
Dynamic Modelling with Events

Maguelonne Teisseire I, Pascal Poncelet 2 and Rosine Cicchetti ~

1 Digital Equipment
2 IUT Aix-en-Provence

LIM - URA CNRS 1787 - Universitd d'Aix-Marseille I.I,
Facult$ des Sciences de Luminy, Case 901

163 Avenue de Luminy, 13288 Marseille Cedex 9 FRANCE.
E-mail: teisseir@gia.univ-mrs.fr

Abs t rac t . This paper focusses on the behavioural aspects of the IFO23
model, an extension of the semantic model IFO defined by S. Abiteboul
and R. Hull. Its originality is in the formalization of complex events and
their specification, which adopts semantics and syntax indentical to those of
the structural part. In addition, it offers concepts - particularly modularity
and re-usability - that are unanimously recognized as useful for structural
specification of applications.

1 M o t i v a t i o n

Recent development tools for advanced applications - mainly Extended Relational
or Object-Oriented Database Management Systems [1] - introduce new concepts rel-
evant for complex object management. In parallel, conceptual approaches [3, 5, 9,
10, 13, 14, 15, 19] strive to meet the needs of both traditional and advanced appli-
cations. Some of them give pride of place to behaviour representation and resort, to
OODB models for the structural modelling, while forgetting their typically imI,le-
mentable feature. Thus the models defined can be used for manipulat ion of complex
objects, but they lose some of the benefits of semantic approaches [8]. Dependent
upon target systems, they have shortcomings as regards the proposed constructors
and only express sdmantic constraints (such as cardinalities) with the aid of methods
(i.e. coding, which is paradoxical for conceptual approaches).
From a dynamic viewpoint, conceptual approaches are based on new concepts and
mechanisms or make use of temporal logic [5, 6]. Since they aim to specify applica.tion
behaviour, the problems which are studied are nearly similar to those of concurrent
system design and software engineering.
In proposing the IFO.~ conceptual model [11, 12], we intend to integrate both struc-
tural and behavioural representation of applications in a consistent and uniform
manner with respect to both the formalization introduced and the associated graph-
ical representation. It is based on the IFO model of S. Abiteboul and R. Hull [2] aim
its aim, for the structural part, is to combine the advantages of both semantic a.ml
object-oriented approaches 4.

3 TMs work, supported by an External European Research Project in collabor~,tiorl with
Digital Equipment, comes within the scope of a larger project whose ailn is to provide
an aided modelling and design system for advanced applications.

187

This paper is devoted to the dynamic aspect of the model . I ts or iginal i ty is in the
formalizat ion of complex events and their specification, which adopts semant ics and
syntax identical to those of the s t ructura l part . In addi t ion , it offers concepts - par-
t icular ly modular i ty and re-usabil i ty - tha t are unan imous ly recognized as useful for
s t ructura l specification of applications. Wi th IFO2, i t is possible to fully compre-
hend the overall behaviour of a system, by specifying i t in a manner tha t is both
"fragmented" and "optimized". These strong points are stressed in Section 2, which
summarizes our contr ibution by drawing a paral le l wi th the ment ioned conceptual
work. The various concepts introduced to represent the appl ica t ion behaviour are
defined in Section 3. Then, to conclude, we have a br ief look at the IFO2 system
tha t is currently being developed.

2 Related Work and Proposal

An event is the representation of a fact that par t i c ipa tes ill react ions of the mod-
elized system. It occurs in a spontaneous random manner (in the case of external
event) or is generated by the application. In both cases, it occurs instantaneously,
i.e. it is of zero duration. Like in [7], we make the following assunq)tion: no more
than one event can occur at any given instant .
The s t ructura l par t of IFO2 is defined with respect to the "whole-object" philos-
ophy. We extend its scope to the behavioural pa r t and refer to a " w h o l e - e v e n t "
representation. In fact, event modell ing in IFO2 complies with a dual precept: typing
and identification. As regards the la t ter point, we use the ins tant of occurrence of
an event as its identifier.
The IFO~ model proposes two basic types:

- the simple event type (TES) represents the events tha t tr igger a.n operat ion
(nrethod) included in the IFO2 structural description;

- the abs t rac t event type (TEA) is used to specify external or ternporal events ()r
events tha t generate other events.

To modelize a system behaviour, it is necessary to express different variants of event
conjunction and disjunction. To answer this need, we have chosen to represent com-
plex events by nsing c o n s t r u c t o r s : composit ion, sequence, grouping and union.
Wi th this approach, we provide not only the required expressive power bu t also the
uniformity with respect to the IF02 s t ructural modell ing. When represell t ing both
s ta t ic and dynamic par ts of an application, the designer handles concepts ha~ing the
same philosophy.
The types of events are interconnected by functions through the event f ragment
concept. Its role is to describe a subset of the model ized behaviour tha t can then
be used as a whole by means of the represented type concept. Consequently, it. is
possible to manipu la te another type - without knowing its descript ion - via an IS_A
event link. These concepts offer a real modula r i ty and re-usabi l i ty of specifications:

4 Here we do not aim to present the structural part of IFO2 (the interested reader may
refer to [11, 121).

188

the designer may defer a type description or entrust it to somebody else, while using
a represented type which symbolizes it.
The fragment functions express various constraints on the event chain (obligation
of occurrence, multiplicity and any possible wait). In addition, we make a distinc-
tion between triggering functions and precedence functions which loosely express
the fact that an event triggers the occurrence of other ones or that it is preceded
by the origination of other ones. In order to underline this, let us consider an ex-
ternal or temporal event. By its very nature, it cannot be triggered by another
modelized event, therefore it is sometimes necessary to express that its occurrence is
mandatorily preceded by other events. This makes it possible, by adopting a specific
observation point (called the fragment heart) to have an overview of the behaviour
in question, i.e. including not only generating events (preceding events) but also
generated events (triggered events). The fragment can thus be considered as a unit
of description of the system behaviour.
In order to modelize the general behaviour of the application, the partial views pro-
vided by the fragments are combined (via IS_A links) within an event schema.

With the proposed approach, an application is described by a. structural specifi-
cation and a behavioural specification, which are closely related but clearly distinct.
Our philosophy is therefore different to that of models such as in [10, 13, 14] that.
choose to combine these two aspects in a single schema. Therefore the behaviour is
described for each class of objects and an additional mechanism must be used to
specify the interactions between classes.
Our philosophy has two advantages in relation to these approaches: a. single uni-
form description of events, including events shared by objects of different types, but,
above all, an overview of the system dynamics, which we believe to be essential for a.
conceptual model. However, it shonld be noted that, in common with the approach
proposed in [10], we are mindfid of the modularity of specifications: the represented
type concept in IF02 has the same purpose as that of a role.
An overall dynamic vision is also proposed in [6, 17], which describes the behaviour
of an object database by using temporal logic. In this model, the constraints applied
to tim occurrence of events are expressed with the aid of the trace concept [16] (event
history) and operators applied to the traces. We make use of such a concept for spec-
ification of precedence and triggering functions and manipulate traces to trauslate
particular conditions of the event chain.

3 I F O z B e h a v i o u r a l M o d e l : F o r m a l P r e s e n t a t i o n

3.1 T i m e and Event T y p e

The behaviour of any real system is within the "time" dimension, therefore it is firstly
necessary to specify this concept. We do so, in a similar manner to [4], by defining
time as a set of equidistant instants with an origin and where each point in time cal~
be represented by a non-negative integer. The spacing of intervals corresponds to the
system granularity (i.e. the smallest representable unit of time). In our approach,
the events that take part in the system dynamics occur in an ordered naanner in this
temporal dimension.

189

D e f i n i t i o n 1 Time is an infinite set of symbols and <Tim, the to ta l order relat ion
on this set.

Apar t from the identifier and event domain concepts (de te rmining the events and op-
erat ions tha t take par t in instances), the definition of an event type entai ls s t ruc tura l
elements through the concept of parameter domain.

D e f i n i t i o n 2 TE is an infinite set of event types such that : Vte E Ts Did(re) is
an infinite set of symbols called the i d e n t i f i e r d o m a i n of te with Did(re) C time,
Dora(re) is an infinite set of symbols, including the empty set, called the e v e n t
d o m a i n of te and Dpara(te), the p a r a m e t e r d o m a i n of re, is included in "P(Ss)
(where 79(Ss) ~ is the powerset of the object types of the s t ruc tura l schema).

D e f i n i t i o n 3 An e v e n t of type Te is a t r iplet (id, occ, para) such tha t : ~/e, e ~ of type
Te, 3 (id, id') E Did(Te) 2, 3 (occ, occ') E Dom(Te) 2, 3 (para, p a r a ') E Dpara.(Te)"
such tha t : if e = (id, occ, para), e' = (id', occ',para') and id = id' then e = e'.
The infinite event set of type Te is called Evi(Te).

To i l lustra te this paper, the modelized system is a lift. An event type involved in
the descript ion of the lift behaviour is "Up", which describes the ascending ntot iou
of the lift cage. Let us consider an event, cup,, of this type. It, couht be specified
a.s follows: evv~=(idum, up, @l_cage). This means tha t the event ~'vm occurred at
the ins tant iduv~, with the @x-cage as parameter . The up componel i t maps with an
operat ion of the s t ructural schema.

For each event type te of TS, there are two functions: a bi ject ive f lmction Id with
domain Evt(te) and codomain Did(re) which associates with each event of type t~
its identifier and an injective function Para with domain Evt(te) and codomain
Dpara(te) which associates with each event of type te its parameters .

3.2 B a s i c E v e n t T y p e s

A simple event type, TES, describes the triggering of an opera t ion which is specified
in tile s t ructura l schema. Other atomic types are model ized through the a.bstract
event type concept, TEA. It describes events which are external or t empora l events
or generators of other events. Figure 1 shows the graphical fo rmal i sm for basic event
types.

D e f i n i t i o n 4 Let "TES be an infinite set of s i m p l e event types and let T g A be an
infinite set of a b s t r a c t event types, two disjoint subsets of TZ, such tha t :

1. Vte E T ~ S :
(a) 3op �9 O#(Fs,~.o,) I Do,n(te) = op where o P (r s , ,) is the oper~.,ion set,

of the structurM fragment Fstruct 6 Gs;
(b) Dpara(te) C_ 7~(Vs) where 7~(Vs) is the powerset of Vs and Vs is the object

type set, of the fragment FStruet.
2. Vte E Tg.A, Dora(re) = O.

Simple Event Type

190

TEA ~ e q u e s t

non External Event Type

TEA F~-Request
External or Temporal Event Type

Fig. 1. Example of Basic Event Types

Figure 1 presents the TES "Up", evoked in the previous example, and two TEAs:
"Satis-Request" and "Floor-Request". The former describes events generated when
the lift reaches the required floor. The latter represents external events occurring
when users request a floor.

3.3 Complex Event Types

To describe the system behaviour, complex event combinations have to be expressed.
They provide constraints on event occurrences. The four constructors (shown in Fig-
ure 2) proposed in the IF02 model specify the logical conditions on events: conjunc-
tion with different constraints and disjunction.
Each event may only take part in a single construction since it occurs only once.
Accordingly, in the constructor definitions, this is formally expressed through an
exclusivity constraint. Furthermore, a composite event stems from the occurrence of
its components.

C o m p o s i t i o n and Sequence Event Types: the event composition and sequence
constructors reflect the conjunction of events belonging to different types. The se-
quence includes a chronological order on the occurrences of the component events.

Def in i t ion 5 Let 7-8"TC be an infinite set of compos i t i on event types, and let
TCTS be an infinite set of sequence event types. T E T C and :]-87"8 are two subsets
of TE, such that: Vte E :YE'l-C UT"ETS, 3tel,/e2, ...,ten E :Ts n > 1, such that:

1. Dom(te) C_ EvZ(tel) x Evt(te.,) x ... x Evt(te,~).
2. DpaT"a(te) C Dpa, 'a(tel) U npar'a(te.2) U ... U npara (t e ,) .
3. te is structurally defined as:

Ve E Evt(te) , 3e l E Ev t (te l) , e2 E Evt(te2), ..., en E E v t (t e ,) such that:

e = (id, e.], 0
i=1

and Vg E Evt(te) with e # g, 3e i E Err(te l) , e~ E Evt(te2), ..., e; E Evt(~.c,)
such that e ' = (id', [e~, e~, ..., e~],para') with Vi ~ [1..n], ei r {e~, e.J,, ..., e~}.

A structurM schema is defined as a directed acyclic graph Gs = (As, Ls) where Ss is
the set of object types and Ls the link set of the schema.

191

Furthermore, if te �9 7"E'TS, we have: Id(e l) <Time Id(e2) < T i < T i

ld(e,) < r i , , , Id(e).

The occurrence of a composition or sequence event type is defined by the Cartesian
product of the aggregated events. Its parameters are the union of its component
parameters. The exclusivity constraint imposes tha t a composite event type cannot
occur from events which are already used.

G r o u p i n g E v e n t T y p e s : the grouping represents an event collection, i.e. a con-
junction of events belonging to the same type.

D e f i n i t i o n 6 Let 7-ES~ be an infinite set of g r o u p i n g event types, subset of "TL',
such that: V t e � 9 TESG, q! t# �9 7-8, such that:

1. Dora(re) C "P(Evt(te')) where "P(Evt(te')) is the powerset ofErr(re') .
2. Dpara(te) C_ 79(Dpara(te')).
3. te is structurally defined as:

Ve �9 Evt(te), 3e~,e2, ...,e,~ �9 Evt(~e') such that:

e = (id, {el,e2, ..., e,~}, ~J P,,,'a(ei))
i = l

! with Vi �9 [1..n],Id(ei) <Tim~ Id(e) and Ve! = (id',[el,e2,...,e!,~],'pa,',t ') �9
Evt(te) with e :~ e' then V i �9 [1..n], ei ~ {e~, e~ , e~n}.

U n i o n E v e n t T y p e s : a disjunction of different event types is described by the
union constructor.

D e f i n i t i o n 7 Let q-gUT be an infinite set of u n i o n event types, subset of 'Tt : , such
that: Vte �9 "TEL/T, 3tel,te~, ...,te,~ �9 T8 , n > 1, such that:

1. Dora(re) C_ Dora(tel) U Dom(~e2) U ... U Dora(re,).
2. Dpara(te) C_ Dpara(r U Dpara(te2) U ... U Dpara(te,).
3. ~e is structurally defined as:

Vi, j 6 [1..n] if i # j then Err(tel) n Evt(tej) = 0 and
Ev~(te) = Evt(tel) U Evt(te~) O ... U Evt (te ,)
with Ve e Ent(te), q[k 6 [1..n] such that e = ek where ek 6 Evt(te~).

In figure 2, the union type "Up-Down" is an alternative between the two simple
types "Up" and "Down". It triggers the descending or ascending lift. motion. Thus
an event of the union type "Up-Down" may be all event of either type "Down" or
type "Up".

O W l l

Fig. 2. The Up-Down Event Type

192

Notation | |
Composition Grouping

@ |
Sequence Union

3.4 R e p r e s e n t e d Event Types

This type, symbolized by a circle, handles another event type through the IS_A
specialization link (Cf. Definition 16). Consequently, the designer may use aa event
type without knowing its complete description. This concept is particularly interest-
ing when considering modularity and re-usability goals.

Def ini t ion 8 Let T E R be an infinite set of r e p r e s e n t e d event, types, subset of
"l-E, such that:
Vie E "TE~, 3te],te2, ...,~en E TE, n > O, called the sources of te, such that.:

1. Dora(re) C_ Dora(tel) O Dora(re2) U ... O Dora(re,).
2. Dpara(te) C Dpara(tel) U Dpara(te2) U ... U Dpara(ten).
3. te is structurally defined as: Evt(te) = Evt(tel) U Evt(te2) U ... U Evt(te:,)

with Ve E Evt(te), 3ei �9 Evt(tei), i �9 [1..n], such that e = ei.

The definition of represented event types takes into account the multiple inheritance
since a represented event type may have several sources.

3.5 Event Types

From basic and represented types and constructors, event type may be defined. Event
and parameter domains are explained as well as instance (at a given instant).

Event T y p e Specif icat ion: an event type is built up from simple, abstract and
represented types and constructors which may be recursively applied.

Defini t ion 9 An event type Te E 7-E is a directed tree (STy, ETa) such that:

1. ST,, the set of vertices, is included in the disjoint union of seven sets TES, T~'..A,
"TE~, TET-C, T E T S , 7-ESG and TEHT.

2. ETe is the set of edges called type links.

Event Set and T y p e Domains

Defini t ion 10 Let Te be an event type, the infinite set of events of the type To,
Evt(Te), the event domain , Dom(Te), and the p a r a m e t e r domain , Dpara(Te)
are respectively equal to the set of events and the domains of events and parameters
of its root type.

193

A t y p e i n s t a n c e includes ail the events of this type which already occurred.

D e f i n i t i o n 11 Let Te be an event type, an i n s t a n c e J of Te, denoted by JTe, is a.
finite set of events of type Te, i.e. JT, C Evt(Te).

The a t t a c h e d even t s , denoted by Err_art, describe, for each vertex of the type,
which events occurred. This concept is particularly useful to specify certain com-
plex constraints (for instance, if an event triggering depends on some other specific
events).

3.6 E v e n t F r a g m e n t

The fragment goal is to describe a part of the system behaviour. One of its advantages
is that it can be re-used and manipulated as a whole through the represented type
concept. The fragment description focusses on a particular event type, called the
heart, which is related to other types. These links represent the event chainfitg, i.e. a
part of the specified behaviour. In the real world, events occur according to lmrticular
rules (temporal or not). In IFO2, these rules are specified by using functions which
combine the following features. They can be simple or complex (multivahled); partial
or total (mandatory) and immediate or deferred. Furthermore, we have a distincti-n
between triggering functions (whose source is the heart) and precedence functions
(whose target is the heart).
There is at the most one precedence edge in a fragment.

F r a g m e n t Spec i f i ca t i on

D e f i n i t i o n 12 An even t f r a g m e n t is a directed acyclic graph F, = (VFr LF,)
with VF~, subset, of 'TE, the event type set of the fragment and LFt, t.he s~. oi
fragment links, defined such that,:

r L t x whose root, is called fragrlient 1. there is only one directed tree He = t ' F , , F,J
heart such that:
(a) V~ C_ VF,, L~, C LF,.
(b) The source of a triggering edge is either the root of the heart or the root

of a target type of a complex edge whose source is the heart root (case of
subfraglnent).

2. (VFe -- V~e) is either equal to the empty set - and (LF~ - L ~) too - (,r it is
reduced to a singleton, source of the precedence edge belonging to (LF, -- L~,)
whose target is the fragment heart.

The event fragment is called by its heart.

Figure 3 illustrates a fragment whose heart is an external event type "Floor-Request ' .
In this fragment, there is no precedence function. This fragment describes the lilt
reactions when a user wishes to go to a floor, i.e. either he calls the lilt. from a floor
or he pushes a button in the cage. The fragment heart is linked with a partial and
deferred flmction to the simple type "Closure". The associated method in the struc-
tural fragment "Lift-Cage" closes the lift doors. The flmction ~ is partial because,

Due to lack of space, the function specification language is not described in this paper.

194

I Closure I

/ / ~ N , , ~ w' ~Up-Down , ~ a l - F l o o r
F I o o r : ~ _ a ~ ~ _ ~

Fig. 3. The "Floor-Request" Event Fragment

Notation

*, Total Function

_ _ ~ ,. Partial Fuuction

wait Deferred Funcfitm

~ ~ ~ Complex Total Function

~ Complex Partial Function

in some cases, an event of "Floor-Request" would not trigger a door closure. These
cases are the following: (i) the user wishes to go to the floor where he is currently
located; (ii) or the door closure stems from another event, i.e. a previous request
from the same floor or a previous button activation if the user is already in the lift
cage. The function is deferred to take into account the case where the user requests
the lift while the cage is moving up or down.
The TEA is also related to the composite type "Up-Down" through a partial, de-
ferred and complex function. It is partial to take into account three cases: cases (i)
and (ii) of the previous function and the case where the requested floor is served
when satisfying previons current requests. The deferred feature of the flmction takes
into consideration the possible delay between the user request and the resulting lift,
motion. In fact the methods corresponding to the TESs "Up" and "Down" perform
a single floor ascent or descent for the cage. This is why the triggering flmction is
complex. The union type "Up-Down" is heart of a subfragment. The triggering flmc-
tion which relates it to the represented type "Arrival-Floor" (whose consequences
are described in another fragment) is total and immediate. This means that any
event of the types "Up" and "Down" generates an event of "Arrival-Floor".

A f r a g m e n t i n s t ance is a triplet: the generators of heart events, the heart events
themselves and those triggered by heart events. It gives an historical view of the
fragment behaviour with causality links between events.

T h e f r a g m e n t g e n e r a t e d even ts are those triggered from heart events, i.e. tltose
obtained by applying the triggering functions to heart type instance.

Defini t ion 13 Let Fe be an event fragment whose heart is Te0 with root tea, let.
al = (rt0, re1), a~ = ("e0, re2), ... a , = (re0, re,) be edges whose source is ,',,,. For
each i E [1..n], let fa~ be the function associated to the ai edge and let Zr be the
subfragment obtained from the maximal subtree with root rei.
The set o f even t s g e n e r a t e d from an event e of the heart type of F~, is achieved
by the function ~PF. which is such that:

195

~F, (e) = l~ if the F~ fragment is reduced to one type
else,

n ql

= U(U
i----1 k = l

where {eij, ; k E [1..q~]} is the event set obtained by applying the f~, function
to the event e (qi is equal to 1 when f~, is a simple function) and ~z~.(ei~:)
is the set of events generated from the event elk in the subfragment Z~:i.

The set of events triggered from the JT.o instance with m elements, denoted by
ffzF.(JT.o), is then defined by:

rtt

~F.(..1T~o) ~- U(~F.(ej)).
j = l

T h e g e n e r a t o r e v e n t s are those having one image by the fra.grnent I)l'ecer
function.

D e f i n i t i o n 14 Let Fe be ~tn event fragment whose heart is Te,} with root r,t~ and
let ab = (rb, re0) be the possible edge whose target is re0. The se t o f g e n e r a t o r
e v e n t s of heart events is obtained with the function TF~ whose domain is .IT,, - a
TeO instance with m elements - and codomain is either the empty set if al, does not
exist or IT~ an instance of type Tb with root rb. TF, is defined by:

Ve E JT, o, TF.(e) : eb if eb E ITb exists and is such that f,~(e~,) : e else
TF. (e) = $ where f ~ is the function represented by the ab edge.

The set of generator events through the ab edge of the JT~,, instance, denoted by
TF, (JT, o), is defined by:

j = l

F r a g m e n t I n s t a n c e

D e f i n i t i o n 15 Let Fr be an event fragment whose heart is a type T~c~ and let .IT.,,
be an instance of .T,0 with m elements.
An i n s t a n c e of F~, denoted by IF., is defined by:

IF . = (rF.(Jroo), Jr.o,
In the "Floor-Request" fragment, there is no precedence function. Consequently, the
fragment instance is equal to the following triplet: IF,. = ({~, Jr, . , ~F,. (]F,.))-
Let us suppose that JF,- is reduced to the event e f t 1 , we have: ~F~ (JF,.) = tI/F,. (e.F,.1)
= (eel , 0) where eel is of type "Closure". This instance expresses that there is m,t
yet a going up or down order associated to the event eF,.1.

3.7 E v e n t S c h e m a

The overall behaviour of a system is modelized by grouping the partial views de-
scribed through fragments. The resulting event schema is thus composed by frag-
ments related by IS_A links according to two rules.

196

Specia l izat ion Link: the specialization link represents either the role of an event
type in another fragment or the event subtyping.

Defini t ion I6 Let Te be a type of TET~ and let :Is E TC be a source of Te and
heart of fragment, the link of source Ts and target Te is called an IS_A link and is
denoted by LlS..A(Te--T,).

Schema Specification

Defini t ion 17 An event schema is a directed acyclic graph Gse = (Ss~,Lse)
such that:

1. Ss~, the set of schema types, is a subset of Tg.
2. Lse is the disjoint union of two sets: Ls~_A the fragment link set and Ls~-Is._A

the IS_A link set.
3. (SSe, LSe-A) is a forest of event fragments.
4. (Ss~, LSe-IS_.A) follows the two rules: there is no IS_A cycle in the graph a.nd

two directed paths of IS_A links sharing the same origin must be extended to a
C, o l n I T I O n vertex.

Figure 4 partly shows the IFO2 event schema "Lift", involving three fragments, each
one dedicated to a particular aspect of the lift reactions. "Floor-Request" describes
the system behaviour when a user request occurs. "Cage-Arrival" is a particular
fragment since it is reduced to its heart which is a TES re-used in other fra.gments.
The corresponding method in the structural fragment "Lift" returns the floor reached
by the cage. Finally "Sa.tis-Request" is dedicated to the lift behaviour when the cage
arrives at the requested floor. These fragments are related by IS_A links through the
represented types "Go-Floor", "Arrival-Floor" and "Arrival".

Schema I n s t a n c e

Defini t ion 18 Let Gse be an event schema composed by p event fragments F~I,
F~.,...,Fep with p > 0. An ins tance of Gs~, denoted by IGs,, is such that:

1.

P

i= l

where IF.i is the instance of tile F,i fragment.
2. If Lis_.a~r,_r,) E Lse-IS_a, Te E Fei and T~ E F~j then:

Evt_a.ttT. (IFo,) C_ Evt_attT, (1F.j).

3.8 Satisfactioal F r a g m e n t

The application behaviour is represented by the event schema. It may he simnla.ted
by navigation through the graph, from the root to the leaves, from left to right. An
outline of this behaviour consists in a propagation of event triggering. It stops when
all the actions reflecting the goal sought by the system, are achieved. These actions

197

[Closure[

/ ~ x wni~." Up-Down

/Co-hoot

Notation k~TJ / /N [Stopping

. {,~,,)) q - (Satls-Reques" t ,~ ~ e F u n c t l o n Stop~',~j ' ~ - f i ~ ~
N / -"~Open-Doo,J

Fig. 4. Part of the IFO2 event schema "Lift"

are described in the schema., within one or more fragments called satisfaction frag-
ments. The latter have to include a TER. All the events belonging to the IS_A link
origin would be satisfied when generated events in the satisfaction fragment occur.
This vision has to be refined by taking into account iterations tha t would possibly
be performed during the graph navigation. Iterations aroused by the satisfaction
fragment are performed by considering triggering fimctions which are complex or
deferred. The chosen iteration is the first one found along the reverse path.

D e f i n i t i o n 19 Let Gs~ be an event schema composed by p fragments F,1, F~2,...,F~,
with p > 0, let IGs, be the instance of Gs~ and let IF~. be the F~i instance. A
f r a g m e n t o f s a t i s f a c t i o n F~j_sat for a represented type T~,. is a Gs~ fragment
such that:

T~ e Vl% s_,~t and V k 6 [1..p], k # j , such that the source of T,,., T,, belongs
to the fragment Fek with: V e E Evt-attT.r(IF.j-sat), Cause(e) 7 E TrF.t.
The fragment of satisfaction Fej_sat is such that:

Evt_attT, (JF, ,) C_ Evt_attT.~ (IF, j-sat).

When the represented type is the target of several IS_A links, all tile sources have
to be taken into account. This is performed by the inclusion of atta.ched e.veuts
belonging to the types which are IS_A link origins.
In our example, the satisfaction fragnaent is "Satis-Request", which specifies that
each user who re~luests a floor has to reach it, in the end. I terations a.re ma.de to
trigger the complex fimction between "Floor-Request" and "Up-Down" until the
requested floor is reached.

r For each event, the Cause function determines its generator event

198

4 C o n c l u s i o n

In this paper, we have presented the behavioural part of the IFO2 conceptual model.
Its originalities are a "whole-event" approach, the use of constructors to express com-
plex combination of events and the re-usability and modular i ty of specifications in
order to optimize the designer's work. The IFO2 model proposes a twofold spec-
ification, structural and behavioural, for application modelling. The advantage of
this choice is the uniformity of the resulting approach. We think that such a fea-
ture is particularly important on a conceptual level. In the two frameworks, static
and dynamic, the designer uses the same fundamental concepts, such as re-usability,
modularity, identification, etc.
Links between the two specifications are stated as follows. First of all, basic op-
erations are included in the associated structural schema and are used as simple
types in the behavioural description. Object types on which event types operate are
specified through the parameter domain concept. Finally, conditions on data may
be expressed in the triggering functions.
According to us, a formal model is strongly required to avoid ambiguities particu-
larly in a conceptual context. A rigourous approach must provide real assistance to
the designer without constraining him to a tedious learning process. Consequently,
it is important to offer him an aid that supports the IFO2 model and guides its
intuitive perception. The IFO2 system is currently developped under U n i x / X l l R 5
with the Interviews programming environment developed in C + + . It is an extension
of the tool presented in [18].

R e f e r e n c e s

1. Directions for fllture database research and development. Special Issue of Siymod
Record, 19(4), December 1990.

2. S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACM Tr,,s,<:ti<,l.~
on Database Systems, 12(4):525-565, December 1987.

3. M. Bouzeghoub and E. M6tais. Semantic modelling of object-oriented databa.ses.
In Proceedings oJ the 17th fl~ternatioaal Conference on Very Lalye D,t~ Base's
(VLDB'91), pages 3-14, Barcelona, Spain, September 1991.

4. S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language for
active databases. Technical report, University of Florida, March 1993.

5. E. Dubois, P. Du Bois, and M. Petit. Elicitating and formalizing requirements for
C. I. M. information systems. In Proceedings o] the 5th Internation Co1~fere~ee o,
Advanced Information Systems Engineering (CAiSE'98), Lecture Notes in Computer
Science, pages 252-274, June 1993.

6. J. Fiadeiro and A. Sernadas. Specification and verification of database dynamics. Act,
ln]ormatica, 25:625-661, 1988.

7. N. H. Gehani, H. Jagadish, and O. Shmueli. Event specification in an active object-
oriented database. In Proceedinga of the A CM Sigmod Conference, pages 81-911, S;Jn
Diego, California, June 1992.

8. R. Hull and R. King. Semantic database modelling: Survey, applications and research
issues. ACM Computer Surveys, 19(3):201-260, September 1987.

9. P. Loucopoulos and R. Zicari. Conceptual Modeling, Databases and CASE: An ba-
tegrated View o] InJormation Systems Development. Wiley Profession,'d Computiltg,
1992.

199

10. B. Pernici. Objects with roles. In Proceedings of the Conference on Office bl]or,u~ltlo,i
Systems, pages 205-215, Cambridge, April 1990.

11. P. Poncelet and L. Lakhal. Consistent structural updates for object-oriented design.
In Proceedings of the 5th International Conference on Advanced Information Systems
Engineering (CAiSE'93), volume 685 of Lecture Notes in Computer Science, pages
1-21, Paris, France, June 1993.

12. P. Poncelet, M. Teisseire, R. Cicchetti, and L. Lakhal. Towards a formal approach for
object-oriented database design. In Proceedings of the 19th b~ternational Confr
on Very Large Data Bases (VLDB'93), pages 278-289, Dublin, Ireland, August 1993.

13. C. Quer and A. Olive. Object interaction in object-oriented deductive conceptual mod-
els. In Proceedings of the 5th International Conference on Advanced b~formation Sys-
tems Engineering (CAiSE'93), volume 685 of Lecture Notes in Computer Science, pages
374-396, Juae 1993.

14. C. Rolland and C. Cauvet. Mod6hsation conceptuelle orient~e objet. In Actes des
7i~mes Journ~es Bases de Donndes Avanc~es, pages 299-325, Lyon, France, September
1991.

15. G. Saake. Descriptive specification of database object behaviour. Data ~4 K1to,,lr
Engineering, 6:47-73, 1991.

16. A. Sernadas, C. Sernadas, and H.D. Ehrich. Object-oriented specification of
databases: An algebraic approach. In Proceedings of the 13th b~ternatio~al Co11.[ere:y~c~:
on Very Large Data Bases (VLDB'87), pages 107-116, Brighton,UK, August lq87.

17. C. Sernad~ and J. Fiadeiro. Towards object-oriented conceptual modeliltg. D,t~t t:4
Knowledge E1~gineering, 6:479-508, 1991.

18. M. Teisseire, P. Poncelet, and R. Cicchetti. A tool based on a formM alq,roach for
object-oriented d a t a b l e modeling and design. In Proceedings of the 6th I11te:rl~r
Workshop on Computer-Aided (CASE'93), IEEE, Singapore, July 1993.

19. R. J. Wieringa. A formalization of objects using equational dynamic logic, ht Pr,,~'e:e'd-
ings of the end b~ternational Conference on Deductive and Object-Orieutr D,t,b,se,s
(DOOD'91}, volume 566 of Lecture Notes in Computer Science, pages 431-452, Munich,
Germany, December 1991.

