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A b s t r a c t .  The semantics of answer sets ([10]) provides a flexible tool 
for interpreting various forms of extended logic programs and deductive 
databases. In particular, it is applicable to extended disjunctive databases 
whose rules may contain two kinds of negation as well as disjunctive con- 
clusions. Extending our earlier work, [19, 20], we provide here a complete 
logical characterisation of answer set inference as a subsystem of non- 
monotonic $4. The method consists in interpreting the rules of disjunctive 
databases as formulas of Nelson's constructive logic with strong negation, 
N. In particular, the two types of negation present in database rules are 
interpreted as Nelson's strong negation and Heyting's intuitionistic nega- 
tion, respectively. We then make use of the well-known GSdel embedding 
of N to modal $4, and show that the inference relation associated with the 
answer set semantics is equivalent to that of nonmonotonic $4. As corol- 
laries we obtain in N a monotonic lower-bound for answer set inference as 
well as the related modal embeddings recently established in [12] and [13]. 

1 Introduction 

One of  the most  powerful and versatile approaches to extended logic program-  
ming has been the one developed by Michael Gelfond and Vladirnir Lifschitz in 
[8, 9, 10, 7]. S tar t ing  from the format  of negation-fi 'ee p rogram clauses or rules, 
they added successively: weak negat ion (in the style of  negation-as-failure),  [8]; 
strong negat ion (which they called 'classical '),  [9]; disjunctive heads, [10]; and 
recently epistemic operators,  [7]. Each system is equipped with a fixpoint se- 
mantics  tha t  conservatively extends its predecessor; the basic semantical  units  
being called variously, stable models, answer sets or belief sets. 

We shall focus here on disjunctive databases  whose clauses are represented 
in [10] as rules of the form 

K l l . . . I K k  ~- L1 , . . .  ,L ,~,not  L m + l , . . . , n o t  L,~ (1) 

where the Li, Kj  are a toms or s t rongly negated atoms,  the rule's ' b o d y '  is a 
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conjunction, its 'head' a disjunction, and 'not' is a weak negation operator in 
the style of negation-as-failure. 

In general, database rules like (1) are not interpreted as logical formulas and 
the answer sets of a database are characterised by a fixpoint definition, without 
reference to any underlying logical system. Even the notation is carefully chosen 
so as to minimise confusion with the customary logical connectives. Conceptu- 
ally, this is rather far removed from the declarative ideal of 'programming in 
logic'. A further consequence is the fact that there is no accompanying proof 
theory. 

One way to provide a logical interpretation and to restore, at least partially, 
the declarative ideal is to rewrite (1) as a formula of autoepistemic logic. This 
idea was first carried out by Gelfond for general logic programs whose rules (1) 
contain neither disjunction or nor strong negation. His embedding [6] into au- 
toepistemic logic made the plausible assumption that weak negation, as 'failure- 
to-prove', can be regarded as a modal concept, so that the subformula 'notA' 
of a program rule (where A is an atom) is translated by ',,~ BA' ,  where 'B'  is 
a modal or doxastic belief operator. However, it proved difficult to extend Gel- 
fond's transformation to cover the case where program rules contain arbitrary 
literals and disjunctive heads. 

The question of how to relate the answer set semantics to a nonmonotonic 
modal system in the general case was recently independently addressed by Lifs- 
ehitz & Schwarz [12], by Marek & Truszczynski [13] and, less directly, by Chen 
[4]. However, while Gelfond's original interpretation of weak negation was sim- 
ple and plausible, the more recent embeddings that  have been proposed are less 
transparent and might even appear to some as ad hoc. For instance, it is not 
entirely clear to what extent they can be regarded as extensions of the Gelfond 
translation and whether they provide natural interpretations of database rules. 
In particular, why do these embeddings interpret all the literals in a rule (and 
not only those prefixed by 'not') modally? 

In this paper the clauses of extended programs and disjunctive databases will 
be intepreted not as rules but as ordinary logical formulas; only the logic involved 
will be not classical but the constructive system N of Nelson [17]. The program 
arrow '~--', the 'explicit' negation '-~' and the 'disjunction' '1' are simply read 
as the constructive implication '--*', the strong negation ',,~' and the disjunction 
'V', respectively, of N. In addition, 1 shall identify weak negation 'not' with 
intuitionistic negation, ' - ' ,  and use here the 'full' logic N in which ' - '  appears 
as a defined connective, [11]. This interpretation appears to be more adequate 
than the 'inference-rule' reading of program clauses, since the latter breaks down 
entirely when disjunction is present. 

A further gain is that once database rules are rewritten as formulas of N 
we can take advantage of a standard embedding into modal logic, replacing the 
constructive connectives by classical ones, appropriately interspersed with modal 
operators. This embedding is just a simple variant of the GSdel translation of 
intuitionistic logic into $4. A constructive formula like A ~ B, where A, B are 
atoms, becomes D(t:]A D DB). This explains why even the atoms of a database 
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rule have to be prefixed by a modal operator. Since the strong negation of 
N is different from intuitionistic negation, the embedding of N into $4 is a 
proper extension of the GSdel embedding, giving a different interpretation to ---. 
For example a strongly negated atom, ~ A, is mapped to [] ~ A, whereas an 
intuitionistically negated atom, - A ,  is mapped to [] ~ []A. 

The G6del translation r is a natural and well-understood way of endowing 
the constructive connectives with a modal or epistemic reading; so the transla- 
tion is certainly a natural one. Moreover, since r is a recursive translation on all 
formulas, it works uniformly for logic programs and disjunctive databases alike; 
there is no need to deal with them as separate cases. The 'reflexive autoepis- 
temic' translation of [13] is a special case of r that is equivalent for the relevant 
formulas to be considered. So this translation is certainly not ad hoc, but just a 
simplified form of the GSdel one. The other, 'autoepistemic' translation of [12] 
seems neither especially natural nor interesting from the modal point of view, 
unless one lays special emphasis on working with nonreflexive frames. It achieves 
no more and no less than that.  

2 Logical Preliminaries 

2.1 Constructive Logic 

We assume throughout a fixed, countable predicate language containing at least 
one individual constant or name. We denote by N constructive logic with strong 
negation, introduced by Nelson [17]. Terms and formulas are built-up in the 
usual manner, using the logical constants of N: A, V, ,,%--,---~, 3, V. The negation 
' ~ '  is called strong negalion, and in addition N contains a further intuitionistic 
negation ' - ' ,  which can be defined in N by 

Using this definition, N turns out to be a conservative extension of tteyting's 
intuitionistie logic H. Notice that  Nelson's negation ',,-' is termed 'strong', since 
in the combined full system N, ~ ---* - ~  is a theorem. 

Literals are either atoms or strongly negated atoms; a literal with no free 
variables is called ground. The set of all ground literals is denoted by by Lit. 
For reasons of space we do not present here a formal system corresponding to 
N. The reader is referred instead to [l 1, 5], where axiom systems are presented. 
These are obtained from the standard axioms for intuitionistic predicate logic 
by adding new axioms governing strong negation, '~ ' .  The derivability relation 
for N is denoted by FN. Gentzen-style sequent systems for N can be found in 
[3, 11] (cf. also [27, 28]). A tableau proof system for propositional N is discussed 
in [22]. A Kripke-style semantics (and completeness proof) for N is given in 
[11, 1], and for a slight variant of Y in [26]. 
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2.2 A n s w e r  Sets  for D i s j u n c t i v e  D a t a b a s e s  

We shall represent an exlended disjunctive database, or XDDB for short, as a 
collection II of formulas of the form 

L1 A . . . A  Lm A - L m + I  A . . .  A - L ~  --* K ~ , V . . . V  Kk (2) 

where each L i , K j  is a literal, k > 1 and we may have m = n and m or n may 
be zero. Notice that ' - '  only appears directly before a literal and to the left of 
the implication; all other negations in (2) are strong. An XDDB is a set of such 
formulas, and an extended logic program or XLP, [i, is a set of such formulas, 
with k = 1. Since answer sets are defined for databases without variables, each 
formula of form (2) is treated as shorthand for the set of its ground instances. 
This is only a notational variant of the formalism of Gelfond & Lifschitz [10], 
who regard database formulas as a rules of the form (1), and employ the symbols 
'.', '1', '~--' and 'not '  for conjunction, disjunction, implication and weak negation, 
respectively. 

Our use of the ordinary logical connectives of N, instead of the special no- 
tation employed by Gelfond, Lifschitz and others, is justified by a completeness 
result (Proposition 1 below) for - - f ree  databases, and is therefore quite uneon- 
troversial in the monotonic case. For the full, nonmonotonic case, where also 
weak negation appears, the matter  is more subtle. Since, under the answer set 
semantics described below, the presence of not renders database inference non- 
monotonic, we cannot expect, in the general case, to obtain a correspondence 
between 'not '  and intuitionistic negation ' - '  within the ordinary constructive 
system N. Notice, however, that  'not '  is conceptually rather close to Heyting's 
intuitionistic negation in that both are forms of negation as non-provability. Ac- 
cordingly, we shall interpret 'not '  as if it were simply intuitionistic negation, ' - '  
Subsequently, nonmonotonicity and thereby a genuine correspondence between 
the two negations will be restored when we come to define modal embeddings, 
since we shall then work not in ordinary but in nonmonotonic modal logic. 

Let 1I be a database without ' - ' .  Adapting the definition of [10] to the above 
notation, we recall that an answer set of II is a minimal (under set-theoretic 
inclusion) subset S of Lit  such that 

(A1) for each formula L1 A . . .  ALm --~ K1 Y . . .  V Kk of l-I, if L 1 , . . . , L m  E S 
then, for some i = 1, . . . , k, Ki E S; 

(A2) if S contains a pair of complementary literals of the form A, ~ A (where A 
is an atom), then S = Lit.  

Let II be an XDDB. For any set of ground literals S C Lit,  the database II s is 
the database without ' - '  obtaining from II by deleting 

(i) each formula containing a subformula - L  with L E S, and 

(ii) all subformulas of the form - L  in the remaining formulas. 

Since the transformed database does not contain ' - ' ,  its answer sets are defined 
(as previously). Then a set S of ground literals is said to be an answer set of an 
extended disjunctive database II if and only if S is an answer set of [I s. 
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We call an answer set S of II consistent if it does not contain a complementary 
pair of literals. A database II is said to be consistent if it does not possess an 
inconsistent answer set. Clearly, we can regard an atomic formula A as being true 
in an answer set S ifA E S and false if,-~A E S. In order to extend this semantics 
to Boolean compound statements we make use of a recent generalisation of 
answer sets proposed by Michael Gelfond [7]. Adapting Gelfond's approach 
to the case of XDDBs, t ruth (~ )  and falsity ( 4 )  of formulas in ~2 = L:(A, V, ,,,) 
wrt a set S of ground literals, is defined by: 

For atomic A, S ~ A  if A E S ;  S 4 A  if , -~A ES  

S ~ . . , A  i f S ~ A ;  S ~  ,~A if S D A  

S ~ , A r  if S ~ o  and S D r  S ~ o A r  if S ~ o  or S ~ r  

And (~o V r is regarded as an abbreviation for -~ (,,~ ~pA ~ r 
In this manner, we can define a nonmonotonic inference relation ~ between 

databases and formulas in s V, ,,~), by 

I I ~ p  iff S D ~ o  for all answer sets S o f I I .  

For the case of monotonic ( ' - ' - f ree)  databases the following characterisation of 
was obtained in Pearce [19]. 

P r o p o s i t i o n  1 Let 1I be a disjunctive database without weak negation '~ ', and 
a sentence from the query language ~C. Then II ~ ~ iff lI ~-N ~. 

Moving to the nonmonotonic case, as pointed out in [20], there is also a simple, 
logical characterisation of answer sets for XLPs, viz. given a consistent extended 
logic program 1I, 

S is an answer set of 1I iff S = {L E Lit : lI s F-N L}, (3) 

In the general case where II is an XDDB, however, (3) no longer holds. Instead 
we have only the weaker condition: 

if S is an answer set of H then { L E L i t  :11 s t -N  L}C__S. (4) 

Equality holds only if every answer set of II s is in turn an answer set of II. 

3 T h e  G S d e l  T r a n s l a t i o n  

I assume the reader is familiar with $4 modal logic as well as the basic ideas of 
autoepistemic or nonmonotonic modal logic, see, eg. [16, 14, 23]. In the usual 
manner, modal formulas are build up from propositional variables using the 
propositional connectives and the necessity operator []. We use the previous 
symbols for the connectives, except that in the modal language (material) im- 
plication will be denoted by 'D', to emphasise that we are not dealing here with 
a constructive connective. 
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The standard (GSdel) embedding of r of H into modal  $4 can be extended 
to an embedding of the full system N into $4, by specifying extra clauses for the 
translation of formulas involving strong negation. Restricting attention here to 
the propositional case, the GSdel translation r is defined as follows: 

r ( A ) = n A ;  r ( ~ A ) = [ ] - ~ A ,  for A an atom; 
~(~ A r = ~(~) A ~(r 
~(~ v r = ~(~) v ~(r 
~(~ (~ A r = ~(~ ~) v ~(~ r 
~(~ (~ v r = ~(~ ~) ^ ~(~ r 
~(~ ~ r = o(~(~) ~ ~(r 
~(~ (~ --. r = ~(~) A T(-  r 
~ ( ~ ~  ~) = ~(#) 
~ - ( ~ - ~ , )  = ~ - (~ )  
~-( -~)  = [] ,,,~-(~). 

For a set (I) of propositional N-formulas,  let r((~) := {r (~)  : ~ E (I)}. Then for 
any formula !P and set of formulas (I), the following embedding can be established 

(I) F N ~ iff r((I') t-S4 r (~) ,  (5) 

where 'Fs4' denotes S4-derivability; ie. in general, for any normal modal system 
$, we write T I-s r to mean that  r is provable from formulas in T using the 
8-axioms and the rules of modus  ponens and necessitation, a If T is a set of 
modal formulas, we also set 

C n s ( T )  = {qp: T Fs ~}. 

Let II be a consistent extended logic program. Then from (3) and (5) we can 
conclude that  

S C Lit is an answer set of II iff S = {L E Lit : r ( I I  s)  I-s4 nL}.  (6) 

Similarly, from (5) and (4), for consistent XDDBs we obtain the following: 

if S C Lit is an answer set of It then {L E Lit : T(II s )  ~-S4 nL} C S. (7) 

Under the G6del translation, a weakly negated formula - ~  is transformed to 
7"(-~) = [] ~ r (~) .  However, since in databases ' - '  only appears directly before 
a literal, and nowhere else in a database formula, this simplifies to 

~-(-L) : ~ ~ C~L. 

It is then readily seen that  the translation r (~)  of any formula ~ of a disjunctive 
database II can be written in the following form: 

[]([]L1 A . . .  A []L,~ A [] ,~ mLm+l A . . .  A [] ,~ DL~ D []K1 V . . .  V rnKk). (8) 

1 For the case where ~5 is empty, (5) is proved in [26] (with quantifiers included). The general 
case can be verified by applying the deduction theorem and some simple S4-equivalences. The 
GSdel embedding for the full system N, including intuitionistic negation, is discussed in [2]. 
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The modal  or epistemie interpretation of a database formula is therefore roughly: 
it is known that,  if each of L 1 , . . . ,  Lm is known and each of Lm+l,  �9 . . ,  Ln is 
known not to be known, then Kj is known, for some j ~ k. We turn now to the 
essentials of nonmonotonie modal logic. 

For a language of the above kind containing a knowledge or belief operator  
'in', the notion of stable (belief) set was introduced in [25] and [16]. A belief set 
S is said to be stable iff 

(i) S is closed under classical deduction; 
(ii) g E S ~ i n g E S ;  
(iii) 9 ~ S ~ in9 E S. 

It  is well-known that  for any set S of non-modal  formulas there is a unique stable 
belief set T such that  the non-modal  consequences of T are exactly the logical 
consequences of S. For any set of D-free formulas S we denote this unique stable 
set by E(S). For later use, observe that  if S is a consistent set of literals, then 
for any l i te ra lL,  L E S  iff L E E ( S ) .  

Let S be a modal system and T and W sets of formulas in S. As is customary 
(see eg. [23]), we say that  T is an S-expansion of W iff 

T : C s(Wu T}). 

For ally modal system S we call consider its nonmonotonic variant equipped 
with a sceptical inference relation ' ~ s '  defined by 

W ~ s  ~ iff ~ E T ,  for all S - e x p a n s i o n s T o f W .  

We shall deal here with consistent databases and consistent S4-expansions. In 
particular, this means that  for any S4-expansion T of a set of formulas, and any 
formula 9, 

(i) 9 E T  iff D g E T ;  (ii) 9 ~ T  iff . .~rn~ET,  (9) 

so, in particular, for any 9, either []9 E T or .-~ O 9 E T. It  follows that  T 
is a stable set. Notice that  any S4-theory, ie. set of formulas closed under S4- 
derivability, already satisfies (9)(i). Lastly, we state the following as a l emma 
for later use. It is a special case of a general theorem of Schwarz [23]: 

L e m m a  1 If S is a consistent set of literals, then E(S) is the only S4-expansion 
orS. In other words 

E(s) = u {~ r E(s)}). 

4 A n s w e r  Sets  and S4-Expans ions  

We are now ready to describe the basic or s tandard embedding relating the 
answer sets of XDDBs with S4-expansions, namely 
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P r o p o s i t i o n  2 Let II be an XDDB and S be a consistent set of lilerals in *he 
language of II. Then lhe following conditions are equivalent: 
(a) S is an answer set of II; 
(b) E(S) is an S4-expansion of v(Hs);  
(c) E(S) is an S~-expansion of v(II). 

This result establishes a correspondence between answer sets and S4-expansions. 
What  does it tell us about the sceptical inference relation, ~ ,  associated with the 
answer set semantics? In what sense can we derive the answer set consequences 
of a database by computing, in some manner, the S4-expansions of its modal 
translation? Clearly, we cannot use the stable sets E i S  ) directly, since they 
are classically closed and answer set inference is not. What  we can do is to 
proceed, once again, via the G6del translation. That  is, a Boolean formula 
will be derivable from the database just in case its Gbdel translation belongs 
to each S4-expansion of the translated database. This provides our promised 
characterisation of answer set inference. 

P r o p o s i t i o n  3 ( M a i n  T h e o r e m )  Let II be a consistent XDDB. For any Bool- 
ean formula ~ E ~:( V, A, ~),  II ~ ~ iff vi i i  ) ~s4  r(~) .  

Besides providing a complete characterisation of answer set inference, Proposi- 
tion 3 yields a monotonic 'lower-bound' for the answer set consequences of any 
database II. Since every S4-expansion of vi i i  ) contains r(II)  and is closed un- 
der deduction in S4, clearly, for any ~ �9 /:, r(II)  ~$4 g(~p) ::~ r(II)  ~s4  r(~o). 
Applying the GSdel embedding (5) once again, it follows that  for any 

II bN T =~ II b" ~. (10) 

Using (10) to compute a monotonic 'lower-bound' for answer set inference has the 
advantage that  we do not need to translate formulas into $4. Instead we can use 
the ordinary tableau or sequent calculus for N, suitably tr immed to take account 
of the restricted syntax of disjunctive databases. Then if a Boolean formula is 
provable from II in the restricted N-calculus, it is certainly a consequence of II 
in the answer set semantics. 

4 . 1  R e l a t e d  M o d a l  E m b e d d i n g s  

Since $4 is not the only modal logic into which N can be embedded it would be 
surprising if we could not extend and strengthen Proposition 2 so as to obtain 
additional correspondences between answer sets and nonmonotonic modal logics. 
As we mentioned at the beginning, alternative proposals have already been made 
in [13] and [12]. 

Marek & Truszczynski [13] consider a normal modal logic, SW5, that lies 
between $4 and $5 and possesses simple frames. It is characterised by $4 together 
with the following axiom, called W5: 
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[13] employs a slightly simplified modal translation of database formulas. Any 
such formula of the form (2) is translated into the modal formula: 

E]L1A. . .AnLmAO~[~Lm+tA. . .AE], ' , 'E]LnDOKt V . . .VnKI: .  (11) 

Let c~(~) denote the above translation, for any ~, ~ II. Then clearly r (~)  = 
D~(~). Consequently, for any ~o EII ,  we have 

Moreover, in [13] a correspondence is established between the answer sets of 
a database II and the SW5-expansions of ~r(II). This correspondence can also 
be deduced from Proposition 2. First, notice that ,  since $4 C SW5 C $5, a 
general result of [16] implies that for any sets T, W of modal formulas, if T is 
an S4-expansion of W then it is an SW5-expansion of W. Consequently, from 
Proposition 2 we can conclude that if S is an answer set of II, then E(S) is 
an SW5-expansion of T(II s)  and of r(II) .  Since any SW5-theory contains the 
formulas of r(II)  if and only if it contains those of q(II), E(S) is also then 
an SW5-expansion of cr(II). The converse can be proved using essentially the 
argument for Proposition 2 ((c) =V (a)). 

Just as one can strengthen the modal host logic into which constructive 
systems can be interpreted, so can one vary to some extent the nature of the 
interpretation. Under the standard GSdel translation, as well as some others like 
the Tarski interpretation of H in $4 ([15]), the host logic has, like $4 and SW5, 
reflexive frames. But in modal logic there are well-known techniques for inter- 
preting such logics, in their turn, into modal systems possessing non-reflexive or 
even irreflexive frames (cf. some examples presented in [22, Ch. 5]). An appro- 
priate combination of the two interpretations may then produce an embedding 
of a constructive system into a non-reflexive modal system. Roughly-speaking 
the method consists in mimicking reflexivity by replacing every boxed atomic 
formula, hA, by the conjunction A A hA, and iterating this construction for 
arbitrary formulas of the language. The technique is used by Schwarz [24] to 
obtain a mutual embedding between the nonmonotonic versions of SW5 and 
KD45. The latter is, of course, nonreflexive and is well-known as being the 
nonmonotonic modal logic corresponding to Moore's autoepistemic logic. Ac- 
cordingly, nonmonotonic SW5 amounts to a reflexive version of autoepistemic 
logic, appropriately termed reflexive autoepistemic logic in [13]. Further, by com- 
posing the interpretation ~r with the above transformation DA -.~ A A hA, one 
obtains, as [13] shows, an embedding of the answer set semantics into nonmono- 
tonic KD45, hence into autoepistemic logic. This embedding was independently 
obtained (directly) by Lifschitz & Schwarz [12] and by Chen [4]. The result- 
ing translation is syntactically more complex than cr or 7- and is not especially 
transparent. Its only raison el' gtre seems to be that it succeeds in relating the 
semantics of databases to autoepistemic logic. Moreover, it can be analysed as 
the composition of two quite separate interpretations, both of which are his- 
torically well-founded and well-understood. Unless one gives special value to 
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working with nonreflexive frames, or employing autoepistemic logic in its orig- 
inal formulation, there seems to be no advantage gained by using the hybrid 
translation. Moreover, if one interprets possible-world frames according to the 
standard reading of epistemic logic - that  the accessibility relation on worlds 
represents epistemic or doxastic alternatives - then reflexivity, or the property 
that  every world is an epistemic alternative to itself, is a very natural condition 
to impose. 

5 Conc luding  R e m a r k s  

We began with the task of obtaining a logical, declarative interpretation of ex- 
tended disjunctive databases or logic programs equipped with an answer set 
semantics; and thereby to characterise the (sceptical) nonmonotonic inference 
relation associated with this semantics. Since database clauses are usually repre- 
sented as rules rather than logical formulas, their connectives regarded as being 
in some sense 'nonstandard' ,  and their semantics based on a fixpoint character- 
isation involving the Gelfond-Lifschitz reduction of a database, it is not imme- 
diately evident to what extent the ideal of 'programming in logic' still applies 
to such a system. Fortunately, our problem can be neatly broken-down into two 
subtasks: (i) isolate a monotonic subsystem and provide a logical characterisa- 
tion of its inference patterns; (ii) find a suitable nonmonotonic extension of the 
latter, which will eharacterise the system as a whole. 

The first subtask was already solved in [19] by noting that the clauses of 
not-free databases can be identified with formulas of constructive logic with 
strong negation N, whose inference relation then precisely coincides with that of 
(sceptical) answer set inference. It follows that the nonmonotonic inference rela- 
tion, ~ ,  associated with answer sets for the full system of extended disjunctive 
databases can be regarded as an extension of the inference relation, ~-N, of N. 
I have discussed elsewhere ([21]) some of the general properties of ~ ,  regarded 
as a supraconstructive inference relation. Since constructive logic subsumes in- 
tuitionistic logic, in the sense that  Heyting's negation ' - '  is definable in N in 
such a way that all theorems of H become theorems of N, it is rather natural to 
stick with the logical vocabulary of N and to identify the weak negation 'not' of 
database formulas with the intuitionistic negation ' - '  of N. Clearly, we cannot 
then employ the monotonic inference relation of N to interpret ~ ,  but require 
instead a suitable nonmonotonic extension of t-u. 

At this juncture there appear to be two ways to proceed. One strategy 
would be to design a suitable nonmonotonic logic based directly on N, say by 
introducing a modal consistency or non-provability operator M, and giving rules 
for its use. Designing such a system remains, however, a task for future research. 
Instead we adopted here a simpler, alternative strategy. Since N is faithfully 
interpretable in modal $4, we used $4 directly in its nonmonotonic version. The 
advantages are that  the system is well-understood, and, moreover, it appears to 
be the only known example of a modal logic whose nonmonotonic variant is less 
complex than its monotonic ancestor. 
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Using the Ggdel translation r of all of the connectives of N (including both 
weak and strong negation), one obtains a correspondence between answer sets 
of a database and the S4-expansions of its translation. The nature of this corre- 
spondence is such that any Boolean formula is a nonmonotonic consequence of 
the database (under the answer set semantics) if and only if its GSdel translation 
is a consequence in nonmonotonic $4 of the translated database. Moreover, as we 
saw, it is straightforward to extend this embedding to other modal host logics. 
Any method for 'computing' the intersection of all S4-expansions can therefore 
be applied to determine the answer set consequences of a logic program or dis- 
junctive database. However, as far as characterising a monotonic lower-bound 
is concerned, it may be simpler to work directly in sequent, natural deduction 
or tableau calculi for N. 
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