
T W O S T R E A M C I P H E R S

W. G. Chambers

Department of Electronic and Electrical Engineering,
King's College London, Strand, London WC2P~ 2LS, UK

1 I n t r o d u c t i o n

Two contrasting keystream generators are considered. The first uses a shift reg-
ister of length n operating with arithmetic carried out modulo 2% The feedback
has been made non-linear by using the bit-by-bit exclusive-or function as well
as the linear operation of addition. The second generator is a cascade of clock-
controlled shift-registers with several bits passed from stage to stage, through
invertible scramblers or "S-boxes'. The first generator uses a large number of
multiplications and is intended for use on digital signal processors.

These generators have some points of resemblance: (a) They can both be
regarded as cascades of binary shift registers with primitive feedbacks; (b) there
is some theory available for the periods (and for the linear equivalences); (c)
they can have multi-bit outputs; (d) the key-space can be very large.

2 A M o d i f i e d L i n e a r C o n g r u e n t i a l G e n e r a t o r

2.1 Descr ip t ion

We start by considering linear recursions of the form

n- -1

at+n = ~_~ cjat+j mod 2 ~ for t = 0, 1, 2 , . . . (1)
j=o

with ao, a l , . . . , an-1 specifying the initial conditions. At least one of these values
is odd. Here at and cj are e-bit integers. We may then derive a binary output
by picking the most significant bit of each at, and an integer output by picking
the k most significant bits (k _ e). It should bc a particularly convenient way of
generating pseudo-random sequences technique on some digital signal processors
which have high-speed facilities for multiply-accumulation. Now as regards the
cryptologic security: The generator is a linear congruential generator and crypt-
analytic techniques are available at least when the coefficients are known [1]. To
increase the security we propose the use of the bit-by-bit exclusive-or function
as a source of nomlinearity inside the recursion; the exclusive-or function is a
fast operation on most microprocessors and digital signal processors. To make
the discussion definite we consider a recursion of the form

(at = ~ ' ~ ejat+j mod 2 ~ XOR djat+j mod 2 e for t = 0, 1, 2 , . . .
\ j=o \ j=o

(2)

52

where XOR denotes a bit-by-bit exclusive-or. The base polynomial h(x) = x ~ +
n - - 1

~j=o (cj + dj)x j rood 2 is a primitive binary polynomial.
The period of the generator (1) has been investigated long ago in [2]; more

recent work concerns the period and upper and lower bounds on the linear equiv-
alence of the binary sequences produced by taking the bit of a given order of
significance from each at. (See [4] for references.) Let at have the binary decom-

e--1 position at = ~ = o at,i 2i with at,~ E {0, 1}. Denote the sequence {a0, al, a2 , . . .}
by a and the binary sequences {a0,i, al,i, a2#, . . .} by as. We quote the following
results: If the base polynomial h(x) is a primitive binary polynomial of degree
n, the possible periods of a~ are 2k(2 n -- 1) with k = 0, 1 , . . . , i . Moreover for
any i satisfying 1 < i < e and with h(x) = x n + f (x) mod 2 a specified primi-
tive polynomial and with s0 not identically zero, all but a fraction 2/2 n of the
possible connection polynomials f (x) ~-1 = ~i=o cix~ give ai the maximal period
(2 ~' - 1)24. From the practical point of view this means that provided we keep
n reasonably large, say > 40, there is not much risk of obtaining a short-period
sequence. There arc also "fast" tests for checking that the period is maximal [3].

These results were derived using the linearity of (1). What can be said about
the periods of sequences generated by (2) depends very much on the dj. If any
of the dj are odd we can say very little apart from the fact that the period is
a factor of (2 n - 1)2 e-1. Much more definite conclusions apply if all the dj are
even. (There may be a price to pay for this increased understanding in that the
generator may not bc quite as strong cryptologically as in the general case.) Then
the occurrence of short periods depends only on the feedback coefficients taken
rood 4, and a fast test is given in [4]. With the above provisos the probability
that ak has a short period for k _> 3 is 4/2 n - 4/4 ~.

2.2 I m p l e m e n t a t i o n

Reasonably large values of n (~ 100 say) are needed for long periods, but to
reduce the number of terms in (2) we need cl and di to be non-zero only for
i < 1 where 1 is an integer considerably less than n. In particular the base
polynomial h(x) must be of the form x n +g(x) with deg g(x) <_ l. Random or key-
dependent choices of h(x) of a special form must then be tested for primitiveness
as described for instance in [8]. However when n is a Mersenne exponent, making
N = 2 ~ - 1 a prime, we simply have to check that x 2~ - x mod (h(x),2);
this is done by n modular squaring operations (linear in GF(2)). (Examples of
Mersenne exponents are 31, 61, 89, 107 and 127.) When n is a Mersenne exponent
the probability that a randomly chosen polynomial of degree n is primitive is
approximately 1/n, so the search is not extensive, especially as multiples of x
and of x + 1 are speedily eliminated.

2.3 Further R e m a r k s

The overall system may be regarded as a cascade of binary linear feedback shift-
registers, one shift-register for each order of significance, with non-linear feed-

53

forward from shift-registers of a lower order of significance to those of higher. It
should be noted that the XOR coupling is strictly feed-forward in this sense.

The worry about this kind of generator is whether it is a little too amenable
to mathematical analysis, so that cryptologic weaknesses can be found along
the lines [1] for the generator without the XOR function. The periods are short,
being of order 2 '~+~, whereas the number of states is of order 2 he, and this may
be another cause for concern. T h e resemblance of this generator to the usual
linear congruential generators used for random-number generation suggests that
it should not fail the conventional tests for randomness.

3 A Clock-control led Cascade

3.1 I n t r o d u c t i o n

n-lfbsr ~]

clock

S-box

Fig. 1. A stage of the clock-controlled cascade

A clock-controlled cascade [5] is built up with a number of stages each as shown
in Fig. 1. The input A on the left consists of a sequence of k-bit integers. One
or more of these bits is used to control the stepping of a linear feedback shift-
register (lfsbr) of size n (n _> k) with a primitive feedback polynomial and with
a non-zero initial setting. (The value of n is the same in every stage, although
the feedback can vary.) The input is then XOR'd with k bits from the lfbsr
and passed through an invertible S-box which gives a reversible one-to-one onto
mapping of k-bit patterns to k-bit patterns. The initial stage of the cascade is
clocked regularly. We shall henceforth choose k = n. The main results for a
cascade of K stages are that the period is almost maximal (equal to (2 n - 1) ~)
and that the k-bit outputs are distributed as uniformly as possible over a period
[5].

We now discuss three aspects of this system, the lfbsrs, the S-box, and the
clocking.

54

3.2 The Shift Regis ters

The obvious choice for the length n of each lfbsr is 32, the word-length on most
modern microprocessors. The primitive feedback polynomials should be chosen
"at random", that is under the control of the key. Since the feedback polynomials
are not required to have a special form we can select a fixed primitive element
a in GF(2n), specified as the root of a primitive polynomial, and then using a
technique such as that in [6] we find the minimal polynomial of a s where s is
relatively prime to N = 2 n - 1 [7]. Such an s is found "at random" as follows: Let
Pl, P 2 , . . . , Pl denote the prime factors of N. We choose "at random" I integers si
satisfying 1 < Si < Pi and then set s = ~ i (N / p i) s i rood N. In the case n = 32
there are five prime factors 2 + 1, 22 + 1, 24 + 1, 2 s + 1, and 216 + 1, so that
the si can be specified by 31 bits in all. (Things are simpler for n = 31, for then
N = 2 n - 1 is a prime, and the minimal polynomial of any element in GF(23~)
apart from 0 and 1 is primitive.)

3.3 A n Invertible S-box

A 32-bit invertible S-box can be set up using a technique suggested by David
Wheeler at this workshop. Let t be a 256-element table of 32-bit words with
the least significant 24 bits in each word chosen "at random", and the most
significant 8-bit bytes forming a "random" permutation of 0 to 255. Then we
may set

Sbox(x) = (x > > 8) XOR t[x AND 255]

Here > > denotes a logical right-shift, with zero-fill on the left. This not only
gives a Feistel-like invertible mapping, but also in effect provides an 8-bit right-
circular shift.

3.4 The Clocking

The simplest clocking technique is to use a single bit from the input A to
control whether the step should be 1 or 2 [5]. However with a little care a
more elaborate arrangement tan be used, giving greater diffusion. To main-
tain the periodicity of the cascade it is necessary to ensure that the number
of steps S taken by the clocked lfbsr over an input cycle of period N r (after
r stages) is relatively prime to N [5]. (Here N = 2 ~ - [.) Suppose we use 2
bits from A to determine whether the number of steps should be a, b, c or
d. The 4 possible values of the bit-pair will have frequencies (N r - (-1)~) /4 ,
(N ~ - (-1)~) /4 , (N r - (- 1) r) / 4 , and (N r + 3 (-1)~) /4 in some order [5]. (Note
that N ~ -- (_]) r mod 4, and that the distribution is tim most uniform pos-
sible.) Let the corresponding numbers of steps be x, y, z, t, a permutat ion of
a , b , c , d . Then we find 4S rood N = (- 1) ~ (3 t - x - y - z). In the case when
(a, b, c, d) = (1, 2, 3, 4) we find that this has four possibilities • • and so
cannot be used for n = 32 since N = 232 - 1 is divisible by 3, and may not
be relatively prime to S. However the choice (a, b, c, d) = (1, 2, 4, 5) solves this
problem, the possible values for 4S rood N then being =t=8, •

55

The stepping can be speeded up by using a table giving the overall feedback
after a multiple step. Thus for a 5-fold step we use a table with 32 entries. The
least significant 5 bits in the lfbsr are used to select an entry from the table
which is X O R ' d with the lfbsr after the lfbsr has been logically right-shifted by
5 places.

3.5 U s e o f a C y c l i n g C o u n t e r

The n-lfbsr can be replaced by a counter cycling through the values 1 , . . . , 2 n - 1.
The clock-control is driven by q bits (q <__ k) selecting a value J[a] at the address
a (0 < a < Q) in a table of unsigned n-bit integers. Here Q equals 29 - 1. The
counter is then stepped from its old value u to a value v obtained as follows:
First set v = u + J[a] mod 2 n, and if v < u increment v by 1. Over an input
cycle of period N * we find tha t all but one of the 29 possibilities for a occur
with frequency (N r - (-1) r) /2q ; the exceptional value a occurs (- 1) r + (N r -
(- 1) ~) / 2 q times. Thus the number of steps S taken by the counter over an input

cycle is ((N ~ - (-1)~) /2q) (~Q_o J [a])+ (-1) rg [a] . This must be relatively prime

to N, so tha t 2qs mod N = (- 1) r ((~ = 0 J[a]) - 2 q J [a]) must be relatively
pr ime to N . We do not know which is the special value a , so we choose all

O
the J[a] relatively prime to N, and also arrange tha t ~ = o J[a] ==- 0 mod N.
This is done in the same way as the exponent s was found in Sec. 3.2. For
a = 0 to Q - 1 we choose "random" integers sia with 1 <_ sia < Pi and set

Q--1 J[a] = ~ i (N / p i) s i a mod N. Then we have ~a=O g[a] -- ~ (g / p ~) x i mod Y

with x~ = (~ - - ~ S~a) mod p~. If any of the xi vanish we choose another non-
zero value of si ,Q-], less than p~; finally wc set siQ = Pi - x~ to find J[Q].

References

1. A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, A. Shamir, "Reconstructing
truncated integer variables satisfying linear congruences", SIAM J. Comput., 17,
262-280 (1988)

2. M. Ward, "The arithmetical thcory of linear recurring series", Transactions of the
American Mathematical Society, 35, 600-628 (July 1933)

3. A. D. Barnard, J. R. Silvestcr, W. G. Chambers, "Guaranteeing the period of linear
recurring sequences (mod 2~) ' ' , I E E Proceedings-E, 140. 243-245, (Sept 1993)

4. W. G. Chambers, Z-D. Dai, "On binary sequences from recursions 'modulo 2 ~' made
non-linear by the bit-by-bit 'XOR' function", Lecture Notes in Computer Science,
547, 200-204, 1991

5. W. G. Chambers, "Clock-controlled shift registers in binary sequence generators",
IEE Proceedings E, 135, 17-24 (1988)

6. J. A. Gordon, "Very simple method to find the minimal polynomial of an arbitrary
non-zero element of a finite field", Electronics Letters 12, 663-664 (Dec 1976)

7. E. R. Berlekamp, Algebraic Coding Theory, (New York: McGraw-Hill) 1968; Section
4.2

8. B. J. M Smeets, W. G. Chambers, "Windmill pn-sequencc generators", IEE Pro-
ceedings E, 136, 401-404 (Sept 1989)

