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Abs t rac t .  This paper focusses on the behavioural aspects of the IFO23 
model, an extension of the semantic model IFO defined by S. Abiteboul 
and R. Hull. Its originality is in the formalization of complex events and 
their specification, which adopts semantics and syntax indentical to those of 
the structural part. In addition, it offers concepts - particularly modularity 
and re-usability - that are unanimously recognized as useful for structural 
specification of applications. 

1 M o t i v a t i o n  

Recent development tools for advanced applications - mainly Extended Relational 
or Object-Oriented Database Management Systems [1] - introduce new concepts rel- 
evant for complex object management.  In parallel, conceptual approaches [3, 5, 9, 
10, 13, 14, 15, 19] strive to meet the needs of both traditional and advanced appli- 
cations. Some of them give pride of place to behaviour representation and resort, to 
OODB models for the structural modelling, while forgetting their typically imI,le- 
mentable feature. Thus the models defined can be used for manipulat ion of complex 
objects, but  they lose some of the benefits of semantic approaches [8]. Dependent 
upon target systems, they have shortcomings as regards the proposed constructors 
and only express sdmantic constraints (such as cardinalities) with the aid of  methods 
(i.e. coding, which is paradoxical for conceptual approaches). 
From a dynamic viewpoint, conceptual approaches are based on new concepts and 
mechanisms or make use of temporal logic [5, 6]. Since they aim to specify applica.tion 
behaviour, the problems which are studied are nearly similar to those of concurrent 
system design and software engineering. 
In proposing the IFO.~ conceptual model [11, 12], we intend to integrate both struc- 
tural and behavioural representation of applications in a consistent and uniform 
manner with respect to both the formalization introduced and the associated graph- 
ical representation. It is based on the IFO model of S. Abiteboul and R. Hull [2] aim 
its aim, for the structural part, is to combine the advantages of both semantic a.ml 
object-oriented approaches 4. 

3 TMs work, supported by an External European Research Project in collabor~,tiorl with 
Digital Equipment, comes within the scope of a larger project whose ailn is to provide 
an aided modelling and design system for advanced applications. 
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This paper  is devoted to the dynamic aspect of the model .  I ts  or iginal i ty  is in the 
formalizat ion of complex events and their  specification, which adopts  semant ics  and 
syntax identical  to those of the s t ructura l  part .  In addi t ion ,  it  offers concepts - par- 
t icular ly modular i ty  and re-usabil i ty - tha t  are unan imous ly  recognized as useful for 
s t ructura l  specification of applications.  Wi th  IFO2, i t  is possible to fully compre- 
hend the overall behaviour of a system, by specifying i t  in a manner  tha t  is both  
"fragmented" and "optimized".  These strong points  are stressed in Section 2, which 
summarizes  our contr ibution by drawing a paral le l  wi th  the ment ioned  conceptual  
work. The various concepts introduced to represent the  appl ica t ion  behaviour  are 
defined in Section 3. Then, to conclude, we have a br ief  look at  the IFO2 system 
tha t  is currently being developed. 

2 Related  Work and Proposal  

An event is the representation of a fact that  par t i c ipa tes  ill react ions of the mod- 
elized system. It  occurs in a spontaneous random manner  (in the case of external  
event) or is generated by the application.  In both  cases, it  occurs instantaneously,  
i.e. it  is of zero duration.  Like in [7], we make the following assunq)tion: no more 
than one event can occur at any given instant .  
The s t ructura l  par t  of IFO2 is defined with respect to the "whole-object" philos- 
ophy. We extend its scope to the behavioural  pa r t  and refer to a " w h o l e - e v e n t "  
representation.  In fact, event modell ing in IFO2 complies with a dual  precept:  typing 
and identification. As regards the la t ter  point,  we use the ins tant  of occurrence of 
an event as its identifier. 
The IFO~ model proposes two basic types: 

- the simple event type (TES) represents the events tha t  tr igger a.n operat ion 
(nrethod) included in the IFO2 structural  description;  

- the abs t rac t  event type (TEA) is used to specify external  or ternporal  events ()r 
events tha t  generate other events. 

To modelize a system behaviour,  it is necessary to express different variants  of event 
conjunction and disjunction. To answer this need, we have chosen to represent com- 
plex events by nsing c o n s t r u c t o r s :  composit ion,  sequence, grouping and union. 
Wi th  this approach,  we provide not only the required expressive power bu t  also the 
uniformity with respect to the IF02  s t ructural  modell ing.  When  represell t ing both  
s ta t ic  and dynamic  par ts  of an application,  the designer handles  concepts ha~ing the 
same philosophy. 
The types of events are interconnected by functions through the event f ragment  
concept. Its role is to describe a subset of the model ized behaviour  tha t  can then 
be used as a whole by means of the represented type  concept.  Consequently,  it. is 
possible to manipu la te  another type - without  knowing its descript ion - via an IS_A 
event link. These concepts offer a real modula r i ty  and re-usabi l i ty  of specifications: 

4 Here we do not aim to present the structural part of IFO2 (the interested reader may 
refer to [11, 121). 
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the designer may defer a type description or entrust it to somebody else, while using 
a represented type which symbolizes it. 
The fragment functions express various constraints on the event chain (obligation 
of occurrence, multiplicity and any possible wait). In addition, we make a distinc- 
tion between triggering functions and precedence functions which loosely express 
the fact that an event triggers the occurrence of other ones or that it is preceded 
by the origination of other ones. In order to underline this, let us consider an ex- 
ternal or temporal event. By its very nature, it cannot be triggered by another 
modelized event, therefore it is sometimes necessary to express that its occurrence is 
mandatorily preceded by other events. This makes it possible, by adopting a specific 
observation point (called the fragment heart) to have an overview of the behaviour 
in question, i.e. including not only generating events (preceding events) but also 
generated events (triggered events). The fragment can thus be considered as a unit 
of description of the system behaviour. 
In order to modelize the general behaviour of the application, the partial views pro- 
vided by the fragments are combined (via IS_A links) within an event schema. 

With the proposed approach, an application is described by a. structural specifi- 
cation and a behavioural specification, which are closely related but clearly distinct. 
Our philosophy is therefore different to that of models such as in [10, 13, 14] that. 
choose to combine these two aspects in a single schema. Therefore the behaviour is 
described for each class of objects and an additional mechanism must be used to 
specify the interactions between classes. 
Our philosophy has two advantages in relation to these approaches: a. single uni- 
form description of events, including events shared by objects of different types, but, 
above all, an overview of the system dynamics, which we believe to be essential for a. 
conceptual model. However, it shonld be noted that, in common with the approach 
proposed in [10], we are mindfid of the modularity of specifications: the represented 
type concept in IF02 has the same purpose as that of a role. 
An overall dynamic vision is also proposed in [6, 17], which describes the behaviour 
of an object database by using temporal logic. In this model, the constraints applied 
to tim occurrence of events are expressed with the aid of the trace concept [16] (event 
history) and operators applied to the traces. We make use of such a concept for spec- 
ification of precedence and triggering functions and manipulate traces to trauslate 
particular conditions of the event chain. 

3 I F O z  B e h a v i o u r a l  M o d e l :  F o r m a l  P r e s e n t a t i o n  

3.1 T i m e  and  Event  T y p e  

The behaviour of any real system is within the "time" dimension, therefore it is firstly 
necessary to specify this concept. We do so, in a similar manner to [4], by defining 
time as a set of equidistant instants with an origin and where each point in time cal~ 
be represented by a non-negative integer. The spacing of intervals corresponds to the 
system granularity (i.e. the smallest representable unit of time). In our approach, 
the events that take part in the system dynamics occur in an ordered naanner in this 
temporal dimension. 
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D e f i n i t i o n  1 Time is an infinite set of symbols  and <Tim, the to ta l  order  relat ion 
on this set. 

Apar t  from the identifier and event domain concepts (de te rmining  the events and op- 
erat ions tha t  take par t  in instances), the definition of an event type  entai ls  s t ruc tura l  
elements through the concept of parameter  domain.  

D e f i n i t i o n  2 TE is an infinite set of event types such that :  Vte E Ts Did(re) is 
an infinite set of symbols  called the i d e n t i f i e r  d o m a i n  of te with Did(re) C time, 
Dora(re) is an infinite set of symbols,  including the empty  set, called the e v e n t  
d o m a i n  of te and Dpara(te), the p a r a m e t e r  d o m a i n  of re, is included in "P(Ss) 
(where 79(Ss) ~ is the powerset of the object  types of the  s t ruc tura l  schema).  

D e f i n i t i o n  3 An e v e n t  of type Te is a t r iplet  (id, occ, para) such tha t :  ~/e, e ~ of type  
Te, 3 (id, id') E Did(Te) 2, 3 (occ, occ') E Dom(Te) 2, 3 (para, p a r a ' )  E Dpara.(Te)" 
such tha t :  if e = (id, occ, para), e' = (id', occ',para') and id = id' then e = e'. 
The infinite event set of type Te is called Evi(Te). 

To i l lustra te  this paper,  the modelized system is a lift. An event type  involved in 
the descript ion of the lift behaviour is "Up", which describes the ascending ntot iou 
of the lift cage. Let us consider an event, cup,, of this type.  It, couht be specified 
a.s follows: evv~=(idum, up, @l_cage). This means tha t  the event ~'vm occurred at 
the ins tant  iduv~, with the @x-cage as parameter .  The up componel i t  maps  with an 
operat ion of the s t ructural  schema. 

For each event type te of TS, there are two functions: a bi ject ive f lmction Id with 
domain Evt(te) and codomain Did(re) which associates with each event of type t~ 
its identifier and an injective function Para with domain  Evt(te) and codomain  
Dpara(te) which associates with each event of type te its parameters .  

3.2 B a s i c  E v e n t  T y p e s  

A simple event type,  TES,  describes the triggering of an opera t ion  which is specified 
in tile s t ructura l  schema. Other atomic types are model ized through the a.bstract 
event type  concept, TEA.  It describes events which are external  or t empora l  events 
or generators  of other events. Figure 1 shows the graphical  fo rmal i sm for basic event 
types. 

D e f i n i t i o n  4 Let "TES be an infinite set of s i m p l e  event types and let T g A  be an 
infinite set of a b s t r a c t  event types, two disjoint subsets of TZ, such tha t :  

1. Vte E T ~ S :  
(a) 3op �9 O#(Fs,~.o,) I Do,n(te) = op where o P ( r s ,  . . . .  ,) is the oper~.,ion set, 

of the structurM fragment  Fstruct 6 Gs; 
(b) Dpara(te) C_ 7~(Vs) where 7~(Vs) is the powerset of Vs and Vs is the object  

type  set, of the fragment  FStruet. 
2. Vte E Tg.A, Dora(re) = O. 
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TEA ~ e q u e s t  

non External Event Type 

TEA F~-Request 
External or Temporal Event Type 

Fig. 1. Example of Basic Event Types 

Figure 1 presents the TES "Up", evoked in the previous example, and two TEAs: 
"Satis-Request" and "Floor-Request". The former describes events generated when 
the lift reaches the required floor. The latter represents external events occurring 
when users request a floor. 

3.3 Complex  Event  Types  

To describe the system behaviour, complex event combinations have to be expressed. 
They provide constraints on event occurrences. The four constructors (shown in Fig- 
ure 2) proposed in the IF02 model specify the logical conditions on events: conjunc- 
tion with different constraints and disjunction. 
Each event may only take part in a single construction since it occurs only once. 
Accordingly, in the constructor definitions, this is formally expressed through an 
exclusivity constraint. Furthermore, a composite event stems from the occurrence of 
its components. 

C o m p o s i t i o n  and  Sequence  Event  Types:  the event composition and sequence 
constructors reflect the conjunction of events belonging to different types. The se- 
quence includes a chronological order on the occurrences of the component events. 

Def in i t ion  5 Let 7-8"TC be an infinite set of compos i t i on  event types, and let 
TCTS be an infinite set of sequence event types. T E T C  and :]-87"8 are two subsets 
of TE, such that: Vte E :YE'l-C UT"ETS,  3tel,/e2, ...,ten E :Ts n > 1, such that: 

1. Dom(te)  C_ EvZ(tel)  x Evt(te.,)  x ... x Evt(te,~). 
2. DpaT"a(te) C Dpa, 'a(tel)  U npar'a(te.2) U ... U npara ( t e , ) .  
3. te is structurally defined as: 

Ve E Evt( te) ,  3e l  E Ev t ( te l ) ,  e2 E Evt( te2),  ..., en E E v t ( t e , )  such that: 

e = (id, e.], 0 
i=1  

and Vg E Evt( te )  with e # g,  3e i E Err( te l ) ,  e~ E Evt( te2),  ..., e; E Evt(~.c,) 
such that e ' =  (id', [e~, e~, ..., e~],para') with Vi ~ [1..n], ei r {e~, e.J,, ..., e~}. 

A structurM schema is defined as a directed acyclic graph Gs = (As, Ls) where Ss is 
the set of object types and Ls the link set of the schema. 
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Furthermore, if te �9 7"E'TS, we have: Id(e l )  <Time Id(e2) < T i  . . . . . .  < T i  . . . .  

ld(e,) < r i , , ,  Id(e). 

The occurrence of a composition or sequence event type is defined by the Cartesian 
product  of the aggregated events. Its parameters are the union of its component  
parameters.  The exclusivity constraint imposes tha t  a composite event type cannot 
occur from events which are already used. 

G r o u p i n g  E v e n t  T y p e s :  the grouping represents an event collection, i.e. a con- 
junction of events belonging to the same type. 

D e f i n i t i o n  6 Let 7-ES~ be an infinite set of g r o u p i n g  event types, subset of "TL', 
such that:  V t e � 9  TESG, q! t#  �9 7-8, such that:  

1. Dora(re) C "P(Evt(te')) where "P(Evt(te')) is the powerset ofErr(re') .  
2. Dpara(te) C_ 79(Dpara(te')). 
3. te is structurally defined as: 

Ve �9 Evt(te), 3e~,e2, ...,e,~ �9 Evt(~e') such that:  

e = (id, {el,e2, ..., e,~}, ~J P,,,'a(ei)) 
i = l  

! with Vi �9 [1..n],Id(ei) <Tim~ Id(e) and Ve! = (id',[el,e2,...,e!,~],'pa,',t ') �9 
Evt(te) with e :~ e' then V i �9 [1..n], ei ~ {e~, e~ .... , e~n}. 

U n i o n  E v e n t  T y p e s :  a disjunction of different event types is described by the 
union constructor. 

D e f i n i t i o n  7 Let q-gUT be an infinite set of u n i o n  event types, subset of 'Tt : ,  such 
that: Vte �9 "TEL/T, 3tel,te~, ...,te,~ �9 T8 ,  n > 1, such that: 

1. Dora(re) C_ Dora(tel)  U Dom(~e2 ) U ... U Dora(re,). 
2. Dpara(te) C_ Dpara(r U Dpara(te2) U ... U Dpara(te,).  
3. ~e is structurally defined as: 

Vi, j 6 [1..n] if i # j then Err(tel) n Evt(tej)  = 0 and 
Ev~(te) = Evt(tel)  U Evt(te~) O ... U Evt ( te , )  
with Ve e Ent(te), q[ k 6 [1..n] such that  e = ek where ek 6 Evt(te~). 

In figure 2, the union type "Up-Down" is an alternative between the two simple 
types "Up" and "Down". It  triggers the descending or ascending lift. motion.  Thus 
an event of the union type "Up-Down" may be all event of either type "Down" or 
type "Up". 
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Notation | | 
Composition Grouping 

@ | 
Sequence Union 

3.4 R e p r e s e n t e d  Event  Types 

This type, symbolized by a circle, handles another event type through the IS_A 
specialization link (Cf. Definition 16). Consequently, the designer may use aa event 
type without knowing its complete description. This concept is particularly interest- 
ing when considering modularity and re-usability goals. 

Def ini t ion 8 Let T E R  be an infinite set of r e p r e s e n t e d  event, types, subset of 
"l-E, such that: 
Vie E "TE~, 3te],te2, ...,~en E TE, n > O, called the sources of te, such that.: 

1. Dora(re) C_ Dora(tel) O Dora(re2) U ... O Dora(re,). 
2. Dpara(te) C Dpara(tel) U Dpara(te2) U ... U Dpara(ten). 
3. te is structurally defined as: Evt(te) = Evt(tel)  U Evt(te2) U ... U Evt(te:, ) 

with Ve E Evt(te), 3ei �9 Evt(tei), i �9 [1..n], such that e = ei. 

The definition of represented event types takes into account the multiple inheritance 
since a represented event type may have several sources. 

3.5 Event Types 

From basic and represented types and constructors, event type may be defined. Event 
and parameter domains are explained as well as instance (at a given instant). 

Event  T y p e  Specif icat ion:  an event type is built up from simple, abstract and 
represented types and constructors which may be recursively applied. 

Defini t ion 9 An event  type  Te E 7-E is a directed tree (STy, ETa) such that: 

1. ST,, the set of vertices, is included in the disjoint union of seven sets TES, T~'..A, 
"TE~, TET-C, T E T S ,  7-ESG and TEHT.  

2. ETe is the set of edges called type links. 

Event  Set and  T y p e  Domains  

Defini t ion 10 Let Te be an event type, the infinite set of events  of the type To, 
Evt(Te),  the event  domain ,  Dom(Te), and the p a r a m e t e r  domain ,  Dpara(Te) 
are respectively equal to the set of events and the domains of events and parameters 
of its root type. 
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A t y p e  i n s t a n c e  includes ail the events of this type which already occurred. 

D e f i n i t i o n  11 Let Te be an event type, an i n s t a n c e  J of Te, denoted by JTe, is a. 
finite set of events of type Te, i.e. JT, C Evt(Te). 

The a t t a c h e d  even t s ,  denoted by Err_art, describe, for each vertex of the type, 
which events occurred. This concept is particularly useful to specify certain com- 
plex constraints (for instance, if an event triggering depends on some other specific 
events). 

3.6  E v e n t  F r a g m e n t  

The fragment goal is to describe a part  of the system behaviour. One of its advantages 
is that  it can be re-used and manipulated as a whole through the represented type 
concept. The fragment description focusses on a particular event type, called the 
heart, which is related to other types. These links represent the event chainfitg, i.e. a 
part  of the specified behaviour. In the real world, events occur according to lmrticular 
rules (temporal or not). In IFO2, these rules are specified by using functions which 
combine the following features. They can be simple or complex (multivahled); partial 
or total (mandatory)  and immediate or deferred. Furthermore, we have a distincti-n 
between triggering functions (whose source is the heart) and precedence functions 
(whose target is the heart). 
There is at the most one precedence edge in a fragment. 

F r a g m e n t  Spec i f i ca t i on  

D e f i n i t i o n  12 An even t  f r a g m e n t  is a directed acyclic graph F, = (VFr LF,) 
with VF~, subset, of 'TE, the event type set of the fragment and LFt,  t.he s~. oi 
fragment links, defined such that,: 

r L t x whose root, is called fragrlient 1. there is only one directed tree He = t ' F , ,  F,J 
heart such that: 
(a) V~ C_ VF,, L~, C LF,. 
(b) The source of a triggering edge is either the root of the heart or the root 

of a target type of a complex edge whose source is the heart root (case of 
subfraglnent). 

2. (VFe -- V~e) is either equal to the empty set - and (LF~ - L ~ )  too - (,r it is 
reduced to a singleton, source of the precedence edge belonging to (LF, -- L~,) 
whose target is the fragment heart. 

The event fragment is called by its heart. 

Figure 3 illustrates a fragment whose heart is an external event type "Floor-Request ' .  
In this fragment, there is no precedence function. This fragment describes the lilt 
reactions when a user wishes to go to a floor, i.e. either he calls the lilt. from a floor 
or he pushes a button in the cage. The fragment heart is linked with a partial and 
deferred flmction to the simple type "Closure". The associated method in the struc- 
tural fragment "Lift-Cage" closes the lift doors. The flmction ~ is partial because, 

Due to lack of space, the function specification language is not described in this paper. 
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I Closure I 

/ / ~ N , , ~  w' ~Up-Down , ~ a l - F l o o r  
F I o o r : ~  _ a ~ ~ _ ~  

Fig. 3. The "Floor-Request" Event Fragment 

Notation 

*, Total Function 

_ _  ~ ,. Partial Fuuction 

wait Deferred Funcfitm 

~ ~ ~ Complex Total Function 

~ Complex Partial Function 

in some cases, an event of "Floor-Request" would not trigger a door closure. These 
cases are the following: (i) the user wishes to go to the floor where he is currently 
located; (ii) or the door closure stems from another event, i.e. a previous request 
from the same floor or a previous button activation if the user is already in the lift 
cage. The function is deferred to take into account the case where the user requests 
the lift while the cage is moving up or down. 
The TEA is also related to the composite type "Up-Down" through a partial, de- 
ferred and complex function. It is partial to take into account three cases: cases (i) 
and (ii) of the previous function and the case where the requested floor is served 
when satisfying previons current requests. The deferred feature of the flmction takes 
into consideration the possible delay between the user request and the resulting lift, 
motion. In fact the methods corresponding to the TESs "Up" and "Down" perform 
a single floor ascent or descent for the cage. This is why the triggering flmction is 
complex. The union type "Up-Down" is heart of a subfragment. The triggering flmc- 
tion which relates it to the represented type "Arrival-Floor" (whose consequences 
are described in another fragment) is total and immediate. This means that  any 
event of the types "Up" and "Down" generates an event of "Arrival-Floor". 

A f r a g m e n t  i n s t ance  is a triplet: the generators of heart events, the heart events 
themselves and those triggered by heart events. It  gives an historical view of the 
fragment behaviour with causality links between events. 

T h e  f r a g m e n t  g e n e r a t e d  even ts  are those triggered from heart events, i.e. tltose 
obtained by applying the triggering functions to heart type instance. 

Defini t ion  13 Let Fe be an event fragment whose heart is Te0 with root tea, let. 
al = (rt0, re1), a~ = ("e0, re2), ... a ,  = (re0, re,)  be edges whose source is ,',,,. For 
each i E [1..n], let fa~ be the function associated to the ai edge and let Zr be the 
subfragment obtained from the maximal subtree with root rei. 
The set  o f  even t s  g e n e r a t e d  from an event e of the heart type of F~, is achieved 
by the function ~PF. which is such that: 
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~F, (e) = l~ if the F~ fragment is reduced to one type 
else, 

n ql 

= U( U 
i----1 k = l  

where {eij, ; k E [1..q~]} is the event set obtained by applying the f~, function 
to the event e (qi is equal to 1 when f~, is a simple function) and ~z~.(ei~:) 
is the set of events generated from the event elk in the subfragment Z~:i. 

The set of events triggered from the JT.o instance with m elements, denoted by 
ffzF.(JT.o), is then defined by: 

rtt 

~F.(..1T~o) ~- U(~F.(ej)). 
j = l  

T h e  g e n e r a t o r  e v e n t s  are those having one image by the fra.grnent I)l'ecer 
function. 

D e f i n i t i o n  14 Let Fe be ~tn event fragment whose heart is Te,} with root r,t~ and 
let ab = (rb, re0) be the possible edge whose target is re0. The se t  o f  g e n e r a t o r  
e v e n t s  of heart events is obtained with the function TF~ whose domain is .IT,, - a 
TeO instance with m elements - and codomain is either the empty  set if al, does not 
exist or IT~ an instance of type Tb with root rb. TF, is defined by: 

Ve  E JT, o, TF.(e)  : eb if eb E ITb exists and is such that  f,~(e~,) : e else 
TF. (e) = $ where f ~  is the function represented by the ab edge. 

The set of generator events through the ab edge of the JT~,, instance, denoted by 
TF, (JT, o), is defined by: 

j = l  

F r a g m e n t  I n s t a n c e  

D e f i n i t i o n  15 Let Fr be an event fragment whose heart  is a type T~c~ and let .IT.,, 
be an instance of .T,0 with m elements. 
An i n s t a n c e  of F~, denoted by IF.,  is defined by: 

IF .  = (rF.(Jroo), Jr.o, 
In the "Floor-Request" fragment, there is no precedence function. Consequently, the 
fragment instance is equal to the following triplet: IF,. = ({~, Jr, . ,  ~F,. (]F,. ))- 
Let us suppose that JF,- is reduced to the event e f t 1 ,  we have: ~F~ (JF,.)  = tI/F,. (e.F,.1) 
= (eel ,  0) where eel  is of type "Closure". This instance expresses that  there is m,t 
yet a going up or down order associated to the event eF,.1. 

3.7 E v e n t  S c h e m a  

The overall behaviour of a system is modelized by grouping the partial views de- 
scribed through fragments. The resulting event schema is thus composed by frag- 
ments related by IS_A links according to two rules. 
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Specia l izat ion Link: the specialization link represents either the role of an event 
type in another fragment or the event subtyping. 

Defini t ion I6  Let Te be a type of TET~ and let :Is E TC be a source of Te and 
heart of fragment, the link of source Ts and target Te is called an IS_A link and is 
denoted by LlS..A(Te--T,). 

Schema Specification 

Defini t ion 17 An event  schema is a directed acyclic graph Gse = (Ss~,Lse) 
such that: 

1. Ss~, the set of schema types, is a subset of Tg. 
2. Lse is the disjoint union of two sets: Ls~_A the fragment link set and Ls~-Is._A 

the IS_A link set. 
3. (SSe, LSe-A) is a forest of event fragments. 
4. (Ss~, LSe-IS_.A) follows the two rules: there is no IS_A cycle in the graph a.nd 

two directed paths of IS_A links sharing the same origin must be extended to a 
C, o l n  I T I O n  vertex. 

Figure 4 partly shows the IFO2 event schema "Lift", involving three fragments, each 
one dedicated to a particular aspect of the lift reactions. "Floor-Request" describes 
the system behaviour when a user request occurs. "Cage-Arrival" is a particular 
fragment since it is reduced to its heart which is a TES re-used in other fra.gments. 
The corresponding method in the structural fragment "Lift" returns the floor reached 
by the cage. Finally "Sa.tis-Request" is dedicated to the lift behaviour when the cage 
arrives at the requested floor. These fragments are related by IS_A links through the 
represented types "Go-Floor", "Arrival-Floor" and "Arrival". 

Schema I n s t a n c e  

Defini t ion 18 Let Gse be an event schema composed by p event fragments F~I, 
F~.,...,Fep with p > 0. An ins tance  of Gs~, denoted by IGs,, is such that: 

1. 

P 

i= l  

where IF.i is the instance of tile F,i fragment. 
2. If Lis_.a~r,_r,) E Lse-IS_a, Te E Fei and T~ E F~j then: 

Evt_a.ttT. ( IFo, ) C_ Evt_attT, (1F.j ). 

3.8 Satisfactioal F r a g m e n t  

The application behaviour is represented by the event schema. It may he simnla.ted 
by navigation through the graph, from the root to the leaves, from left to right. An 
outline of this behaviour consists in a propagation of event triggering. It stops when 
all the actions reflecting the goal sought by the system, are achieved. These actions 
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Fig. 4. Part of the IFO2 event schema "Lift" 

are described in the schema., within one or more fragments called satisfaction frag- 
ments. The latter have to include a TER. All the events belonging to the IS_A link 
origin would be satisfied when generated events in the satisfaction fragment occur. 
This vision has to be refined by taking into account iterations tha t  would possibly 
be performed during the graph navigation. Iterations aroused by the satisfaction 
fragment are performed by considering triggering fimctions which are complex or 
deferred. The chosen iteration is the first one found along the reverse path.  

D e f i n i t i o n  19 Let Gs~ be an event schema composed by p fragments F,1, F~2,...,F~, 
with p > 0, let IGs, be the instance of Gs~ and let IF~. be the F~i instance. A 
f r a g m e n t  o f  s a t i s f a c t i o n  F~j_sat for a represented type T~,. is a Gs~ fragment 
such that: 

T~  e Vl% s_,~t and V k 6 [1..p], k # j ,  such that  the source of T,,., T,, belongs 
to the fragment Fek with: V e E Evt-attT.r(IF.j-sat), Cause(e) 7 E TrF.t.  
The fragment of satisfaction Fej_sat is such that: 

Evt_attT, (JF, ,)  C_ Evt_attT.~ (IF, j-sat). 

When the represented type is the target of several IS_A links, all tile sources have 
to be taken into account. This is performed by the inclusion of atta.ched e.veuts 
belonging to the types which are IS_A link origins. 
In our example, the satisfaction fragnaent is "Satis-Request", which specifies that  
each user who re~luests a floor has to reach it, in the end. I terations a.re ma.de to 
trigger the complex fimction between "Floor-Request" and "Up-Down" until the 
requested floor is reached. 

r For each event, the Cause function determines its generator event 
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4 C o n c l u s i o n  

In this paper, we have presented the behavioural part  of the IFO2 conceptual model. 
Its originalities are a "whole-event" approach, the use of constructors to express com- 
plex combination of events and the re-usability and modular i ty  of specifications in 
order to optimize the designer's work. The IFO2 model proposes a twofold spec- 
ification, structural and behavioural, for application modelling. The advantage of 
this choice is the uniformity of the resulting approach. We think that  such a fea- 
ture is particularly important  on a conceptual level. In the two frameworks, static 
and dynamic, the designer uses the same fundamental  concepts, such as re-usability, 
modularity, identification, etc. 
Links between the two specifications are stated as follows. First of all, basic op- 
erations are included in the associated structural schema and are used as simple 
types in the behavioural description. Object types on which event types operate are 
specified through the parameter domain concept. Finally, conditions on data  may 
be expressed in the triggering functions. 
According to us, a formal model is strongly required to avoid ambiguities particu- 
larly in a conceptual context. A rigourous approach must provide real assistance to 
the designer without constraining him to a tedious learning process. Consequently, 
it is important  to offer him an aid that supports the IFO2 model and guides its 
intuitive perception. The IFO2 system is currently developped under U n i x / X l l R 5  
with the Interviews programming environment developed in C + + .  It is an extension 
of the tool presented in [18]. 

R e f e r e n c e s  

1. Directions for fllture database research and development. Special Issue of Siymod 
Record, 19(4), December 1990. 

2. S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACM Tr,,s,<:ti<,l.~ 
on Database Systems, 12(4):525-565, December 1987. 

3. M. Bouzeghoub and E. M6tais. Semantic modelling of object-oriented databa.ses. 
In Proceedings oJ the 17th fl~ternatioaal Conference on Very Lalye D,t~ Base's 
(VLDB'91), pages 3-14, Barcelona, Spain, September 1991. 

4. S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language for 
active databases. Technical report, University of Florida, March 1993. 

5. E. Dubois, P. Du Bois, and M. Petit. Elicitating and formalizing requirements for 
C. I. M. information systems. In Proceedings o] the 5th Internation Co1~fere~ee o, 
Advanced Information Systems Engineering (CAiSE'98), Lecture Notes in Computer 
Science, pages 252-274, June 1993. 

6. J. Fiadeiro and A. Sernadas. Specification and verification of database dynamics. Act, 
ln]ormatica, 25:625-661, 1988. 

7. N. H. Gehani, H. Jagadish, and O. Shmueli. Event specification in an active object- 
oriented database. In Proceedinga of the A CM Sigmod Conference, pages 81-911, S;Jn 
Diego, California, June 1992. 

8. R. Hull and R. King. Semantic database modelling: Survey, applications and research 
issues. ACM Computer Surveys, 19(3):201-260, September 1987. 

9. P. Loucopoulos and R. Zicari. Conceptual Modeling, Databases and CASE: An ba- 
tegrated View o] InJormation Systems Development. Wiley Profession,'d Computiltg, 
1992. 



199 

10. B. Pernici. Objects with roles. In Proceedings of the Conference on Office bl]or,u~ltlo,i 
Systems, pages 205-215, Cambridge, April 1990. 

11. P. Poncelet and L. Lakhal. Consistent structural updates for object-oriented design. 
In Proceedings of the 5th International Conference on Advanced Information Systems 
Engineering (CAiSE'93), volume 685 of Lecture Notes in Computer Science, pages 
1-21, Paris, France, June 1993. 

12. P. Poncelet, M. Teisseire, R. Cicchetti, and L. Lakhal. Towards a formal approach for 
object-oriented database design. In Proceedings of the 19th b~ternational Confr 
on Very Large Data Bases (VLDB'93), pages 278-289, Dublin, Ireland, August 1993. 

13. C. Quer and A. Olive. Object interaction in object-oriented deductive conceptual mod- 
els. In Proceedings of the 5th International Conference on Advanced b~formation Sys- 
tems Engineering (CAiSE'93), volume 685 of Lecture Notes in Computer Science, pages 
374-396, Juae 1993. 

14. C. Rolland and C. Cauvet. Mod6hsation conceptuelle orient~e objet. In Actes des 
7i~mes Journ~es Bases de Donndes Avanc~es, pages 299-325, Lyon, France, September 
1991. 

15. G. Saake. Descriptive specification of database object behaviour. Data ~4 K1to,,lr 
Engineering, 6:47-73, 1991. 

16. A. Sernadas, C. Sernadas, and H.D. Ehrich. Object-oriented specification of 
databases: An algebraic approach. In Proceedings of the 13th b~ternatio~al Co11.[ere:y~c~: 
on Very Large Data Bases (VLDB'87), pages 107-116, Brighton,UK, August lq87. 

17. C. Sernad~ and J. Fiadeiro. Towards object-oriented conceptual modeliltg. D,t~t t:4 
Knowledge E1~gineering, 6:479-508, 1991. 

18. M. Teisseire, P. Poncelet, and R. Cicchetti. A tool based on a formM alq,roach for 
object-oriented d a t a b l e  modeling and design. In Proceedings of the 6th I11te:rl~r 
Workshop on Computer-Aided (CASE'93), IEEE, Singapore, July 1993. 

19. R. J. Wieringa. A formalization of objects using equational dynamic logic, ht Pr,,~'e:e'd- 
ings of the end b~ternational Conference on Deductive and Object-Orieutr D,t,b,se,s 
(DOOD'91}, volume 566 of Lecture Notes in Computer Science, pages 431-452, Munich, 
Germany, December 1991. 


