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A b s t r a c t .  First, we aim to provide a proof-theoretic reconstruction of 
logic programming, both for definite and for normal programs. This leads 
us to a better understanding of negation-as-failure (NF) [5] and of other 
proof-theoretically well-founded extensions of Prolog. Our ambition is to 
show that almost everything in the vulgate of logic programming can be 
carried out in a style close to natural deduction, and in particular in a 
restricted fragment of minimal logic. Secondly, we embark on a gener- 
alization and abstraction of the nice properties of SLD-resolution. The 
outcome is our formulation of the concept of regular search space. Here 
many logics can be expressed and provided they can be shown to be 
regular, they are then guaranteed to enjoy an analogue of the very fea- 
tures that make Prolog a feasible and successful implementation of logic. 
This can also serve as a basis of a fairly general new logic programming 
language, similarly to what is done in [11]. 

1 I n t r o d u c t i o n  

Most of  the papers  on logic p rogramming ,  in part icular  on its extension, have 
been carried out  in a semant ic  way. Unfor tunate ly  the semantics,  being main ly  
l imited to te rm models ,  tends to hide proof-theoret ic  contents. Moreover, the 
procedural  aspects are t radi t ional ly  expressed in a refutat ional  style. We prefer 
a more  direct approach  tha t  bypasses, where possible and meaningful,  this 
p seudo- seman t i c#e fu ta t iona l  style. Many  features tha t  are rather  cluttered in 
this f ramework now appear  as natura l  consequences of a proof-theoret ic  reading. 

Basically two proof- theoret ic  approaches have been pursued in the literature, 
as outl ined in [10] - see section 6 for a more  detailed discussion: 

1. Clauses as axioms and some Gentzen calculus to infer goals [20]. 
2. Clauses as rules [10]: p rograms should be seen as sets of inference rules 

( inductive definitions) for the derivation of  (not necessarily ground) atoms.  

We think of  our approach  as a blend of  the two. We introduce the concept  
of most general proof tree (mgpt), which corresponds to a SLD-derivation; 
is a computed  answer subst i tu t ion for P U {~-- G)  iff there exists a m g p t  for 
0G with axioms f rom P, with no open assumption.  Mgpts  are SLD-derivations 
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upside-down, where the root is the goal to be proven, the assumptions are the 
intermediate goals therein and 0 is the restriction to the free variables of G of the 
composition of mgus along the branch. Mgpts are based on the notion of axiom 
application rule (AAR), which easily generalizes to more complex definitions of 
clauses and goals. Then we formulate the concept of regular search space for 
which search strategies like Prolog's are complete. 

Introducing A A R  systems for negative goals and rules, we offer an analysis of 
N F,  which clarifies its intrinsic incompleteness due to the fact that ,  in general, 
it gives rise to a non-regular search space. Moreover, the safeness condition on 
the selection function arises from the usual proviso on parameters  of the 3-1eft 
rule. For regular programs N F  can provide correct bindings for open negative 
queries. Otherwise, regularity can be achieved, through splitting. This can be 
the basis of a simpl-ied synthesis technique in a spirit close to [4]. 

In the last part  we start  an abstract  analysis of general A A R  systems, satis- 
fying very simple properties like regularity and closure under substitution. 

The paper is organized as follows: in section 2 we develop the proof-theory of 
definite programs,  based on the notion of most general proof tree and of continu- 
ation. The following section 3 makes the connection between A A R  and Prolog 
computations:  a soundness and completeness theorem is proved w.r.t, success 
and finite failure. In section 4 we present our proof-theoretic reconstruction of 
SLDNF-resolution and we prove the latter to be sound w.r.t, the former. Regular 
splitting is proposed as a sohltion to the problem of evaluating open negative 
queries. Section 5 presents the beginning of a general theory of A A R  systems, 
with some examples. Eventually in (6) we conclude with a review of' the other 
existing proof-theoretic studies and with a list of future work. 

2 T h e  S L D - S y s t e m  

We associate to a program a suitable set of axioms and we tbrnmlate a rule sld 
to apply such axioms, that  we call the axiom-application rule AAR) for the 
SLD-sys tem.  

D e f i n i t i o n  1. sld is a rule which applies Horn axioms V(A1 A. .  A A,. ---+ B) to 
goals OB, giving rise to sequences of new goals OA1,... ,  OAn. The result of an 
application will be represented by a proof configuration such as: 

OA1 ... OAr V ( A 1 A . . . A A , ~ - - * B )  

OB 

where the major premise V(A1 A . . .  A Am --~ B) is the applied axiom, the pos- 
sibly empty  sequence of the minor premises OA1,.. . ,  OA,~ represents the new 
goals and the conclusion OB is the start ing goal. 

Note that ,  if we have in mind a Horn program,  facts give rise to configurations 
where the sequence of minor premises is empty, i.e. n = 0. 
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Next we inductively introduce the notion of proof tree (pt), which corresponds 
to a branch of a SLD-tree. 

D e f i n i t i o n 2 .  An a tom A is a proof tree. If HI  :: t~A1,..., II,~ :: 0A~ are proof 
trees, then the following is also a proof tree: 

//1 / /n 
~A1 . . .  ~A~ V(A1 A . . . A A ,  --* B) 

~B 

where / /  :: A is the linear notat ion for a proof tree with root A. We say that  
a formula is an assumption of a proof tree if it is a minor premise in some leaf. 
The root of a proof tree is called its consequence. The axioms of a proof tree 
are the ones appearing as major  premises. A proof tree is a proof of B from a 
set .4 of axioms iff B is its consequence, its axioms belong to .4 and it has no 
assumptions. 

The set of proof trees is closed under substitution, namely, i f / 7  is a proof 
tree and 0 is a substitution, then 0( / / )  is a proof tree. This allows us to introduce 
the following pre-ordering (intuitively to be read as H1 is less general or more 
instantiated t h a n / / 2 )  and equivalence relation among proof trees: 

D e f i n i t i o n  3. 

- I/1 _< I/2 iff there is a 8 such t h a t / I 1  = 0(//2); 
- H1 - / / 2  iff/-I1 ~ / / 2  a n d / / 2  _<//1; 
- Cone(//) = { / / '  I / / '  < / / } .  

Note that  this ordering can be seen as a sort of lifting to proof trees of the 
usual subsumption ordering among substitutions; remark also that  equivalent 
proof trees are identical modulo renaming of variables. 

Using _<, we can give a notion of most general proof tree among similar trees, 
where similarity is characterized as follows. 

Roughly speaking, two proof trees are similar if they can be derived, start ing 
from the root, by two axiom-application sequences tha t  apply the same axioms, 
in the same order, but  may involve different substitutions. Similarity is crucial, 
because axiom-application sequences represent derivations of an idealized inter- 
preter which searches for p r o o f s / / : :  OC start ing from "goals" ?C. We will show 
that  regularity, namely the existence of a most  general proof tree among similar 
trees, is the property which makes SLD-like search strategies complete. The 
formal definition of similarity is the following. 

D e f i n i t i o n 4 .  An axiom-occurrence in a p t  H is a pair (p, Ax) such that  p is a 
path  from the root to a node containing Ax as a major  premise. We say that  
two proof trees HI ,  //2 are similar, written H1 ~ //2, if either they are two 
atoms with the same predicate symbol  or they have the same (non empty)  set 
of axiom-occurrences. 
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Similarity is an equivalence relation. We will call similarity classes the corres- 
ponding equivalence classes. With Sire(H)  we will indicate the similarity class 
induced by a proof tree H. 

P r o p o s i t i o n  h. /71 ~ H2 iff there is a proof tree H such that H1 < H and 
/7~ <_ 11. 

Proof. The direction from right to left is trivial. Conversely, we proceed by in- 
duction on the number of axiom occurrences applied in H1,/72. 
Basis .  There are 0 axiom occurrences. In this case, H1 and H2 are two atoms 
containing the same predicate symbol, s a y r .  Then /71 : r ( t )  and g~ = r(t ');  
t h e n / / =  r(x_). 
S tep .  There are n + l  axiom occurrences, { o r , . . . ,  o~+1}. Let ok be a top axiom- 
occurrence of some axiom Ax = V(A1 A .- .  A An --~ B), as shown below: 

01A1" " 01A~ Ax 02A1. . . 02A,~ Ax  

/71 = 01B H2 = 02B 
F1 1".~ 

F~ is similar to 1"2, since both have axiom occurrences {o~, . . . ,  o,~+1} - { o k } ;  by 
inductive hypothesis, there is a proof tree F such that/"1 = a l F  and F2 = a2F. 
Let H be the top formula occurring in F, in the place of 01B in F1 (and of 
02B in F.)); we have: O1B = a l H  and 02B = o'.)H. ~/e can assume that H 
and B have disjoint sets of variables, so that (0~ U a l ) B  = (0~ kJ Crl)/7 and 
(02 U cr2)B = (02 U cr2)H, hence there is a mgu 5 of B and tI  and we ha.ve 
01 tO cr 1 = Pl5 and 02 U (r.) = #25, for some Pl, #'e. Then we can build the pt /7: 

5A1 . . .  5A,, Ax  

5H 
5F 

H is similar to H1 and H2, and one easily sees that H1 = # I H  and H2 = #~H 
(we can assume that the variables of F do not occurr in A1, �9 A,,, B). This 
concludes the proof of the induction step. 

Note that the above proof relies not only on the similarity of the two proof 
trees, but also on the fact that the application (by sld) of Ax preserves the 
comparability. This does not hold w.r.t, a more general kind of A A R ,  e.g. the 
ones related to negation as failure, as shown in section 4. 

P r o p o s i t i o n 6 .  For every set $ of similar proof trees, there is a H such that 
S c_ Cone(if) .  

Proof. Assume the contrary, i.e. that  for every H there is a H* in $ such that 
17" ~ H and let H0 be a p t  in the similarity class containing $: there is a p t  H1 in 
,9 such that H1 ~ H0. By (5) they have a similar upper bound, say A1, such that 
H0 = 00A1. If we define re(H) as the sum of the sizes of the terms occurring in a 
pt H, then m(Ho) > re(A1) since 00 cannot be a renaming. Consider 172 :~ AI: 
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by the same reasoning, they are bounded by A 2. I terating the process we create 
an infinite chain ]70, A 1 , A s , . . . ,  where H0 = 00A1, A1 = 01A2, . . . ,  but this is 
not possible since m(Ho) > re(A1) > re(A2) > . . . .  

Remark. For every H, Cone(H) C_ Sire(H). 

The similarity relation allows us to introduce the notion of most general proof 
tree, which corresponds to a SLD-branch where only mgus are used. 

D e f i n i t i o n  7. We say that  H is a most general proof tree (mgpt)  if it is a max- 
imal element among similar trees, i.e. Cone(H) = Sim(H).  

By (5), every similarity class Sire(H) contains a maximal  element unique 
up to renaming. On the other hand minimal elements among similar trees are 
ground proof trees, but in general there are incomparable minimal  elements with 
respect to <. 

Now we target  the formalization of how a Prolog computat ion can be exten- 
ded, that  is we try to capture the idea of the resolvents of a given goal. 

D e f i n i t i o n 8 .  H2 is a continuation of H1, denoted H1 ~ H2, iff there is an 
initial subtree H3 of H2, that  is with the same root, s.t. H3 < H1. 

Assuming that  the root is the goal to be proved, a continuation is a possible 
(not necessarily single-step) extension of a SLD-derivation, i.e. in our language, 
of the (open) assumptions of the goal to be proven. This extension may intro- 
duce new substitutions, as shown in the following picture, where a proof tree H 
is continued into a proof tree containing 6H as an initial subtree. 

The _ relation is clearly a partial  ordering w.r.t, the equivalence relation = 
and the immediate  successors under this ordering of a p t  essentially correspond 
to all possible resolvents of the current goal. Thus the notion of continuation 
captures the search feature of logic programming.  This characteristic is bet ter  
represented by the notion of most  general continuation and canonical continu- 
ation and by their properties that  we list below. 

Remark. H I < H entails H - < H  I. 

D e f i n i t i o n 9 .  Let H be a p t  and H _ H*. We say that  H* is a most general 
continuation (mgc) of H iff, for every continuation H I of H similar to H*, H I < 
H*. 
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P r o p o s i t i o n l 0 .  For every continuation H'  of II ,  there is a mgc H* of 17 such 
tha t  H I < H * .  

D e f i n i t i o n  l l .  A one-step continuation selecting an assumption Hi and apply- 
ing an axiom Ax  of the form V(A1 A . . -  A Ak ~ B) s.t. a B  = c~Hi is of the 
following form: 

aAx . . . aAk  Ax  
�9 . .  ( 3 " H i  , . .  

aH 

We say tha t  a continuation is canonical iff it is a one-step continuation and cr 
is a most  general unifier of the selected assumption and the head of the applied 
axiom (assuming the usual standardization apart) .  

The following relations hold between subsumption and continuation, em- 
bodying the reason why search may  be conducted exclusively on mgcs or on 
mgpts  and no backtracking on substitutions is required, as we will see in the 
next section. 

P r o p o s i t i o n l 2 .  1.1:]71 < H2 and H1 ~_ II3, then H2 -< Ha. 

P r o p o s i t i o n l 3 .  Let H'  be a one-step continuation of H. II '  is a mgc of I I  iff 
it is a canonical continuation. 

P r o p o s i t i o n  l4 .  I f  H is a mgpt, then its rngcs are mgpts. In particular, its 
canonical continuations are mgpts. 

We conclude this section considering the consequences of the above properties 
with respect to the following search problem. Let .A be a set of axioms, T (A)  
the set of the pts with axioms fi'om A,  a n d / /  :: C be a p t  of T(A) .  Sea.rch for 
a continuation H* :: OC C T(M) of H,  such that  17" is a proof. One easily sees 
that  the notions of mgpt ,  mgc and all the related properties hold even though 
we consider T(A) ,  instead of tile class of all proof trees. Then one obtains: 

C o r o l l a r y  15. I f  i l l  is a rngpt o fT(M),  then, for every 172 such that 111 ~ 172, 
if there is a H s.t. H2 ~_ H,  then H1 ~_ H. 

Proof. Since H1 is a mgpt ,  then H2 ~ H1. Apply (12). 

P r o p o s i t i o n 1 6 .  Let H be a mgpt of T(A)  and Hi be an assumption o] 17. I f  
for every canonical continuation H' of H selecting Hi there is no proof in T ( A )  
continuing H', then there is no proof in T(.A) continuing II.  

Proof. Suppose the contrary, that  there is a p t  H* contimlation of H.  Then there 
is a subpt  H of 17" that  is a one-step continuation of H selecting Hi. Hence /~/ 
is similar to H'. But, by (14), H' is a mgpt  and, by (15), H* is a continuation 
of H ' .  
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Corollary 15 more properly refines what we mean by "avoiding backtracking 
on substitutions". (16) shows that,  by using canonical (i.e. most general) continu- 
ations, during the search the selection of the assumption Hi may be completely 
non-deterministic. (15) and (16) allow us also to state that  a search strategy 
like the one of Prolog is complete in the search spaces for T(A). But (15) and 
(16) are based on (5), which may not hold in an arbitrary search space. When 
the latter is the case, we will say that  the regularity property holds. This remark 
will be the basis of section 5, where we discuss regular search spaces, i.e. search 
spaces satisfying the regularity property 5, for a very general kind of axioms. In 
the next section we discuss the case of Horn axioms. 

3 Pro log  C o m p u t a t i o n s  and the  SLD-System 

Eventually we link the SLD-system to Horn programs: to a program P corres- 
ponds a set of axioms, indicated by Ax(P), in the obvious way. For example, let 
us consider the following program SUM: 

sum(X, O, X). 
s,,m(X, s(Y), s(Z)) : -sum(X, Y, Z) 

and the corresponding axioms Ax(SUM) 

Axl  VX.sum(X,O,X) 
Ax2 VX, Y, Z.(sum(X, Y, Z) --* sum(X, s(Y), s(Z))) 

Examples of proof trees H0, //1 a n d / / 2  using Ax(SUM) are: 

sum(X,O,s(O)) Ax2 Axl Axl 

sum(X, s(O), s(s(0))) Ax2 sum(O, O, O) Ax2 sum(s(O),O, s(0)) Ax2 

sum(X,s(s(O)),s(s(s(O))) sum(O,s(O),s(O)) Ax2 sum(s(O),s(O),s(s(O))) Ax2 

s~m(O, s(s(O)), s(s(O))) sum(s(O), s(s(O)), ~(s(s(O))) 

H0 has assumption sum(X, O, s(0)) and consequence sum(X, s(s(O)), s(s(s(O)))); 
/I1 a nd / / 2  are proofs (of their consequences). //1 an d / I2  are similar, since they 
have the same set of axiom occurrences {([1], Ax2},([0, 1], Ax2}, ([0, 0, 0], Axll} 
(paths are represented by sequences of numbers, in the usual way); the following 
proof tree is the mgpt in their similarity class: 

Axl 

sum(X,O,X) Ax2 

sum(X,s(O),s(X)) Ax2 

sum(X, s(~(o)), ~(s(X))) 

Now we address the following problem: given a program P and an atomic 
formula C, search for a p r o o f / / : :  8C. From now on, in this section, we will call 
C a goal. We give the following definition. 
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D e f i n i t i o n 1 7 .  Consider a program P and a goal C and let T(P) be the set 
of the proof trees with axioms from Ax(P) and T(P, C) be the set of the proof 
t rees /7  :: OC with axioms from Ax(P). Define Gen(P) and Gen(P, C) to be the 
corresponding sets of mgpts. 

Example 1. Let us consider the following program p1 (see [17], pp. 56-7). 

Axl p(X,Z) ~ q(X,Y),p(Y,Z).  
Ax2 p(X, X). 
Ax3 q(a,b). 

then these are all finite trees in Gen(P, C) for the goal p(X, b): 

Q p(x, ~) ) 

/ 
, ~) p(~, ~) 

p(a,b) 

, ~) p(~, b) A ~ f  F~ 

Y p(a, b) 

\ 
Ax2 

q(X, b) p(b, b) 
~(x, ~) 

/ 
, b) p(~, b) s2 

p(a, b) 

Axl 

$1 

Ax3 
q(a, b) 

Ax2 
q(b,b) p(b, b) dxl 

p(b, b) Ax l  

p(a, b) 

F2 

The success nodes S1, $2 contains proofs and the proof tree in the failure node 

1 From now on, we sha.ll only quote the program, with the obvious a.xioma.tic version. 
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F2 has open assumptions,  but no continuations. The oval boxes show the canon- 
ical continuations obtained by choosing the leftmost assumption.  The rectangles 
show the canonical continuations selecting other assumptions.  By (16), we ob- 
tain, selecting other assumptions, more proof trees, but the success set remains 
the same. Then we can stop at F1, taking it as a failure node. 

As last step consider the quotient Gen(P, C)/=~ under renaming of variables. 
This passage is required since each resolution step considers variants of the input 
clauses to ease unification. We claim that  (Gen(P,C)/ - ,  ~_) corresponds to 
every SLD-tree for P tO {~- C} under each selection rule, i.e. it contains every 
possible derivation. In fact, given opportune duplications of nodes with more 
than one parent,  it can be looked at as a tree s.t. 

- the root is C 
- every axiom comes from Ax(P) 
- every node is an equivalence class [17 :: OC], with 17 :: OC E Gen(P, C) 
- every child of a node is obtained by a canonical continuation applying an 

axiom of Ax(P). 

P r o p o s i t i o n l S .  0 is a computed answer substitution for P tO {~--- C} if)" there 
is a II :: OC E Gen(P, C)/ =-, with no open assumption. 

Proof. Two straightforward inductions, respectively on the length of the SLD- 
refutation and on the structure of the most  general proof tree. 

As a corollary of the above construction, we obtain Lloyd's l emma on the 
independence of the computat ion rule (selection function), see [17] theorem 9.2. 
This result establishes a sort of Church-Rosser property for SLD-resolution; 
if P U {+-- C} is unsatisfiable, then, whichever be the a toms selected in the 
inference steps, a refutation is reached. In this context it just  stems from the 
fact that  Gen(P, C) is a regular search space and from property 16 of regular 
search spaces 2. In this way, we can consider search trees built using a given 
selection function, where a selection function F is a function which associates to 
every proof tree H a fixed assumption in a leaf, called the assumption selected 
by F and denoted by F(17). We require that  F(17) depends only on the rules 
applied in H,  i.e. that  for any similar 17, 17', F(I1) and F(ll') select the same 
leaf. 

D e f i n i t i o n  19. Let F be a selection function. A F-proof-sequence is a (possibly 
infinite) sequence [170], [ H i ] , . . . ,  [Tin],... such that  (for i > 0) IIi+l is a canon- 
ieal continuation of Hi selecting the assumption F(lli). An F-search tree for a 
program P and a goal C is a subtree of (Gen(P, C ) / - ,  -<), such that  every chiM 
of a node is obtained by a canonical continuation applying an axiom of Ax(P) 
and selecting the assumption chosen according to F.  

2 Indeed, a SLD-derivation of P U { ~  C} with current goal ~ Ha, . . .  H ,  corresponds 
to a derivation of a proof tree / /  :: OC with assumptions Hx , . . .Hn;  a.pply (16) to 
/ / : :  OC. 
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The independence result says that  the proofs (i.e, pts without assumptions)  
contained in (Gen(P, C ) / - ,  _-4) and the ones contained in a complete F-search 
tree (namely an F-search tree such that  the leaves contained therein have no 
continuations) are the same. Of course, the former contains more proof trees 
than the ones in F-search trees. In particular, it contains, for every rule F,  the 
corresponding complete F-search tree. 

This correspondence can be also applied w.r.t, finite failure: a finitely failed 
F-search tree for a program P and a goal C is just  a finite and complete F -  
search tree for P, C such tha t  all the leaves contained therein are proof trees 
with open assumptions. Nevertheless, given the a symmet ry  of finite failure w.r.t. 
derivability, the independence result does not hold anymore: a SLD-tree can be 
finite under a selection function F1 and infinite under another function F2. We 
have to impose a fa irness  condition [17] on the selection function to ensure 
tha t  we find a finitely failed tree if one exists. Fairness can be characterized as 
follows. 

D e f i n i t i o n 2 0 .  A F-proof-sequence is fair if it is finite or every (instance of an) 
a tom appearing in it is selected by F.  An F-search tree is fair' if every pa th  of 
the tree is a fair F-proof-sequence. 

P r o p o s i t i o n 2 1 .  I f  there is a finitely-failed fair F-search tree for a p r o g r a m  P 

and a yoal C, the.. e,~:ry [H :: 0C] ~ (ae, ,(P,  C ) / - ,  ~_) ha~ open assump~io.s. 

P r o p o s i t i o n 2 2 .  There is a finitely-failed F-search tree for a program P and a 
goal C iff P O {+- C} has a finitely-failed SLD-tree. 

The notion of fairness can be made more explicit with the following example of 
fair selection function F*: F * ( H )  is the leftmost among tile assumptions o f / /  
with minimal height. 

4 T h e  S L D N F - S y s t e m  

For our t reatment  of SLDNF-resolution, we need a new A A R  to apply the 
negative (only-if) part  of the completion axioms [5], together with a suitable no- 
tion of negative goals. To distinguish positive and negative goals, we introduce 
a new symbol F-p, used in a way similar to sequent calculi where P is a list of 
existential parameters  (eigenvariables), as originally suggested by Kleene. When 
the rule does not update  this list, we shall simply omit  it. Moreover, we need 
an A A R  to switch a negated positive goal into a negative goal and a negated 
negative goal into a positive one. 

P o s i t i v e  G o a l s  a n d  t i le  P o s i t i v e  R u l e .  Positive goals are of the form t- L, 
where L is a literal. When n is an a tom A, the (+)-rule (or positive rule) allows 
to apply axioms corresponding to normal clauses, in the following way: 
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~- OL1 . . .  I- OL, V(Lt A . . . A  L ,  ~ A) (+)  V(A) 

b OA b OA 
(+) 

N e g a t i v e  Goa l s  a n d  t h e  Swi t ch  a n d  W e a k e n i n g  Ru le s .  The negative goals 
are of the form F b, where F is a list of literals L 1 , . . . ,  Ln. There are several 
possible configurations: let us s tar t  from the switch ones. To switch a negated 
positive goal into a negative goal or a negated negative goal into a positive one 
we apply the switch rule (s): 

OA F V(--,A ---, - ,B)  I- OA V(~B ---+ --,A) 
(s) (s) 

~- O-,B O-,B, 1" t- 
Whenever B = A, the rule is said to be restr ic ted (to axioms of this form). In- 
tuitively, the restricted switch rule can be seen as mirroring the evaluation steps 
of a goal selecting a negative literal under N F :  the goal succeeds since t- A fails 
(on the left hand side) and the goal fails since F A succeeds (on the right hand 
side). Note, however, that  under the same proviso the rule corresponds to -~-1~ 
and -~-L in the sequent calculus with primitive negation. The weakening rule (w) 
is: 

F F V(-~A --* true)  
--A, r F (w) 

To achieve a uniform treatment,  we have expressed the rules (s) and (w) as 
A A R s ,  even if they have a logical character. 

N e g a t i v e  Goa l s  a n d  t h e  N e g a t i v e  Ru le .  Next, we need a suitable negative 
rule (-) to apply the only-if part of the completion. First we show how (-) can be 
derived in minimal logic, starting from the identity and freeness axioms (see the 
Equality Theory in [5]) together with the completed definitions of the predicates 
involved in a logic program (ibidem). Secondly, we explain (-) in a simplified 
c a s e .  

- Rule derivation. We derive our A A R  (-) inside the minimal sequent calculus. 
Let us start  with the identity axioms ( id l ) , ( id2)and  the substitution rules, 
(u l )  and (u2) which are derivable from the freeness axioms. Note that this 
equational theory can be shown to be complete and decidable ([15], Theorem 
5.5). 

�9 (idl) ~ - t = t  
�9 (id2) t l  = tu, L ( t l )  F L(t2) 
�9 (ul)  tx = t2 1- Eq(cr) if a is an idempotent mgu of t t ,  t2 and Eq(a)  is 

the conjunction of the equations obtained from the bindings in cr 
�9 (u2) t l  = t ~ t -  if no unifier o f t l ,  t~exists 

Now, consider the completed definition of a predicate p of the form 

V~(p(z_) ~-~ 3_ul(z - = t l A M1) V 3_u2(z_ -- t 2 A M2)) 
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Here we are assuming tha t  p is defined by two clauses with b o d y  M1, M2; it 
is clear how to extend it to the general case. Consider the direction --+, tha t  
we call the failure axiom ofp .  Thanks  to that ,  we can build proof  trees of  the 
form shown in the following, where a_ is a list of  te rms and, for the sake of  
this example,  we suppose tha t  a l  is a m gu  of  a, t 1 and tha t  a_, ~-2 do not  unify. 

aa M1, aa F b~_~ 
(*) 

a = tl I-,,, Eq(al) Eq(aa), M1, r F_~,(cut) 

a = tl, M~, F ~-al (3L) 

3u_~ (a = h ^ M~), 1" ~- 

a_ = t2 F._~ 

a = t2, M2, F I-~_2 

3 %  (a  = t_ 2 A M2),  F t- 
(3L) 

FAx(p) 
(0  

p(~), r 

Let FAx(p)  denote the failure axiom of p: (f) can be derived f rom p(a)  ~- 
3_u 1 (a  = t 1 A M1)V3u2(a  = [2 AM2). The  (3L) rules are i terated 3-1eft applic- 
ations, where the involved eigenvariables are ment ioned below the turnstile;  
(*) can be obtained by one or more  applicat ions of the identi ty rules, wi thout  
in t roducing subst i tut ions (in par t icular  no subst i tu t ion arises on the eigen- 
variables). 
The  above derivation lives in the minimal  sequent calculus, thanks to the 
identi ty and failure axioms. Remark  tha t  we view the identi ty rules as a "lo- 
gicM" par t  tha t  is c o m m o n  to every p rogram to be executed in any calculus 
with unification: thus this proof  depends in an essential way f rom the failure 
axiom Fax(p). It  is summoned  in the second of the following derived AARs.  
The Negative Rule. (-) is a derived rule whose form depends on the following 
exhaust ive unification possibilities, under  the guidance of subst i tu t ion cq, 
given the proviso on the eigenvariables decorat ing F: 
a 1 unifies with t_ 1 and t2; 
a_ 2 unifies with [1 but  not  with t_e; 
_~ unifies with t 2 but  not  with t_l; 
a 4 does not  unify with t_ 1 nor with [2 �9 

~rlMl,O'lF}-ul,% P azM2,a2FF~l~2p FAx(p) o'lMl,CrlF}-ulp FAx(p)~_) . . . . .  (_) 

P ( a l )  , r }-p p(a2)  , F ~-p 

a2M2,a2F F%p FAx(p)(_) FAx(p) 
(-) 

p(_~), r ~ p(o,,), v F 

By the dependence on a l ,  a2, a__3, a 4 (5) no longer holds. Indeed different 
forms of  proof  trees m a y  correspond to the same axiom and rule occurrences: a 
hence they are similar, though  uncomparable ,  pts. 

Finally, to every normal  p rogram P we associate a set Comp*(P) of comple- 
tion axioms: 

3 Enlarging the number of rules, the similarity dependencies may increase. 
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- Success axioms. For every clause of P, the corresponding success axiom: 

S A x ( A  : - L 1 , . . . , L ~ )  =a~! V(LI A . . .  A L ,  --* A) 

- Failure axioms. For every predicate symbol  p, the corresponding failure ax- 
iom: 

F A x ( p )  =d~l V(p(x_) ~ 3u l (x  = tl  A Mx) V - . .  V 3uk (x_ = t k A Mk)) 

If  k = 0 (i.e. no clause contains p in the head), F A x ( p )  is Vx.-~p(x_) and the 
corresponding A A R  is the obvious one. 

A S L D N F - p r o o f  tree H with axioms from Comp*(P)  is a p t  which uses the 
rules (+),  (-) to apply the axioms of Comp*(P)  and restricted (s) and (w) to 
apply the corresponding logical axioms. We say that  a goal is an assumption of a 
S L D N F - p r o o f  tree, if it occurs in some leaf. S L D N F - p r o o f s  will be S L D N F -  
proof trees without assumptions. 

The set of S L D N F - p r o o f  trees is an example of what  we will call a non- 
regular search space, since property 5 does not hold. Before better analysing 
non-regularity, we relate S L D N F - p r o o f s  to s t a n d a r d - S L D N F  resolution. Let 
us consider finitely failed S L D N F - t r e e s  and SLDNF-re fu ta t i ons  with a safe 
selection function (only ground negative literals are selected), as defined in [17]. 
We claim the following result. 

T h e o r e m 2 3 .  Let P be a normal program and L a literal. I f  there is a finitely 
failed S L D N F - t r e e  for PU{~--- L}, then there is a S L D N F - p r o o f  H with axioms 
from Cornp*(P) which is a continuation of L F-. l f  there is a SLDNF-re fa la t i on  
of P U {*--- L}, then there is a S L D N F - p r o o f  17, with axioms from Cornp* (P),  
which is a continuation of F- L. 

Proof. By induction on the rank of the finitely failed S L D N F - t r e e  or of the 
SLDNF-re fu ta t ion .  

- Basis for finitely failed trees. Let 7r be the tree on the left below for the goal 
~-- A, matching with unifiers cril, �9 �9 at ,  the clauses Bil ~-- Mil ,  �9 �9 B i ,  ~-- 
M i , ,  and then finitely failing as suggested by the dots. The corresponding 
S L D N F - p r o o f  is shown on the right. Note that  every continuation applies 
the failure axiom of the selected a tom and that  all the leaves are failure 
axioms (i.e. there is no assumption and our pt is a proof).  

~ - A  
J 

/ ~ aq Mq I- .. .  o',,, Mi.  I% 
,-- o'q Mq . �9 �9 ~ al. Mi .  

. . . . . . . . . . . .  AI-  

FAx(p) 

Remark  that  no substi tution on the root of the proof tree arises from this 
construction, i.e. the root remains the start ing goal A b-. 
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- Basis for refutations. Let Go, G1 , . . . ,  Gn, (with clauses C 1 , . . . ,  Cn and sub- 
sti tutions 01 , . . . ,  0n) be a refutation, with Go = ~ L. Start ing with i = 0, 
associate to Go , . . . ,  Gi (where Gi =*--- L i t , . . . ,  Liki) a p t  with assumptions 
[- Lil , �9 �9 P Lik, , as follows: 

Step O. Associate ~ L to Go; 

Step i + 1. Let H ::~ 6iL be the pt associated to Go, . . . ,  Gi a.t step i, and 
let Gi+l be obtained applying Ci to the selected a tom A; build the canon- 
ical continuation of the pt, selecting the corresponding assumption ~- A and 
applying SAx(Ci )  (for every step k, 5~ = 01. . .0k  and the assumptions of 
the pt correspond to G~). Remark  that  the goal proved by the final pt is the 
instance by 5,~ of the starting goal. 

Step for finitely failed trees. Let ~r be a finitely failed S L D N F - t r e e  of rank 
k + 1, with root *- L. Starting from the root of lr, for every node where the 
selected literal L,~ is positive, translate it as in the basis. If  Lm = -~A, we 
may  have the following cases. 
1. We are in a leaf of 7r, L, ,  = -~A (with A ground) and there is a S L D N F -  
refutation of rank k of P U {~--- A}. By inductive hypothesis, we have a 
S L D N F - p r o o f  II  of I- A (A is ground and no substi tut ion modifies it). 
Build the continuation replacing the goal containing the selected literal by 
the proof: 

/7 

t- A V(-~A ~ --A) 
(s) 

-~A, F F- 

2. We are in an intermediate node of 7r (there is a finitely fa.iled tree for 
P U {~- A},  hence there is no refutation of rank k for P U {~- A}). Build the 
continuation: 

F F V ( ~ A - + t r u e )  

-,A, F ~- 
(w) 

- Step for refutations We proceed as in the basis, by Step 0 and Step i + 1, 
provided that  the selected literal Lm is positive. But in Step i + 1 we may  
have L~  = -~A. In this case, there is a finitely failed tree of rank k for 
P U {~-- A}. By inductive hypothesis, we have a S L D N F - p r o o f  H :: A ~-. 
Then we can build the proof: 

H 

A ~- V(--A ~ -~A) 
(s) 

~--~A 

and replace with this proof the assumption ~- -~A of the pt built at step i. 



236 

Remark that  the goal proved by the final pt may be more instantiated than 
the starting goal only if at least a positive literal has been selected. 

SLDNF-resolution works in an unsafe way if open negative goals are selec- 
ted. In our model, we can distinguish two different causes for that: 

(a) soundness problems (substitutions on existential parameters) 
(b) completeness problems (non-regularity of the search spaces). 

As far as (a) is concerned, this corresponds to the fact that a substitution on 
the existential parameters (eigenvariables) may be introduced in some continu- 
ation step, as shown by the following example (taken from [17], pp. 93-94): 

Ax l  p ~ - ~ q ( X )  

Ax2 q(a) 

In standard Prolog, using an unsound selection function, the goal ~-- -"p succeeds 
(since ~-- p fails), although it is not a logical consequence of the completion Of the 
program. In our model, safeness is enforced not by an external condition on the 
selection function, but by the usual proof-theoretic proviso on existential para- 
meters, i.e. that  they cannot be instantiated by substitutions, as the following 
pt shows. Once we have obtained the goal F-~ q(u), with existential parameter 
u, we cannot continue our proof tree in a sound way; so we do not obtain any 
proof of ~p. 

t- u q(u) 
(s) 

p -+ 3x - . q (x )  

p P --,p ~ ~p 
(s) F- -,p 

(-) 

This shows that  we have a natural way to distinguish proofs of negated goals 
(where such a proof has no assumptions) from proof trees with assumptions that 
cannot be continued. The latter corresponds to unprovability. 

With respect to (b), we show that  there are SLDNF-proofs which are not 
achievable by usual SLDNF-resolution, namely that  the search strategy is in- 
complete w.r.t, the problem of finding SLDNF-proofs.  We show that this kind 
of incompleteness is due to the non-regularity of the rule (-). 

Let us consider the following example. 

Ax l  even(O). 

Ax2 even(s(X)) : - ~ e v e n ( X )  

Its completion contains the obvious success axioms and the following failure 
axiom: 

FAx(even) =de/ Vx.(even(x) --+ x = 0 V 3u(x --- s(u) A -.even(,,))) 
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and a SLDNF-proof of F- ~even(s(O)) is: 

Axl 
(+) 

~w~(O) ~v~n(o)  -~ -~ven(O) 
(s) 

-even(O) f- FAx(even) 
-- - - ( - )  

even(~(O)) ~ -~even(~(O)) 

~eve~(40)) 

--+ -~even(,(o)) 
(s) 

On the other hand, if we start  f rom t- ~even(X), we obtain a finitely failed 
(not safe) tree. In our approach,  this tree represents the following search steps 
for a SLDNF-proof: 

(I-~even(X) .) 
I 

(ven(X) VX.(-  ven(X) -even(X) 
I 

FAx(even) 

even(O) VX.(-~ewn(X)--+ ~even(X)Is)/j 
~- -~even(O) 

The final proof tree is sound (no binding on existential parameters  arises), but 
it is not a proof: we have the unprovable assumption ~-. Then, we ought not 
interpret failure as negation: here we do not reach any proof. The si tuation is 
different from the previous ground case, where search successfully reaches a proof 
of F ~even(s(O)). 

As one can see, we do not arrive at a solution since no backtracking is made 
on substitutions: indeed, starting from k- ~even(s(X)) we would have at tained 
a solution. The need to backtrack on substitutions is due to the non-regularity 
of the search space. If only ground negated goals are selected, then failure rules 
are regular, since no further instantiation is possible. 

To recover regularity, we may split the failure axiom of a predicate. For 
example,  we split FAx(even) in: 

rax(~ven(O)) =~4 ~ven(O) -+ tr~e 
rAx(even(s(x))) =~ j  Vx.(eve~(s(x)) -+ ~eve~(x)) 

Then, by FAx(even(O)), our search fails, but by FAx(even(s(X))) it is successful 
by backtracking on the axioms. This corresponds to the fact that ,  for searches 
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only using natural numbers, the above split axioms give rise to a regular search 
space. Splitting failure axioms in ground instances always gives rise to regular 
search spaces. The problem is that,  in general, there are infinitely many ground 
instances, i.e. we obtain a regular but infinite axiomatization. This is analogous 
to what is (theoretically) suggested in [1], where the ground instantiation of the 
program is adopted to obtain answers to negative open queries. On the contrary 
a regular splitting of the failure axioms is finite, if it exists, even for programs 
with infinite Herbrand universe. One possibility is to identify a covering of the 
ground terms of the language, i.e. a finite set of terms such that  every other 
term is obtained through instantiation of the covering. In the example above, 
{0, s(X)} is a covering for the natural numbers. Let us proceed one step further: 
consider the < relation defined as follows 

A x l  O < X  

Ax2 s (X)  <_ s (Y)  ~- x <_ y 

A covering for pairs of numerals is {(0, X) ,  (s(X),  s (Y)) ,  (s(X),  0)}. This induces 
the following regular splitting of the failure axioms: 

A x l  0 < X -+true 

Ax2 s (X)  < s (Y)  ~ x < y 

Ax3 s (X)  < 0 --* false 

Note that  if we dispose of the redundant first axiom, this procedure could be 
looked at as the synthesis of the complement of the predicate defined in the 
original program, namely here the 'greater' relation. 

A x l  s (X)  <_c s(Y)  ~ x <_~ y 

Ax2 s (X)  <_~ 0 

Hence, when the covering creates implications with false as consequent, they 
can be turned into the base case of the complement of the predicate. This is very 
closely related to the notion of intensional negation developed in [4]. It is not 
clear yet how general this method might be. 

Last we remark that,  since failure rules do not introduce unifying substitu- 
tions (as shown in the proof), dangerous substitutions can arise only if a positive 
assumption F A is selected in a continuation step, and the related unification 
modifies the existential parameters of some failure rule; but this cannot happen 
(using new names when possible) if no open negated formula is selected in a 
continuation. This is particularly true for definite programs and open negative 
queries: as no switch is possible after the initial one, no soundness problem can 
arise. Moreover, if we control that  no link is made on existential parameters, 
then we may select open negated goals, as it is well known. 
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5 S y s t e m s  B a s e d  o n  A x i o m - A p p l i c a t i o n  R u l e s  

The notion of axiom-application rule and of regularity are the key points of our 
approach. In this section we try to offer the beginning of a general theory of 
AARs,  aiming to single out the properties tha t  make Prolog successful. 

One of the main problems of au tomated  theorem proving is to locate proofs in 
a given space, known as a search space. For A A R  systems, search spaces are sets 
of proof trees. If  a proof tree H in a search space S is not a proof, it represents 
a stage in a search process, whose aim is to find a proof  H' E S, where /7'  is a 
continuation of H.  Typical examples are T(P) ,  the search space of a program 
P, and T(P, C), the one of a program P with respect to a goal C, as previously 
defined in section 3. 

Now we introduce the following general language: first we abstract  from the 
usual notions of goal and axiom. Secondly we characterize a system of axiom 
application rules by giving once for all a fixed (and hopeflllly small) set of rules 
to apply axioms of a certain type. Programs are finite sets of those axioms. 

5.1 A A R  S y s t e m s  

An A A R  system is a triple (G, A, T~} where: 

1. T~ is a set of axiom application rules; 
2. A is a set of admissible axioms; 
3. aC is a set of admissible goals. 

A rule R E 7~ is a partial function from goals and axioms to sequences of 
goals, including the empty  sequence A, i.e. R : aC x A --+ aC*. 

When R(G, A) = G1 ; . . �9 ; Gn 4, we will draw it as 

G 1 ; . . - ; G , ;  A 
(R) 

When R(G, A) = A, we write 

G(R) 
Example 2. The SLD-system has only one axiom application rule sld, defined 
on every goal G and axiom V(A1 A - .. A A,, -+ B) such that  G = OB: 

sht(G,g(Ai  A . . .  A Am -+ B)) = OA1;. . . ;0A, ,  

The SLDNF-sys t em  instead contains the rules (+),  (-), (s), and (w). The latter 
three rules may be applied to negative goals. Since a negative goal may contain 
many  formulae, we decorate (s), (w), (-) by an index j to select Lj in a goal 
L1,. �9 L~ kp.  For example: 

(-2)(p(a),p(b) k-p,Vx.(p(x) ---+ q(x) V v(x))) = p(a), q(b) ~-p; p(a), v(b) ~-p 

4 From now on, sequences (of goals) will be indicated by Gx ; �9 �9 ; G~ 
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The set of proof trees "T(~,,4, 7¢) is defined inductively as follows: 

D e f i n i t i o n 2 4 .  Every G E G is a p t .  If  //1 :: G1,..., 17n :: Gn are pts and 
R(G, A) = G1;...  ;Gn, then the following is also a proof tree: 

Hi  17n 

G~; ... Gn; A 
a (R) 

The definitions of axiom, assumption, proof, consequence of a proof tree are 
analogous to the ones given previously in section 2. 

Next we restrict to sets ~ of goals for which a notion of substi tution as an 
answer/result  of the computat ion makes sense. We assume as well that  axioms 
and rules are not affected by substitutions. Moreover, for the sake of simplicity, 
we will t reat  possible eigenvariables as constants. 

Remark  that ,  under the previous definitions, /-/ may be in ~r(G,.4, 7¢), while 
017 is not. To ensure this, we introduce the following 

D e f i n i t i o n 2 5 .  We say that  an AAI~ system (~, .A, TO) is closed under substitu- 
tion if G E G entails OG E ~ and, for all R E 7¢ and A E .4, if R(G, A) is defined, 
then, for every substitution 0, R(OG, A) is defined and R(OG, A) = OR(G, A) 

Note that  the set of values of R(G, A) is connected to the concept of definicns 
and closure under substi tution is related to A-sufficient substitutions in [1 i], see 
section 6 for more details. 

P r o p o s i t i o n 2 6 .  I f  (~,.A, 7"¢) is closed under substitution, so is T(Cj,.A, ~),  i.e. 
17 E 7-(~, A, T¢) entails OH E T(G, A, T¢) 

Therefore the following relations, relying on the notion of substitution, and 
thus requiring the closure condition, can be defined in the same way ~ for SLD: 
_<,-, ~. 

Similarity among proof trees is extended to take into account sharing the 
same axiom/rule-occurrences, where an axiom/rule-occurrence is a triple (p, A,/~) 
such that  p is a path from the root to a node containing an axiom A applied by 
a rule R. 

However, in general .-. and < do not satisfy the regularity property 5, so that  
a similarity class may  contain many  non-equivalent maximal  proof trees and the 
notion of mgpt  becomes problematic.  

5.2 R e g u l a r  A A R  S y s t e m s  

Now, let us consider how we could approach the following search problem: given 
a goal G E G, find a p roof / - /  :: OG for some substitution 0. First of all, we 
need a method to compute one-step continuations (or resolvents, in a sense to 
be made precise below). Since our aim is to compute substitutions, in a first 
approximat ion we may say the following: given G E ~, A E .4 and R E TO, A can 
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be applied to G by R iff there is 0 s.t. R(OG, A) = G 1 ; . . .  ; G,~, in other words 
we can build the continuation 

G1; " "  ;G~ ; A 
(R) 

OG 
0/7 

Using the above notion of application of an axiom by a rule, we identify applic- 
ations as one-step continuations. A possibility would be then to try all possible 
applications, but this would be doomed to incompleteness unless we allow to 
backtrack on substitutions. This point is clearly exemplified by the lack of regu- 
larity (and also of closure under substi tution) detected in SLDNF-derivations. 

Hence we analyse the property of regularity and we link it to the notion of 
abstract SLD-resolution; we then show how a SLD-like search strategy turns out 
to be complete for regular search spaces. 

D e f i n i t i o n 2 7 .  A set S of proof trees is a regular search space iff, tbr every 
similar H I , / I 2  E S, there is a / 7  E $ such that  HI  < / /  and H2 < H.  

For regular search spaces, the property 5 of section 2 holds by definition. 
Moreover, we require that  substitutions are well-behaved, so as the equivalent 
of proposition 6 can be established. Namely, we assume that  there is an (non 
negative integer) measure re(H) such that  H1 _< 172 entails ru(H1) > m(/72), 
provided H1 ~ H2. 

In a regular search space S, the notion of mgpt can be defined as for the SLD- 
system, and the related properties persist. In particular, for any such space $, 
the following definition is sensible. 

D e f i n i t i o n 2 8 .  Let S be a regular search space and T(S, G) be the set of the 
proof trees H :: OG C S (where G is a goal); define Gen(S) and Gen($, G) to 
be the corresponding sets of mgpts.  

As in Section 3, (Gen(S, jC) /= ,  ___) corresponds to search trees in ,3. Indeed, 
we introduce an abstract  version of a canonical one-step continuation of a pt (see 
section 2, as the nodes covering it, i.e. its immediate  successors. More precisely, 
we say that  a one-step continuation 

G1; "'" ; G .  ; A 
H1 = (R) 

0G 
^ - -  

•11 

is canonical iff, for every other similar continuation 

H1; .- .  ; H m ;  A 
/ /2  - (R) 

~G 
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we have tha t  H2 < Hi .  Thus we have: 

( . )  m = n and there exists/i s.t. a = 58 and H i  = 5Gi 

Regularity ensures that  for every goal and applicable rule, there is unique canon- 
ical continuation. We can also look at that  through an abstract SLD-resolutiou 
method, denoted by Res. Indeed T(g , ,4 ,  7~) is regular iff there exists an operator 
Res satisfying the following property: 

Res (G,A ,R)  = (0, G1; . . . ;G~>  iffR(OG, A) = G 1 ; . . . ; G ~ ,  and for every 
other aG s.t. R(aG, A) = H i ; . . . ; H m  the forementioned property ( . )  
holds. 

For example, the usual SLD-resolution is based on the existence of mgus. 
This operator  Res is an abstraction for q-(g,,4,T~) of the SLD-step; given 

the goal G, new goals are produced in the most  general way. Yet, it must  be 
remarked that  now backtracking is essentially bidimensional, since axiom/rule-  
occurrences must  be taken into account. Eventually the operator imports  all 
the search properties of Prolog, in particular the independence of the selection 
function. Hence, for every selection function F,  the corresponding F-search tree 
with root G contains the same proofs contained in Gen(S, G). 

Summarizing,  an AAR system is regular iff the set of its proof trees is a 
regular search space. In a regular AAR system, any F-search strategies work as 
in the SLD-system, and the same main results hold. 

5.3 S o u n d n e s s  a n d  C o m p l e t e n e s s  I s s u e s  fo r  A A R  S y s t e m s  

The regularity property guarantees the completeness of an A A R  system, in the 
following sense. Let G E G be a goal such tha t  there is a proof H :: 0G; then, for 
every selection function F,  in the F-search tree start ing from G there is a success 
node containing a pl'oof H* such t h a t / 7  < H*.  In other words, completeness is 
relative to the set of the proofs of the system considered. 

We propose A A R  systems as a generalization of logic programs; from this 
point of view, an AAR system is not to be considered as a general logical system, 
but as a small par t  of some more general (logical) system adequate to solve, in 
an efficient way, a particular" class of problems. In this sense, we may look at 
s tandard SLD-systems as small systems suitable for proving definite goals using 
Horn axioms. Indeed, the completeness of SLD-systems can be read as follows; 
SLD-systems are sufficient to solve all the problems which are solvable in full 
classical (intuitionistic, minimal) logic, if we restrict to the problems which can 
be formulated in this language. Uniform proofs [20] are a second example: such 
a proof procedure is complete for the language of hereditary I tarrop formulae 
w.r.t, intuitionistic derivability. 

More precisely, we say that  an AAR system (g, `4, T~) is embedded in a logical 
s y s t e m / :  if the goals can be interpreted as formulae of the latter and the rules 
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are sound, i.e. for every axiom A E .A and every G E ~, R ( G , A )  = G 1 ; . . . ; G ,  
entails G1, �9 �9 G,~ t-z G. Of course, we assume tha t  the axiom application rules 
are sound, that  is, they are admissible in the logical system. 

We will distinguish two kinds of axioms: logical axioms, i.e. formulae valid 
in the logic /2 under consideration, and program axioms (for example,  Horn 
clauses in logic programs).  Only some kinds of formulae are allowed as logical or 
program axioms. The set of the allowed logical axioms may  be empty  (as in the 
SLD-sys tem) ,  or contain some particular kind of axioms (such as the ones used 
in switch or weakening rules in S L D N F ) .  In those cases, no logical axioms or 
only a few of them are used, because part  of the logical system Z: is implicit in 
the application rules T~. 

For every set P of program axioms, and every goal G, a computa t ion  means 
searching for proofs H :: OG using the axioms of P and the allowed logical axioms 
(if any). If  the system is regular, then it will compute  a proof in T(6, .4,T~),  
provided there exists one. But this does not imply the completeness w.r.t, the 
underlying logical system, which can be defined as follows. 

D e f i n i t i o n 2 9 .  An A A R  system (G,.A,T~) embedded in a logical system Z: is 
complete with respect to Z: if, for every set P of program axioms and every 
goal G, if there is a proof of OG from P in Z;, then there is a proof H :: OG in 
T(G, .A, T~) with program axioms from P.  

Take, as an example,  the S L D N F - s y s t e m :  are there classes of axioms and 
goals such that  this A A R  system is complete with respect to minimal  logic 
( M I N ) ?  A partial answer is negative, in the following sense: 

P r o p o s i t i o n 3 0 .  There is a normal program P and a goal L such that L is 
derivable from Cornp(P) in minimal logic, but there is no pt in the S L D N F  
system. 

Proof. Let L be --,p and P the following program: 

A x l  p~--q,r .  

Ax2 q ~-- a. 

Ax3 r ~-- ~a. 

Ax4 a ~-- a. 

It  is easy to check that ,  although -~p has a minimal  proof from Cornp(P), every 
pt is infinite. This depends on the absence of the rules for minimal  negation. 

5.4 E x a m p l e s  o f  A A R s  

Our work on A A R s  originated from an analysis of S L D  and SLDNF-sy s t ems ;  
we are just  beginning to address the problem of giving some general theory of 
A A R  systems. We conclude this section just  with some examples, to illustrate 
the general idea and some related problems. The first example is mot ivated by 
the possibility of proof-theoretically sound proof transformations.  In the second 
example we show how to work with schemas and, in the last one, how to formalize 
tradit ional sequent systems. 
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F i b o n a c c i  N u m b e r s  in  an  E x t e n d e d  S L D - S y s t e m .  This example is de- 
veloped in an extended version of the SLD-system,  where we allow compound 
formulae. The SLD-sys tem has only the axiom application rule sld, which leads 
to a regular system. We generalise such systems to the case where A1 , . . . ,  An, B 
are conjunctions of atoms. At first glance, it seems that  the explicit introduc- 
tion of A does not enrich the SLD-system,  since conjunctions can be treated by 
commas. Nevertheless, we obtain a richer framework, since it turns out that  we 
have a more flexible way of applying the axioms. Let us consider the usual Horn 
axioms for computing Fibonacci numbers: 

AxO f(O, s(O)) 

A z l  f(s(O), s(O)) 

Ax2 Vx, a, b, c . ( f (x ,  a) A f (s (x) ,  b) A +(a, b, c) ---* f (s(s(x)) ,  c)) 

Using the possibility of compound formulae, we can rewrite the above axioms as 
follows: 

A x l  f(O, s(O)) A f(s(O), s(O)) 
Ax2 Vx, a, b, c . ( f (x ,  a) A f (s(x) ,  b) A +(a, b, c) --+ f ( s (x) ,  b) A f (s(s(x)) ,  c)) 

An example of a proof tree is the following 

Axl �9 �9 �9 
sld sld 

f(O,s(O))Af(s(O),s(O)); +(s(O),s(O),s(s(O))); Ax2 ...  
~ld 

f(s(O),s(O)) A f(s(s(O)),s(s(O))); +(s(O),s(s(O)),s(s(s(O)))); Ax2 
sld 

f(s(s(O)), s(s(O))) A f(s(s(s(O))), s(s(s(O)))) 

Many unfold/fold transformations of logic programs can be treated similarly. 

U s ing  S c h e m a t a .  One can easily extend the SLD-sys tem to compound for- 
mulae, by considering also logical axioms of the following form: 

(A) V(A A B --+ A A B) (Vl) V(A --+ A V B) 
(V2) V(B ~ A V B) (3) V(A(x) --+ 3x.A(x))  

Applying sld to (A), (Vl), (B) ((V2) is omitted, since it is dual to (Vl)), we 
obtain the usual introduction rules in a style similar to natural deduction: 

9A; 8B; V(A A B ---+ A A B) 8A; V(A ---* A V B) 0A(t); V(A(x) --+ 3x.A(x)) 
sld sld sld 

t~(A A B) O(A V B) t~3x.g(x) 

The difference with respect to natural deduction is that  every inference is decor- 
ated by the applied logical axiom and subsliLulions are present. Notice that  
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we have an infinite number of logical axioms. Then we would need an in- 
finite backtracking. Nevertheless, for a goal like, e.g. h(x) A k(g(y), x), it is 
possible to consider only the most  general continuation related to the axiom 
Vx, y.(h(x) A k(g(y), x) ~ h(x) A k(g(y), x)); in this way no solution of the goal 
is lost, even if we do not backtrack on the other applicable axioms. 

This means that  we can consider V(A A B --e A A B) as a single schema and 
compute the canonical continuations by the first of the following resolution rules 
for the schemata (A), (V1), (V2), (3). In the last one n must  be a new variable, 
in order to achieve a most general continuation: 

nes(h n k, (A), sld) = h, k appl.ax. V(h A k -~  h A k) 
nes(h V ]g, (Vl),  sld) = h appl.ax. V(h ---+ h V k) 
nes(h V k, (V2), sld) = k appl.ax. V(k ~ h V k) 
Res(3x.h(x), (3), sld) = h(n) appl.ax. V(h(x) ---* 3x.h(x)) (n new) 

For every goal G and every schema S, Res(G, S, sld) computes both the applied 
axiom (namely the instance of the schema matching the goal) and the corres- 
ponding canonical continuation. For example,  using Res, the continuation of a 
proof t r e e / 7  with selected goal h(x) A k(g(y), x) is: 

k(g(v), W, A k(g(y), x) ^ k(g(y), 
h(x) A k(g(v), x) 

/7 
Note that  the proof tree does not contain the schema, but its first-order 

instance Vx, y.(h(x) A k(g(y), x) --~ h(x) A k(g(y), x)) computed by Res. Note also 
that  other instances of the schema can be applied to the above goal. Therefore, 
by means of Res, we generate a subspace of the search space that  we would 
have obtained by backtraking on all the instances. For every goal G, we obtain 
a regular subspace containing all the answers for G, where similarity is related 
to the instances (of the schemata) occurring in proof trees. 

The situation is more difficult w.r.t, the elimination rules. For example,  A- 
elimination can be obtained as an application of a schema as V(A A B --+ A). 
But in this case we cannot obtain a general finite resolution method.  Indeed, 
applying the above to a goal A, we have infinitely many  choices of B. Even more 
serious problems arise while trying to find AARs for the other elimination rules. 
The fact is that  elimination rules may work on assumptions and assumptions 
are not explicit in the goals. A way to solve this problem exploiting resolution 
over schemata is to use sequents, distinguishing positive and negative goals and 
providing more rules, as shown in the next subsection. 

Last, it is immediate  to see that  the usual presentation of first-order systems 
is not regular (according to our notion of regular AAR system); to recover regu- 
larity we need either an AAR or a second-order presentation. For example,  let us 
consider the following instances r l  and 7r2 of the A-introduction rule of natural  
calculus: 

p(x) A q(x) u(x) A v(x) 
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7rl and 7r2 apply the same schema, hence they are similar; but there is no first- 
order 7r such that  7rl < lr and ~r2 < 7r. Using AARs, ~1 and 7r2 become decorated 
by different axioms and are no longer similar. Moreover, for any two similar 
proof trees, we have a more general form including them. 

S i m u l a t i o n  o f  C l a s s i c a l  S e q u e n t  C a l c u l u s  w i t h  A A R s .  In this section we 
present a version of the classical (first-order) sequent calculus as AARs, using 
schemata.  Here goals have the form F }- .4, where the sequents are lists of formu- 
lae. Contrary  to the usual calculus, we search for instances OF F- 0A. Schemata 
and their instances are written in a suitable metalanguage.  The following con- 
ventions are used: the comma  "," induces a splitting of the premises, while ";" 
creates a single sequent. Formulae annotated with "-" belong to the left of the 
turnstile, while unannota ted  ones stay on the right. This corresponds to using 
the following axiom application rules, where -4-(OB) occurs in an integer position 
:hj (with the same sign), accordingly in F or A, and (F  t- A)[+j/ZY] denotes 
the deletion of the formula at + j  and the insertion of the formulae of Z' in F or 
A, according to their sign: 

1) Rj(F I- A, V(A1, . . . ,  A,, --~ +B)) = (F I- A)[:hj/OA,]... ( r  t- A)[+j/OA,~] 

2) R~(F ~- A,V(A~;... ;A,, --. +B))  = (F ~- A)[+j / (OA~, . . . ,  OA,,)] 

If  + B  is +VxH(x) or -3xH(x) ,  Rj replaces x by an eigenvariable (t-p is an- 
notated by the eigenvariables P,  as in (4)). If  -4-B is -VxH(x)  or +3xH(x), Rj 
replaces x by a new variable, to obtain a most  general continuation. The rules 
tha t  apply W-L and W-R (weakening) and A X  involve pairs of indices, i.e. they 
are of the form Ri,j. 

Next, we list the schemata below: 

~ - R  

,....~ w L : 

A - R :  

A-LI  

A-  L2 

V - L :  

V - RI 

V - R2 

-~-L:  

V - L :  

V - R :  

3 - L :  

3 - R :  

: V(-H; K => H --+ K) 

V(H,-K ~ -(H --~ K)) 

V(H,K ~ H A K) 

V(-H ~ -(H ^ K)) 

V(-K => -(H A K)) 

V(-H,-K ~ -(H v K)) 
V(H ~ H v K) 
V(K ~ H v K) 
V(H => -(-,g)) 
V(-H ~ - ,H) 

V ( - H  ::v -VxH)  
V(H ~ VzH) 
V ( - H  =v - 3 x H )  

V(H ~ 3xH) 
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W - L : V ( - H  =:r - H , - K )  

W -  R :  V(H ~ H , K )  

C - L : V ( - H , - H  ~ - H )  

C - R :  V ( H , H : ~ H )  

A X  : V(::~ - H , H )  

A resolution rule for the above schemata, except AX,  works as explained in 
the previous subsection: a resolution step substitutes the metavariables of the 
'applied' schema by the formula(s) occurring in the goal, in the position(s) indic- 
ated by the rule; in this way, it computes a single instance and the corresponding 
canonical continuation. 

For AX,  if the rule is Ri,j, the goal F I- A, the formula indicated by - i  A 
and the one indicated by + j  B, and a is a mgu of A, B, then the resolvent is 
aN l- aA.  

Backtracking is performed mainly on the indexes. Indeed, if we exclude con- 
traction (i.e. C-~ and C-R), at most one of the schemata can be applied by a rule 
Rj (as is well-known, contraction cannot be eliminated, but there are present- 
ations where its use is very much reduced [6]). Moreover, only three schemata 
can be applied by a rule Rid. 

Example 3. We show the quest for an answer substitution for u, v such that  the 
following sequent is provable: 

~'(a) V ~'(b), W.(r(~:) ~ h(x)) F /4u), / t(v) 

where a, b are constants. One of the nodes in the search-tree is, for example: 

r(a) }- r (n l ) ;  r(a),  h (n l )  I-- h(u), h(v); aa3 
R2 

~(~), ~(,,~) --. h ( ~ )  e h(u), h(~); .,,~ 
"R2 

r(a), Vx . (r (x)  ---* h(x))  I- h(u),  h(v); 

1:/2 
r(b), r(n2) ---+ h(n2) I-- It(u), h(v); ar~2 

R2 r(b), w . ( , - (~ )  -~ h(~))  ~ h(,,), h(,,); ,.,~ 
R1 

.(~) v ~(~), w.(~(. . )  ~ h(~)) ~ h(,0, h(,,) 

where an1 is the instance - r (a ) , - r (b )  ~ -(r(a) V r(b)) of the schema V-L, 
aa2 is the instance Vx.(-(r(x)  ~ h(x)) ~ -Vx.(r(x)  ~ h(x))) of the schema V- 
L, and so on; nl ,  n2 are new variables. From this node, we can apply AX. We can 
select any one of the open goals, for example r(a),  h(nl)  l- h(u), h(v). Applying 

Res(R2,1, r(a),  h(nl) f- h(u), h(v), AX),  the indicated formulae are h.(nx) and 
h(u) and we obtain the substitution {u/n~}. The new goals of this continuation 
are ~'(~,) ~ ~'(,~,), ~(~) ~ ~(,~) and ,'(b), h(,,~) ~ /4~, ),/,(v), and now only one 
successfld continuation can be reached (in many ways), giving rise to a proof: 

Applying Res(R2,2, r'(a), h(n~) l- h(u), h(v), AX),  we get a proof: 
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T/ :: r(a) V r(b),Vx.(r(x)  ---* h(x)) t- h(b), h(a). 

The above is only a first and rough sketch. The study of infinite A A R s  using 
first-order schemata is part of our future work. 

6 R e l a t e d  W o r k  

In this section we review (some) papers related to our approach. 

6.1 R e s o l u t i o n  

Gallier [9] gives a general presentation of resolution theorem proving as deriva- 
tion in certain sequent calculi: the given set of clauses is presented as a sequent 
where every cedent is exclusively composed of atoms: the goal is to derive the 
empty sequent by means of different versions of the cut rule, to which various re- 
finements of resolution correspond. The starting point is CNF: every such clause 
--,A1 V ..- V --,An V B1 V ..- V B,~ can be put in the so-called Kowalski normal 
form A1 A • - • A An ---* B1 V . . .  V Bin. This looks like a sequent. Then just take 
clauses as sequent axioms and try to derive the empty sequent, alias the empty 
clause. The only relevant rule (apart from factoring) is a cut with unification, 
where/1, A are possibly empty sets of atomic formulae and 0 -- mgu(A,  AI). 

F F A ,  A A I , F  It- A I 
(e - cut)  

e ( r ,  r '  e 

From this perspective, logic programming is linear resolution on definite clauses 
with selection function. It is easy to enforce it by syntax, where the first premise 
is the program clause and the second the goal. 

F~- A A ' ,A~ -  
(sld - cut) 

o(r, 
More recently Snyder [26] has embedded these systems in a two-sorted paramod- 
ulation calculus, in order to cope with equality, and the only rules are those for 
equality - namely, identity, left and right paramodulation. 

The Simplified Problem Reduction Format [22] is a Gentzen system that em- 
ploys sequents of the form F F A to perform theorem proving in the non-Horn 
fragment. Inference rules are generated from the input set of clauses as follows. 
Given a Horn clause H ~-- H1 ., Ha we associate the inference rule 

F I- H I - . . F  ~- Un(H ) 

F ~ - H  

For each non-Horn clause H1, , Hm ~-- L ; , . . . ,  Ln, there is the following split- 
ling rule 
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F ~- Lt . . . F  P L~ F, H1 ~- U . . . F ,  Hm }- U 
(split) 

F~-U 
In a refutational setting U can be taken to be empty,  and a set of clauses is unsat- 
isfable if the empty  sequent i- can be derived. It  is easy to show tha t  the two rules 
are derivable in Gallier 's calculus through a sequence of cuts and contractions. 

Fit t ing [7], among other things, stresses the similarities between resolution 
and tableaux systems, where the usual operations on semantic tableaux ~ la 
Smullyan are seen as skolemization steps until resolution steps are applicable, 
i.e. the atomic level has been reached for some node. The beauty of Fit t ing 's  
book lies in the demonstrat ion of the essential parenthood that  links all those 
calculi, at, the price of a somehow unfamiliar formulation of them. 

6.2 Log ic  P r o g r a m m i n g  

The first step is, through simple classical equivalences, to view Horn clauses 
positively as rules and goals as existentially closed conjunctions of a toms to be 
proved by those assumptions. Historically this can probably be da ted  back to 
Gabbay  and Reyle [8]. As mentioned before, we can distinguish two approaches: 

1. Clauses as axioms (programs as theories) and some form of Gentzen calculus 
to infer goals, as very clearly expressed in a series of papers by Miller et 
al. [20]. The same idea is presented in [24] but w.r.t, natural  deduction, 
where this interpreter is shown to be equivalent to normal derivations in 
minimal logic. This approach is also mot ivated by the enlarged language 
in consideration (hereditary Harrop formulae), where every connective a.nd 
quantifier is allowed by the syntax, though not arbitrarily; this explains tile 
use of the full (minimal) natural  deduction. 

2. Clauses as rules [10]: Horn (and beyond) programs shouhl be seen as set 
of inference rules for the derivation of (not necessarily ground) atoms. This 
view is coherent with the idea of programs defining a continuous mapping  
on the lattice of Herbrand interpretations: then logic programs can be seen 
as inductive definitions of such interpretations. A formal system C(P) is 
associated to a program P consisting of rules as done above. Differently from 
us, the authors define a specialized calculus, called linear derivation, which 
proves pairs of the form (G, 0), and demonstra te  it to be sound and complete 
w.r.t. C(P). A linear derivation is essentially a SLD-derivation upside-down, 
in a structure-sharing, forward-chaining style, i.e. where substi tutions are 
split from goals. This intermediate calculus is required to act, ually compute 
the answer substitution. The rest of the paper  is dedicated to enlarge the 
paradigm of logic programming with the notion of higher-order rules; this 
is connected with the possibility of having implications as goals, which is 
also a feature of Miller's approach and it is the basis of the sequel of the 
paper, where [11] a definitional approach to logic programming is sketched: 
the relationship with our calculus is analyzed in section 6.3. 
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Regarding negation-as-failure St/irk [27] has (independently) given a sequent 
formulation of Clark's completion that  is very close to ours. His calculus NF(P)  
consists of 

- Clark's equality and freeness axioms 
- Negation rules (our switch rules) 
- cut rules, where ~ is a set of equations and F of literals 

~ [ - s = t ;  s = t , F ~ - A  ~ [ - A ;  A,F~- 

Z, Fi-  A Z ,T ' t -  
- Program rules from P,  divided into positive and negative introduction. For 

example, given the above program for even we have: 

~ t = 0 E ~ t = s ( X ) ;  z ~ ~ e v e n ( X )  

~- even( t )  z ~ even( t )  

t = o, r ~ ; t = s ( X ) , - ~ e v e n ( x ) ,  r 

even(t), F ~- 

Much more is however contained in Stiirk's thesis; to quote a few, he shows 
that  a sequent is provable in NF(P)  iff it is true in all 3-valued models of 
the completion. Furthermore a completeness result is proved w.r.t. S L D N F -  
resolution for programs satisfying the cut-property [28]. 

Harland [14] proposes a sequent calculus based on intuitionisic logic that 
directly incorporates N F  without referring to the completion. The usual rules, 
restricted to deal with Horn logic, induce a positive derivability relation; fur- 
thermore, he introduces a negative system of disprovability, denoted by ~-- with 
judgments of the type: if a conjunction fails then so does one of the conjuncts and 
so forth. The two systems are interlinked by the rules for NF,  which correspond 
to our switch rule (s). 

F ~ - - F  F i - F  
(~ - R + )  ( 9  - R - )  

F ~- --,F F ~-- -,F 

Structural rules have a paramount importance in this calculus: due to the non- 
monotonic nature of NF,  in the positive fragment weakening is restricted to 
introduce only already provable formulae on the left. In the negative system 
structural rules, cut included, are not eliminable. 

Note that  this is not strictly a calculus of finite failure, since sequents of the 
form p *-- p F-- p are provable, although with the essential use of weakening. 
Of course, due to the recursion-theoretic complexity of unprovability, every such 
axiomatic fornmlation is bound to be incomplete. Moreover the boundary seems 
fuzzy, as, for example, p is independent from the program p ~- q, q ~ p. 

The calculus without structural rules is shown [13] to be sound and complete 
w.r.t, finite faihlre and SLDNF-resolution (extended to first-order hereditary 
Harrop formulae). Having to model the operational behavior of NF,  both the 



251 

positive and the negative system make explicit references to unification, Skolem 
functions and so forth. Still, the system is not meant for proof search and requires 
a relative complement algorithm to provide answers to open negative queries. 

6.3 Regularity,  Anti-Unif icat ion,  A-Sufficiency 

For first-order terms, regularity is analogous to the problem of generalization 
or anli-unificalion [16]. Addressed b y  Reynolds and Plotkin in 1970, it has be- 
come popular in AI under the name of 'explanation-based generalization'. In 
the lattice of terms under the subsumption ordering, unification [generalization] 
corresponds to lower [upper] bounds, and in particular mgus [msgs] to glb [lub]. 
Under the propositions-as-types interpretation, proof trees are terms of a certain 
type (the goal to be proven). Yet, due to the unpleasant properties of higher- 
order [anti]unification, the lattice structure can be preserved only by restricting 
to higher-order patterns, long/3~/-normal forms with constrained occurrences of 
free variables. Pfenning [23] has given [anti]unification algorithms in  the Calcu- 
lus of Constructions. There regularity and the existence of a mgpt come fi'om 
anti-unification of higher-order patterns. In our approach similarity is the prim- 
itive notion and it may end up either in regular or not regular systems. The 
above would suggest the question whether every regular A A R  system might be 
described in terms of patterns. 

The calculus D(P) [11] is obtained by adding a definitional rule to C(P) 
(see [3] for a richer set of rules and the programming language GCLA based on 
them). Let the definieus of an atom A be the set D(A) = {OY I [3 ~ Y ,A  = OB}. 
Then, given the proviso of A-sufficiency: for all 0, D(OA) = O(D(A)), we have 
the rule: 

F, D(A) t- F 
(P 

F, A F  F 

Note that Mt, hough G is derived in D(P) using (P  ~-), the former may not be a. 
logical consequence of the program, nor of any standard extension known in the 
literature like comp(P) or CWA(P) .  Indeed the system does not need a logical 
language at all and has, as a semantics, the theory of partial inductive definitions 
[12]. 

It is clear that  the AAR systems are very strictly related to the definitional 
approch to logic programming [11], though the latter seems to be more powerfld. 
While we postpone a comparison of the two systems at the more abstract version 
(generalized AARs versus partial inductive definitions), we may formulate a first 
result showing the containment of the SLDNF-sys tem into D(P),  under the 
proviso of A-sufficiency. 

P r o p o s i t i o n 3 1 .  Let g be a SLDNF-proof  of L in T(Comp(P) ,  L), "which we 
assume to be closed under substitution: then D(P) F L. 

Proof A simple induction on /7 ,  using the closure under substitution to ensure 
the proviso in the application of (P  F-). 
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That  the other direction does not hold is shown by the counter-example in 
the proof of (30), which is provable in D(P). 

Moreover, there is a strong relationship between regularity and A-sufficiency: 
namely, given a fixed a predicate definion A, in a logic program, every A-sufficient 
substitution generates a clause in a (not necessarly unique) regular splitting of 
the failure axiom of A. Thus, if 0 is A-sufficient, the rule OA ~- . . .  is regular. 
It seems that  the clauses produced this way may not be a total covering of the 
terms in the language of the program, and that  splitting can solve cases where 
GCLA computations do not find the needed sufficient substitutions. 

7 C o n c l u s i o n  a n d  F u t u r e  W o r k  

From our original goal of giving a proof-theoretic reconstruction of logic pro- 
gramming, as started in [21], we are now in the position of proposing a signific- 
ant enrichment of the logic programming paradigm. This alone is good evidence 
of the fruitfulness of the proof-theoretic approach. Moreover, this itinerary has 
been common to other researchers: by stressing the constructive features of logic 
programming [20] has formulated the notion of uniform proof. Similarly, [10], 
[11] have devised a definitional approach to logic programming. 

Analogously, from our analysis of SLD and SLDNF-resolution, we have 
elicited the properties (regularity, closure under substitutions et al.) that  can 
turn any A A R  system into a Prolog-like programming language. 

Concluding, we believe that our proof theoretic interpretation gives a clear 
explanation of some well-known phenomena and suggests some interesting re- 
search directions. We plan to develop our work towards a general theory of 
regular AARs: many other areas deserve investigation: 

- LF.  We need to understand whether the theory of regular search spaces can 
serve as a (substantially weaker) logical framework in the sense of LF, and 
conversely, whether the latter can be shown to be regular. 

- P a r t i a l  E v a l u a t i o n .  The positive and negative A A R  systems developed 
to formalize SLD and SLDNF-resolution, especially the ordering on proof 
trees, seems a suitable tool to proof-theoretically reconstruct fold/unfold 
transformations and partial evaluation in a substantially neater way than in 
[181. 

- A b d u c t i o n .  Analogously, the same tools can provide a basis for abduction: 
the open assumptions of a goal can serve as the abducted premise. 

- D o m a i n  T h e o r y .  Remark that  the notion of regularity corresponds in 
order-theoretic terms to a directed set in a partial order: if every directed set 
has a lub (a mgpt),  the partial order is a pre-domain. Thus an A A R  system 
is a regular search space provided that its set of pts is a domain. This opens 
the possibility of providing a domain-theoretic semantics to general AARs. 

- R e l a t i o n s  w i t h  GCLA. It is possible that  the algorithms for A-sufficiency 
may be useful for finding regular splitting, and vice-versa our term covering 
approach may provide richer A-substitutions. 
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- A P r o g r a m m i n g  L a n g u a g e .  P rov ide  a first  e x p e r i m e n t a l  i m p l e m e n t a t i o n  
of  a logic l anguage  where the  s t ruc tu re  of  clauses and goals  is a rb i t r a ry ,  
p rov ided  i t  can be shown to be regular .  

A c k n o w l e d g m e n t .  We would like to  t h a n k  Roy  Dyckhoff  and  F r a n k  Pfenn ing  
for the i r  va luable  c o m m e n t s  on earl ier  versions of  th is  paper .  
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