namely, the Requirements Engineering (RE)
process).

368

Recent research works (see for example the special issue of the IEEE Transactions on
Software Engineering on Knowledge Representation and Reasoning in Software
Development, Vol. 18, Nb 6, June 1992) converge to the central idea that process
modelling is as important as system modelling is. For lack of process modelling,
understanding of what the development process is, what happens during it, when, why,
on what it happens, by whom it is performed, is very poor.
The process semantics are not well captured, with the required level of detail, in existing
process models. Consequently, the way-of-working prescribed by methodologies is badly
defined, and the derived CASE-tools are efficient in recording, retrieving and manipulating
system models but are almost unable to actually support the developers in performing the
creative activities of model construction and transformation. Controlling and guiding
developers in the progressive elaboration of a product, tracing in a structured manner the
history of an IS development, keeping track of each transformation of the product, of what
occurred and when in order to improve a way-of-working definition by learning is almost
not possible without an adequate process modelling approach.

In the F31 Esprit project the need for process modelling and tracing has motivated the
process stream of the project. F3 aims at defining a methodology that integrates into a
coherent whole a selection of adequate techniques, all aiming at improving requirements
acquisition, elicitation and validation to facilitate the construction of the IS specification.
Part of our contribution within this project is to define a process modelling approach in
order to be able to provide a guidance tool and a trace tool to support the developers' tasks
during the RE phase.

This communication is centred on a way-of-working definition. We introduced our process
modelling approach and the underlying process meta model in section 2. In section 3, we
introduce some guidelines to support method engineers in the task to define ways-ofo
working. Finally, to centre the work presented in this paper and conclude, the architecture
for CASE-Tools that we have defined to completely support our process modelling
approach is introduced.

2 W a y - o f - w o r k i n g m o d e l l i n g

The central thesis of this paper is that a way-of-working may be partially defined by
instanciation of a process meta model. In this section, such a process meta model is
introduced. It has been defined for the F3 Esprit III project as an extension of the process
meta model developed in the NATURE Esprit III project for the Requirements Engineering
(RE) phase.

2.1 Abstraction Levels in Process modelling

We distinguish three successive abstraction levels in process modelling (see figure 1) :
process level, process model level and process meta model level.

Aprocess is an organised set of both human and computerised activities which have led to
a given product definition. In Requirements Engineering, a process describes what happens
during the activity of specifying an Information System by abstracting from an initial set
of users' requirements. The output of a process is also called product.

1Esprit]II project (n~ named "From Fuzzy to Formal"

369

A process model describes any process resulting from the use of a given RE
methodology, i.e. it describes how things should be or could be done for the purpose of
RE products prescriptive building. As a matter of fact, a process model intends to formally
specify the way of working prescribed within a RE methodology.
A process meta model describes the generic concepts required to define process models. It
brings and relates the concepts allowing to characterise any way-of-working definition.

P r o c e s s Meta Mode l

Generic Concepts
=

Process Model
Way of Working

P r o c e s s

What happens

Figure 1 : Abstraction Levels in process modelling
According to this view, a process model is an instanciation of a process meta model and a
process is an instanciation of a given process model which is executed. This view is
similar to the theory of plans [20] from which plans can be generated (the process models)
and executed (the processes).

2.2 The Process meta model

Existing process meta models can be classified into three categories [4] : activity-oriented,
product-oriented and decision-oriented. The NATURE process meta model [15] is an
extension of the decision-based approaches (see figure 2).
Considering the highly non-deterministic nature of the Requirements Engineering process
we believe that only the decision-based approaches appear to be partially appropriate, even
if they offer limited hints about when and how to decide on what. It is probably
impossible to write down a realistic state-transition diagram that adequately describes what
happens in requirements engineering (activity-based approaches). But relying on a pure
artefact history is also insufficient (product-based approaches). Analysts react contextually
according to the domain knowledge they acquire and react by analogy with previous
situations they have been involved in. Our process modelling approach aims at capturing
not only activities performed during the RE process but also why these activities are
performed (the decisions) and when (the decision contexts).

CONTEXTUAL APPROACH

Hlararchlcal~lral
Spiral [livari90] / Viewpoints ~ [Nadln 88 I

[B o e h m 8 8 1 ~ [Finkelstelng0] ~ ['romlyama 891
rou.taln ",,. j ' k)

[Henderson90] ~ ~ [Ackman 90]
Product grapha v ESF

Coda and Fix Walarfall [Humphrey69] [Frankson92]
{Beninoton56] [Royce70]

Figure 2 : State of art in process modelling

370

Figure 3 gives an overview of the process meta model, introducing its key concepts and
their relationships (with a binary E/R based notation). This process meta model is an
extension of the NATURE meta model [15] which was also an extension of the one
presented in [6] and implemented in the ALECSI prototype [14].

From a theoretical point of view the process meta model defines a set of generic concepts
allowing to look upon any RE process model as a network of types :

- s i t u a t i o n to explain the object(s) view on which it makes sense to take a decision on. A
product meta model based on a detailed description of situations is introduced in [18] ;
- d e c i s i o n to reflect a choice that a requirement engineer could take in some pre-defined
situations. A decision is looked upon as an intention of object evolution ;
-action to implement an object evolution. It is a materialisation of the decision.
Performing it, at the process level, changes the current definition of an object and may
generate new situations which, in turn, are subjects to new decisions ;
- a r g u m e n t to support and object to a decision ;
- o b j e c t to refer a product element of a particular RE methodology.

Figure 3 : General overview of the process meta model

A c o n t e x t is a couple <situation, decision> which amplifies the decision semantics by
refining the "when" part of the decision. Nevertheless, the process model has to handle
different levels of granularity in decision making. A m i c r o c o n t e x t refers to a situation in
which the tactic to follow to perform the decision is defined. A m a c r o c o n t e x t refers to a
strategic d e c i s i o n that has to be refined before being implemented. A macro context
corresponds to a situation with possible alternatives in decision-making. The
decomposition of a macro context into its more elementary contexts is represented in
Figure 3 by the loop upon context through macro context and alternative.

For instance the decision to improve a product is an intention which can be achieved
through several alternatives. We show, in figure 4, three alternatives related to an

3 7 1

Entity_type User : Improve_Entity_type, lmprove_Entity_type inRole and Add Card.
Both first alternatives are macro contexts which are in turn refined. A terminal leaf, in a
context hierarchy, means that there are no alternatives defined for it i.e. there is only one
procedure to apply this decision within this situation. < {User} ; Attributise > is such an
example of what we call a micro context.

In addition the process meta model recognises three types of object evolution [16], [10] :
expansion, transformation and mutation. This classification leads to the specialisation of
decisions in three groups as well as a classification of objects relationships (see figure 3) :
expansion_link, transformation_link and mutation_link.

< { u w }

< (CurrlltLProckJr } ; Improve >

/ "% < { may be_b(xro~l } ; Add_card >

/
: < [u , , . , m.y_b~rot,, } ; I m p r o v e _ E n t i t y _ t y p e _ i n R o l e >

..- ~ ,c ! u w , , , ,v_t~,r~,r } ; H l s t o r i s e >
..-: < { u,~, m,v_n*~r*~ } ; P a r t i t i o n >

< { u m r }

< (u ,w } ; A t t r l b u t l s e >

; I m p r o v e _ E n t i t y . _ t y p e >

~.--" < (u , ~ } ; E n r o l _ E n t l t y _ t y p e _ l n t o R e l a t l o n s h l p >

;Complete Definition of Entity type >

< (u , ~ } ; D e f i n e _ K e y >

Figure 4 : Some example of contexts hierarchy in an E/R process

An expansion affects an expansion link between two Objects. These bi-directional links
result of the structural relationships existing among the concepts of the models in use.
For instance, any Entity-type may be expanded with attributes.
A transformation affects a transformation link between an object and a property. Such a
link results of the existence of properties related to a concept. For instance, any attribute
may have properties such as a name, a domain and its valuation (mono or multi).
A mutation occurs to an object when its type changes. This kind of link results of the
mutation of concepts. For instance any relationship may be retyped as entity-type and
further mapped into a relational table. By this way, an IS development may be partially
viewed as a mutation process which abstracts from users requirements the conceptual
specification of the information system and then converts it into an implemented system.

The mutation links are not precisely defined nowadays. We believe that they represent an
important aspect of any way-of-working definition. We also believe that any way-of-
working could be partially defined by a set of macro and micro contexts covering
Engineering decisions on Product progressive building. In next section, we introduce an
approach to facilitate this definition.

3 Way-of-working definition support

Stating that a way-of-working can be defined as a set of macro and micro contexts, we
propose a generic decision hierarchy, based on the classification of object evolution

372

(expansion, transformation and mutation), to guide a method engineer in the definition of
the required set of contexts for a methodology. The examples used in this section are part
of the F3 way-of-working, which has been defined with this approach, and focus on the
mapping from the Enterprise model [1] to the IS model [19].

3.1 Pre-defined set of generic decisions

In the previous section we have introduced a specialisation of decisions based on a three-
dimensional view of object evolution : expansion, transformation and mutation. We
propose here to pre-def'me a set of generic decisions for each class. This set is introduced in
figure 5, each class of which is introduced in turn showing micro decisions (terminal
leaves) and macro decisions (non-terminal leaves).

Evolution

Expansion Mutate to Unmuta te to

i N .,..,,o,..,,o. / " " . . -
Associate Unassoclate I . : .v ~,,.~ Map Retype

Delete Redefine
Define

Figure 5 : pre-defined set of generic decisions

The transformation decisions affect what we call the Inner environment of an Object. This
environment contains the object itself and its possible properties. We have identify five
types of transformation decisions : create, delete, define, redefine and undefine.
Create~delete is the decision to instanciate/remove an object. Define allows to associate
property to an object. Notice that the related action creates a property instance and also a
transformation link between both object and property. Redefine allows to change an
existing property. Finally, undefine allows to delete a property previously defined. The
related action deletes both the transformation link and property.

The expansion decisions express how expansions may affect what we call the
Spatial_environment of an Object. This environment contains the objects which may be
structurally and directly connected to it. We have identify two types of expansion
decisions: associate and unassociate. Associate is the decision to structurally relate two
objects. The associated action creates an expansion link between both objects which is
either an inter- or an intra-model link. Unassociate is the pending decision to delete an
existing expansion link.

The mutation decisions affect what we call the Temporal_environment of an Object. This
environment allows traceability from users' requirements to implementation. The purpose
of a mutation link is to relate both input and output objects of a mutation. We have
identify two types of mutation decisions : mutate to (which creates the link) and
unmutate_to (which removes it). A creation results Ether from a mapping decision (an
inter-model mutation) or from a retyping decision (an intra-model mutation).

373

3.2 Guidelines for defining the way-of-working

We show here how to use the pre-defined set of generic decisions, based on our
classification of object evolution, to define a way-of-working as a set of macro and micro
contexts. The approach is based on the four following steps :

(1) Identification of the classes of objects of the RE methodology,
(2) Definition of the three environments for each object class,
(3) Definition of decisions by instanciation of the generic hierarchy

(shown in figure 5) for each object class,
(4) Refinement of macro decisions for each object class.

We exemplify the four steps with part of the F3 methodology which maps the Enterprise
model [1] into the Information System (IS) model [19].

Step (1) : The IS model is an E/R like model which also describes the services provided
by an entity-type. We show, in figure 6, some classes of objects such as Service or
Entity-type which correspond to the concepts of same name in the IS model. We look
upon a concept as a class of objects in order to be able to describe the possible evolutions
of its instances i.e. their possible transformations, expansions and mutations.

For instance, we have described the association of entity-types with two objects Role and
Relationship at least for three reasons : (1) a Role may have several transformations (in
figure 6, we can see that the object Role has three properties : ro lename, cardm and
cardmax) , (2) a Relationship may be expanded with attributes (see, in figure 6, the
expansion link between Relationship and Attribute), (3) a relationship may mutate to an
Entity-type (see, in figure 7, the mutation link between Relationship and entity-type).

The Enterprise model describes the environment of Information systems. In the F3
methodology we use it to elicitate users' requirements. In this approach, an analysis of the
activities related to a future information system is generally a pre-requisite to its
development. In figure 7, we show the main objects which are related to activity : Actor,
Event, Resource and Goal.

Step (2) : In this step, we have to define for each class of object the three environments :
inner, spatial and temporal. These environments may be shown graphically as suggested
in figures 6 and 7 i.e. the nodes are object classes (normal boxes) or property classes
(boxes with a black corner like in the meta model), the links have three different
representation according to the emphasis

The two first environments are easy to build considering the semantic of each concept. In
figure 6, we can see for instance that an Ent i ty type may have : (a) a name in its
inner_environment, (b) a key, attributes, roles and services in its spatial_environment.
The inner_environments related to the objects of the Enterprise model are not shown in
figure 7 for the sake of clarity. The simplified description of the spatial environment of
Activity is shown in the same figure : Event, Actor, Goal and Resource.

374

Figure 6

j'--Jentity-type_name �9 I relationship-typename �9
I ore condition ~1 1 I

~:ENTITY-TYPE ~ RELATIONSHIP TYPE I
' \ I , r~

/ " / I Ic=~u �9
I TR~GER I I ATTRIBUTE I

h trigger formula �9 J I allrbute-nan~ �9 j -- exl~nsion link
I atltibute domain �9 I transformation link

Some examples of transformation and expansion links into the IS model

The temporal_environments buildings are more difficult to achieve. A method engineer
must consider the semantic of concepts and the heuristics used by developers. Generally
the mutations result ing from mappings or retypings relates objects, the
spatial_environments of which have similarities i.e. in figure 7, we can see that an entity-
type and a relationship may be both expanded with attributes. As the spatial_environment
of a relationship is potentially more restricted than an entity-type one, we have defined a
mutation link from relationship to entity-type and not the contrary. Of course, we could
have both. The similarity between Activity and Service is more complex, yet it is easy to
understand that they cover similar aspects with different languages.

I~ ..-~ expansion l ink J ~
mutation link

I '~ '~-"-]"-"- I ACTIVITY ~ ,

~ I ENTITY'TY PE I " l - - - -~ -J

" ~ I I R'ELATIONSHIP TYPE I
, -

Figure 7 : Some examples of expansion and mutation links

Step (3) : In this step, the terminal leaves of the generic hierarchy are instanciated first
(3.1) for each object to define a set of micro contexts i.e. the generic decisions are replaced
by as many specific decisions as there are object classes and links. Then the non terminal
leaves are instanciated (3.2) in turn for each object to define a set of macro contexts.
(3.1) To get micro contexts we must define : transformation decisions, expansion
decisions and mutation decisions. A method engineer must have in mind that he should
reuse as far as possible the decision names the Requirements engineers are familiar with.
In the paper, we have tried to use decisions names which are easy to understand.
Figure 8 shows some of the transformation decisions (for the sake of clarity we show only
the create and define decisions) related to the links mentioned in figure 6 �9 for each class
there are a create and a delete decision ; for each transformation link there are a define, a
redefine and an undefine decision. These decisions allow to define micro contexts related to
object classes. A context rely a decision to the object(s) (i.e. the situation) on which it is

375

applied. For instance for the entity-type object class, we have two micro contexts (with a
transformation intention) �9

< () , Create_Entity type > / to create an object of this class
< (Entity_type) , Define_Entity_type_name > / to create a property name

TransrornmtJon

Cr~te ~ n !f# + li~lL'~ Crl~le-Trlllller
~ k Redefine Cr-- l '_~" t i t ,_ i , . / / | \ \ -Cr . tS.~ i= D'ii: \ X " ' "

c..,._.o,. / / \ Cr~ll~Ke)"
Create_Attribute U t.reate_ISA �9 �9 �9 ~ �9 �9 �9

CrealLRelallonshiptype i v Define ~ . ~ ~ l ~ , , ~ - - De fi r,e_S ,llna t u r e

Define Role cardm / / I I x Define Tri.cr formula
Define_Role_cardM / I |Dd'ine gntity_lype name
Define A ttribute domain J Define_A ttrib ut e_rm me

Define_Relatlonship type name

Figure 8 : Some transformation decisions in F3 RE methodology

Figure 9 shows the expansions decisions related to the links mentioned in figures 6 and 7.
Specifically to each expansion link, there are an associate decision and an unassociate
decision. For instance, figure 6 shows an expansion link between Ent i ty- type and
Attribute, therefore we can define two decisions : associate_Attribute_to_Entity_type and
unassociate Attribute to Entity_type. These decisions allow to define micro contexts too.
For instancefor the entity-type object class, we may define (with an expansion intention):

< (Entity_type, Attribute) , Associate_Attributeto_Entity_type >
< (Entity_type, Role) , Associate_Role to Entity_type >
< (Entity_type, Service) , Associate_Service to Entity_type >

Figure 10 shows the mutations decisions related to the links mentioned in figure 7. Intra-
model mutation links correspond to possible retypings i.e. either to improve or to correct
a representation. The decision MutateRelationship to Entity_type belongs to this class.
Inter-model mutation links, such as Mutate Actor to Role or Mutate_Activity to
Service, represent mappings from one level of modelling to another one.

Expansion ~ Unassociate

1 ">"
Amocillr Evenl_lo AcUv|l 7 l Amor Io AcUviI?

' ~ 4 ~ , " f Assoclage A;Io Acflvit Associate Resource_to_Acflvlly Asmcciale~l - _ r r_to_ y

Assor Rd" to EuUt, type ~ t ~ ~Am~176

+.:,.+i,.;i+i..,.,;+, -i l
AJsociote AUrlbute_to_Entliy_r I ssoc te ISA to aiRy_type

Assodate_Key_to En tlty..tyl~

Figure 9 : Some expansion decisions in F3 RE methodology

376

These decisions allow to define the last sub-set of micro contexts. For instance for the
relationship object class, we may define (with a mutation intention), the following micro
context : < (Relationship), Mutate__Relationship_to_Entitytype >

Mutation

Unmn~te_tn

otDo Mutal~_to

Map Retype

/ ",,,.
Mnt~te Resource to Entity type Mutate_AcUvlly_to_Servke

Figure 10 : Some mutation decisions in F3 RE methodology

(3.2) To get macro contexts, we take into account the non-terminal leaves of the generic
decision hierarchy (see figure 5) giving new names to them in order to define specific
decisions.
For instance, related to Entity-type object class, we may obtain the following hierarchy of
macro contexts (which is also completed with the micro contexts defined in step (3.1) :
< (Entity_type), Evolve_ET > / Similar to the improve decision of figure 4.

Altl < (Entity_type), Transform_ET > / alternatives shown in figure 8
Altl.1 < (Entity_type), Define Entity_type_nanae >

Alt2 < (Entity_type) , Expand_ET > / some of the alternatives shown in figure 9
Alt2.1 < (Entity_type, Attribute) , Associate_Attribute to Entity_type >
Alt2.2 < (Entity_type, Role) , Associate_Role_to_Entitytype >
Alt2.3 < (Entity_type, Service) , Associate_Service to Entity_type >

Alt3 < (Entity_type), Mutate ET > / no alternatives shown in figure 10

In fact, the number of micro decisions and by the way the richness obtained in the F3
process model is more important than the one sketched in these lines, because we should
consider that association of concepts are objects too. For instance, in the Enterprise Model
(EM) all the relationships are directional links which may also carry properties such as
names. As a matter of fact, we may improve the part of the way-of-working dealing with
transformations and mainly with mutations. For instance, if Actor may mutate to Role,
Resource to Entity-type and there is an EM_Link defined between Actor and Resource,
then we could define a mutation link between this object EM_Link_Resource_to_Role
and the object Relationship_type. At the further stage of process guidance, if the two first
mutations have been performed, the guidance tool can suggest to perform the third one.

Step (4) : In order to take into account more specific aspects of the RE methodologies, we
propose to extend the set of contexts systematically defined in two ways : (4.1) clustering
decisions, (4.2) explicating specific mode of reasoning (such as a Top-down approach).

(4.1) Clustering of decisions is resulting from the possibility to define meaningful
groupings of decisions. For instance, the F3 E/R like model has static aspects and
dynamics ones. It is worth to group decisions according to this criterion when the
intention is to refine an existing object. This introduces two levels more in the hierarchy
as showed in figure 11. For instance, if we consider the alternatives related to Expand_ET
(define in step 3.2) we can separate those which are dealing with the static definition of an
entity-type from those dealing with its dynamic definition :

377

< (Entity_type), Expand_ET >
< (Entity_type), Refine_ET definition >

< (Entity_type) , Refine ET_Dynamic_def'mifion >
< (Entitytype) , Refine_ET with Service definition >

< (Entitytype), Refine ET_Static._definition >
< (Entitytype) , Refine ET_with Role definition >
< (Entitytype), Refine_ET with Attribute_definition >
< (Entitytype) , Refine_ET with Key_definition >
< (Entity type) , Refine_ET with Sub-type definition >
< (Entitytype), Refine ET with Attribute definition >

Expansion

Complete

Refine

Refine_static_def

 efin . th Ro,. 0fi.itio.// \"...
Refine ET with Attribute definition ~

Refine ET with Key d e f i n i t i o n \

0 0 o

Refine dynumic_def l ' -
@@O

Re fine ET_with_Servlce_definition

Refine ET with sub-type_definitlon

Figure 11 : Refine hierarchy of Expansion decision on Entity_type object

(4.2) Traditionally, a methodology suggests either a Top-down approach, a Bottom-up
approach or mix of both. This is what we call the mode of reasoning. The point is that a
mode can influence the definition of the macro contexts. Let's consider the
Refine ET with_Attribute_definition decision (similar to the decision called Attributise in
figure 4) mentioned in previous example. The reasoning mode used to define an Attribute
can be, as it is in the F3 way-of-working, the following :
< (Entity_type) , Refine ET with Attribute_definition >
Altl < (Entity_type), Definenew_Attribute of ET >

Altl . l< (Entity_type), Createnew_Attribute of ET >
< () , Create_Attribute_by_mutation >

< () , Create_Attribute_by_mapping >
< () , Create Auribute_by_retyping >

< () , CreateAttribute_by_reuse >
< () , Create_Attribute_from_scratch >

< () , CreateAttribute>
< (Entity type, Attribute) , Associate_Attribute to Entitytype >

Altl.2< (Entitytype) , Identify_in_Current_Product_existing Attribute of ET >
< (Entity_type, Attribute) , Associate_Attribute to Entity_type >

Alt2 < (Entity_type) , Refine_existing_Attribute of_ET >
Alt2.l < (Attribute) , RefineAttribute_static_definition >

This last decision is similar to the Refine ET s ta t icdef in i t ion decision defined
previously. As a matter of fact we have illustrated a Top-down approach [11] i.e. starting
from the intention to Refine an Entity-type static definition we have decided to refine the
static definition of one of its attributes. We can also define the reverse reasoning to get a
bottom-up approach. By the way, a method engineer has a complete freedom to define the
reasoning-mode he wants to allow in a given way-of-working. Let's illustrate such a
bottom-up approach with the same example.

378

< (Attribute) , Refine_Attribute_Static_definition >
< (Attribute), Involve_Attribute in ET definition >
Alt l < (Attribute), AggregateAttribute to new ET >

Al t l . l< (Entity_type), Create new ET >
< () , Create_ET by_mutation >

< () , Create ET bymapping >
< () , Create_ET>
< (Resource, Entity_type), Mutate_Resource to Entity_type >

< () , Create ET by_retyping >
< () , Create ET>
< (Relationship, Entity_type) , Mutate_Relationship_to_ET >

< () , Create._ET_by_reuse >
< () , Create ET fromscratch >

< () , Create_ET>
< (Entity_type, Attribute) , Associate_Attribute_to_Entity_type >

Al t l .2 < (Attribute), Identify_existing_ET >
< (Entity_type, Attribute) , Associate_Attribute to Entity_type >

Alt2 < (Attribute) , Refine_existing ET of Attribute >
Alt2.1 < (Entity_type) , Refine ET static_dermition >

4 Conclusion

This paper is centred on ways-of-working definition. Our proposition is based on three
process modelling abstraction levels which more generally allow three complete forms of
support : (1) process trace, (2) way-of-working definition and (3) process guidance. We
have detailed in the paper point (2) by providing a set of guidelines for method engineers.
We show in figure 12, that we can structure the process knowledge in a repository. A
process meta model and some guidelines are used to define ways-of-working (as described
in this paper). Then the resulting way-of-working (or process model) is used manually or
not for different processes by developers, Learning from traces allow to improve the way-
of-working and so the guidance support by capitalising development heuristics which are
numerous in Requirement Engineering.

CASE t o o l s

I Melhod F..no In ee r In 1

Q pop

~ .~.Defines

'F
~ LIKn~g I

I Pro�9 control) & g u l d a ~

O

; Developer

Figure 12 : Process case tools architecture

From the point of view of users, the Method Engineer knows and uses with a method
engineering tool the process meta model to populate a way-of-working. Then using a
learning tool, he is able to refine and complete the way-of-working by capturing
Developers heuristics. The Developer uses the way-of-working definition with a process

379

control and guidance tool or manually if he wants to apply some new decisions which
could be further capitalised. He also builds the trace as the process proceeds.
This architecture is developed within two Esprit III projects in the Requirements
Engineering field. The F3 project aims at tracing the process. Its guidance tool will be
based on a learning facility working on RE traces. These traces relate the objects with the
three kind of links introduced here (transformation, expansion, mutation links) and also
keep track of objects history in terms of all the decisions which have affected its
definition. Finally, the method engineering approach defined in the paper is developed in
this project.

References
1. Bubenko J., Rolland C., Loucopoulos P., De Antonnellis V. : "Facilitating "Fuzzy

to Formal" Requirements Modelling", Proc. of ICRE94, Colorado Springs, 1994.
2. Boehm B.W. �9 "A Spiral Model of Software Development"; IEEE Computer 21.
3. Curtis B., Kasner H., Iscoe N. : "A field study of the software design process for

large systems"; Comm. ACM, vol. 31, 1988.
4. Dowson M. : "Iteration in the Software Process"; Proc 9th Int Conf on "Software

Engineering", Monterey, CA,1988.
5. Finkelstein A., Kramer J., Goedicke M.: "ViewPoint Oriented Software

Development"; Proc. Conf "Le Gtnie Logiciel et ses Applications", Toulouse,1990.
6. Grosz G., Rolland C. : "Using Artificial Intelligence Techniques to Formalize the

Information Systems Design Process"; Proc. Int Conf "Databases and Expert
Systems Applications", 1990.

7. Henderson-Sellers B., Edwards J.M.; "The Object-oriented Systems Life-Cycle";
Comm. ACM, Vol. 09, 1990.

8. Jarke M., Mylopoulos J., Schmidt J.W., Vassiliou Y.; "DAIDA - An Environment
for Evolving Information Systems"; ACM Trans. on Information Systems, Vol. 10,
No. 1, 1992.
Loucopoulos P., Zicari R.: "Conceptual Modeling, Database & Case", Wiley, 1992.
Moreno M., Souveyet C. : "The Evolutionary Object Model", IFIP TC8 Int. Conf.
on "Information System Development Process", North Holland (pub.), 1993
Olle T.W., Hagelstein J., MacDonald I., Rolland C., Van Assche F., Verrijn Stuart
A. : "Information Systems Methodologies : A Framework for Understanding",
Addison Wesley, 1988.
Peugeot C., Franckson M.: "Specification of the Object and Process Modeling
Language", ESF Report n ~ D122-OPML-1.0, 1991.
Potts C.: "A Generic Model for Representing Design Methods"; Proceed. 1 lth
International Conference on Software Engineering, 1989.
Rolland C., Cauvet C. : "ALECSI : An Expert System for Requirements
Engineering", in "Advanced Information Systems Engineering", Springer Verlag,
1991.
Rolland C.: "Modeling the Requirements Engineering Process", Proc. Fino-Japanese
Seminar on "Conceptual Modeling", 1993.
Rolland C.: "Modelling the Evolution of Artifacts", Proceed. of Requirement
Engineering Conference ICRE94, Colorado Springs, 1994.
Royce W.W.: "Managing the Development of Large Software Systems"; Proc. IEEE
WESCON 08/1970.
Schmitt J.R.: "Product Modeling in Requirements Engineering Process Modeling",
IFIP TC8 Int. Conf. on "Information Systems Development Process", North
Holland (pub.), 1993
Sportes D. : "The Information System Model"; F3 Deliverable on T2.2, EspritlII
project, n~ september 93.
Wilenski; "Planning and Understanding", Addison Wesley, 1983

.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

