
Regular Search Spaces as a Foundat ion of Logic
Programming

Alber to Momigl iano and Mario Ornaghi

Department of Philosophy, Carnegie Mellon University
15213 Pittsburgh PA, USA - - mobile@lcl.cmu.edu

Dipartimento di Scienze dell'Informazione, Universitk degli studi di Milano
Via Comelico 39/41, Milano, Italy - - ornaghi@imiucca.csi.unimi.it

A b s t r a c t . First, we aim to provide a proof-theoretic reconstruction of
logic programming, both for definite and for normal programs. This leads
us to a better understanding of negation-as-failure (NF) [5] and of other
proof-theoretically well-founded extensions of Prolog. Our ambition is to
show that almost everything in the vulgate of logic programming can be
carried out in a style close to natural deduction, and in particular in a
restricted fragment of minimal logic. Secondly, we embark on a gener-
alization and abstraction of the nice properties of SLD-resolution. The
outcome is our formulation of the concept of regular search space. Here
many logics can be expressed and provided they can be shown to be
regular, they are then guaranteed to enjoy an analogue of the very fea-
tures that make Prolog a feasible and successful implementation of logic.
This can also serve as a basis of a fairly general new logic programming
language, similarly to what is done in [11].

1 I n t r o d u c t i o n

Most of the papers on logic p rogramming , in part icular on its extension, have
been carried out in a semant ic way. Unfor tunate ly the semantics, being main ly
l imited to te rm models , tends to hide proof-theoret ic contents. Moreover, the
procedural aspects are t radi t ional ly expressed in a refutat ional style. We prefer
a more direct approach tha t bypasses, where possible and meaningful, this
p seudo- seman t i c#e fu ta t iona l style. Many features tha t are rather cluttered in
this f ramework now appear as natura l consequences of a proof-theoret ic reading.

Basically two proof- theoret ic approaches have been pursued in the literature,
as outl ined in [10] - see section 6 for a more detailed discussion:

1. Clauses as axioms and some Gentzen calculus to infer goals [20].
2. Clauses as rules [10]: p rograms should be seen as sets of inference rules

(inductive definitions) for the derivation of (not necessarily ground) atoms.

We think of our approach as a blend of the two. We introduce the concept
of most general proof tree (mgpt), which corresponds to a SLD-derivation;
is a computed answer subst i tu t ion for P U {~-- G) iff there exists a m g p t for
0G with axioms f rom P, with no open assumption. Mgpts are SLD-derivations

223

upside-down, where the root is the goal to be proven, the assumptions are the
intermediate goals therein and 0 is the restriction to the free variables of G of the
composition of mgus along the branch. Mgpts are based on the notion of axiom
application rule (AAR), which easily generalizes to more complex definitions of
clauses and goals. Then we formulate the concept of regular search space for
which search strategies like Prolog's are complete.

Introducing A A R systems for negative goals and rules, we offer an analysis of
N F, which clarifies its intrinsic incompleteness due to the fact that , in general,
it gives rise to a non-regular search space. Moreover, the safeness condition on
the selection function arises from the usual proviso on parameters of the 3-1eft
rule. For regular programs N F can provide correct bindings for open negative
queries. Otherwise, regularity can be achieved, through splitting. This can be
the basis of a simpl-ied synthesis technique in a spirit close to [4].

In the last part we start an abstract analysis of general A A R systems, satis-
fying very simple properties like regularity and closure under substitution.

The paper is organized as follows: in section 2 we develop the proof-theory of
definite programs, based on the notion of most general proof tree and of continu-
ation. The following section 3 makes the connection between A A R and Prolog
computations: a soundness and completeness theorem is proved w.r.t, success
and finite failure. In section 4 we present our proof-theoretic reconstruction of
SLDNF-resolution and we prove the latter to be sound w.r.t, the former. Regular
splitting is proposed as a sohltion to the problem of evaluating open negative
queries. Section 5 presents the beginning of a general theory of A A R systems,
with some examples. Eventually in (6) we conclude with a review of' the other
existing proof-theoretic studies and with a list of future work.

2 T h e S L D - S y s t e m

We associate to a program a suitable set of axioms and we tbrnmlate a rule sld
to apply such axioms, that we call the axiom-application rule AAR) for the
SLD-sys tem.

D e f i n i t i o n 1. sld is a rule which applies Horn axioms V(A1 A. . A A,. ---+ B) to
goals OB, giving rise to sequences of new goals OA1,... , OAn. The result of an
application will be represented by a proof configuration such as:

OA1 ... OAr V (A 1 A . . . A A , ~ - - * B)

OB

where the major premise V(A1 A . . . A Am --~ B) is the applied axiom, the pos-
sibly empty sequence of the minor premises OA1,.. . , OA,~ represents the new
goals and the conclusion OB is the start ing goal.

Note that , if we have in mind a Horn program, facts give rise to configurations
where the sequence of minor premises is empty, i.e. n = 0.

224

Next we inductively introduce the notion of proof tree (pt), which corresponds
to a branch of a SLD-tree.

D e f i n i t i o n 2 . An a tom A is a proof tree. If HI :: t~A1,..., II,~ :: 0A~ are proof
trees, then the following is also a proof tree:

//1 / /n
~A1 . . . ~A~ V(A1 A . . . A A , --* B)

~B

where / / :: A is the linear notat ion for a proof tree with root A. We say that
a formula is an assumption of a proof tree if it is a minor premise in some leaf.
The root of a proof tree is called its consequence. The axioms of a proof tree
are the ones appearing as major premises. A proof tree is a proof of B from a
set .4 of axioms iff B is its consequence, its axioms belong to .4 and it has no
assumptions.

The set of proof trees is closed under substitution, namely, i f / 7 is a proof
tree and 0 is a substitution, then 0(/ /) is a proof tree. This allows us to introduce
the following pre-ordering (intuitively to be read as H1 is less general or more
instantiated t h a n / / 2) and equivalence relation among proof trees:

D e f i n i t i o n 3.

- I/1 _< I/2 iff there is a 8 such t h a t / I 1 = 0(//2);
- H1 - / / 2 iff/-I1 ~ / / 2 a n d / / 2 _<//1;
- Cone(//) = { / / ' I / / ' < / / } .

Note that this ordering can be seen as a sort of lifting to proof trees of the
usual subsumption ordering among substitutions; remark also that equivalent
proof trees are identical modulo renaming of variables.

Using _<, we can give a notion of most general proof tree among similar trees,
where similarity is characterized as follows.

Roughly speaking, two proof trees are similar if they can be derived, start ing
from the root, by two axiom-application sequences tha t apply the same axioms,
in the same order, but may involve different substitutions. Similarity is crucial,
because axiom-application sequences represent derivations of an idealized inter-
preter which searches for p r o o f s / / : : OC start ing from "goals" ?C. We will show
that regularity, namely the existence of a most general proof tree among similar
trees, is the property which makes SLD-like search strategies complete. The
formal definition of similarity is the following.

D e f i n i t i o n 4 . An axiom-occurrence in a p t H is a pair (p, Ax) such that p is a
path from the root to a node containing Ax as a major premise. We say that
two proof trees HI , //2 are similar, written H1 ~ //2, if either they are two
atoms with the same predicate symbol or they have the same (non empty) set
of axiom-occurrences.

225

Similarity is an equivalence relation. We will call similarity classes the corres-
ponding equivalence classes. With Sire(H) we will indicate the similarity class
induced by a proof tree H.

P r o p o s i t i o n h. /71 ~ H2 iff there is a proof tree H such that H1 < H and
/7~ <_ 11.

Proof. The direction from right to left is trivial. Conversely, we proceed by in-
duction on the number of axiom occurrences applied in H1,/72.
Basis . There are 0 axiom occurrences. In this case, H1 and H2 are two atoms
containing the same predicate symbol, s a y r . Then /71 : r (t) and g~ = r(t ');
t h e n / / = r(x_).
S tep . There are n + l axiom occurrences, { o r , . . . , o~+1}. Let ok be a top axiom-
occurrence of some axiom Ax = V(A1 A .- . A An --~ B), as shown below:

01A1" " 01A~ Ax 02A1. . . 02A,~ Ax

/71 = 01B H2 = 02B
F1 1".~

F~ is similar to 1"2, since both have axiom occurrences {o~, . . . , o,~+1} - { o k } ; by
inductive hypothesis, there is a proof tree F such that/"1 = a l F and F2 = a2F.
Let H be the top formula occurring in F, in the place of 01B in F1 (and of
02B in F.)); we have: O1B = a l H and 02B = o'.)H. ~/e can assume that H
and B have disjoint sets of variables, so that (0~ U a l) B = (0~ kJ Crl)/7 and
(02 U cr2)B = (02 U cr2)H, hence there is a mgu 5 of B and tI and we ha.ve
01 tO cr 1 = Pl5 and 02 U (r.) = #25, for some Pl, #'e. Then we can build the pt /7:

5A1 . . . 5A,, Ax

5H
5F

H is similar to H1 and H2, and one easily sees that H1 = # I H and H2 = #~H
(we can assume that the variables of F do not occurr in A1, �9 A,,, B). This
concludes the proof of the induction step.

Note that the above proof relies not only on the similarity of the two proof
trees, but also on the fact that the application (by sld) of Ax preserves the
comparability. This does not hold w.r.t, a more general kind of A A R , e.g. the
ones related to negation as failure, as shown in section 4.

P r o p o s i t i o n 6 . For every set $ of similar proof trees, there is a H such that
S c_ Cone(if) .

Proof. Assume the contrary, i.e. that for every H there is a H* in $ such that
17" ~ H and let H0 be a p t in the similarity class containing $: there is a p t H1 in
,9 such that H1 ~ H0. By (5) they have a similar upper bound, say A1, such that
H0 = 00A1. If we define re(H) as the sum of the sizes of the terms occurring in a
pt H, then m(Ho) > re(A1) since 00 cannot be a renaming. Consider 172 :~ AI:

226

by the same reasoning, they are bounded by A 2. I terating the process we create
an infinite chain]70, A 1 , A s , . . . , where H0 = 00A1, A1 = 01A2, . . . , but this is
not possible since m(Ho) > re(A1) > re(A2) >

Remark. For every H, Cone(H) C_ Sire(H).

The similarity relation allows us to introduce the notion of most general proof
tree, which corresponds to a SLD-branch where only mgus are used.

D e f i n i t i o n 7. We say that H is a most general proof tree (mgpt) if it is a max-
imal element among similar trees, i.e. Cone(H) = Sim(H).

By (5), every similarity class Sire(H) contains a maximal element unique
up to renaming. On the other hand minimal elements among similar trees are
ground proof trees, but in general there are incomparable minimal elements with
respect to <.

Now we target the formalization of how a Prolog computat ion can be exten-
ded, that is we try to capture the idea of the resolvents of a given goal.

D e f i n i t i o n 8 . H2 is a continuation of H1, denoted H1 ~ H2, iff there is an
initial subtree H3 of H2, that is with the same root, s.t. H3 < H1.

Assuming that the root is the goal to be proved, a continuation is a possible
(not necessarily single-step) extension of a SLD-derivation, i.e. in our language,
of the (open) assumptions of the goal to be proven. This extension may intro-
duce new substitutions, as shown in the following picture, where a proof tree H
is continued into a proof tree containing 6H as an initial subtree.

The _ relation is clearly a partial ordering w.r.t, the equivalence relation =
and the immediate successors under this ordering of a p t essentially correspond
to all possible resolvents of the current goal. Thus the notion of continuation
captures the search feature of logic programming. This characteristic is bet ter
represented by the notion of most general continuation and canonical continu-
ation and by their properties that we list below.

Remark. H I < H entails H - < H I.

D e f i n i t i o n 9 . Let H be a p t and H _ H*. We say that H* is a most general
continuation (mgc) of H iff, for every continuation H I of H similar to H*, H I <
H*.

227

P r o p o s i t i o n l 0 . For every continuation H' of II , there is a mgc H* of 17 such
tha t H I < H * .

D e f i n i t i o n l l . A one-step continuation selecting an assumption Hi and apply-
ing an axiom Ax of the form V(A1 A . . - A Ak ~ B) s.t. a B = c~Hi is of the
following form:

aAx . . . aAk Ax
�9 . . (3 " H i , . .

aH

We say tha t a continuation is canonical iff it is a one-step continuation and cr
is a most general unifier of the selected assumption and the head of the applied
axiom (assuming the usual standardization apart) .

The following relations hold between subsumption and continuation, em-
bodying the reason why search may be conducted exclusively on mgcs or on
mgpts and no backtracking on substitutions is required, as we will see in the
next section.

P r o p o s i t i o n l 2 . 1.1:]71 < H2 and H1 ~_ II3, then H2 -< Ha.

P r o p o s i t i o n l 3 . Let H' be a one-step continuation of H. II ' is a mgc of I I iff
it is a canonical continuation.

P r o p o s i t i o n l4 . I f H is a mgpt, then its rngcs are mgpts. In particular, its
canonical continuations are mgpts.

We conclude this section considering the consequences of the above properties
with respect to the following search problem. Let .A be a set of axioms, T (A)
the set of the pts with axioms fi'om A, a n d / / :: C be a p t of T(A) . Sea.rch for
a continuation H* :: OC C T(M) of H, such that 17" is a proof. One easily sees
that the notions of mgpt , mgc and all the related properties hold even though
we consider T(A) , instead of tile class of all proof trees. Then one obtains:

C o r o l l a r y 15. I f i l l is a rngpt o fT(M), then, for every 172 such that 111 ~ 172,
if there is a H s.t. H2 ~_ H, then H1 ~_ H.

Proof. Since H1 is a mgpt , then H2 ~ H1. Apply (12).

P r o p o s i t i o n 1 6 . Let H be a mgpt of T(A) and Hi be an assumption o] 17. I f
for every canonical continuation H' of H selecting Hi there is no proof in T (A)
continuing H', then there is no proof in T(.A) continuing II.

Proof. Suppose the contrary, that there is a p t H* contimlation of H. Then there
is a subpt H of 17" that is a one-step continuation of H selecting Hi. Hence /~/
is similar to H'. But, by (14), H' is a mgpt and, by (15), H* is a continuation
of H ' .

228

Corollary 15 more properly refines what we mean by "avoiding backtracking
on substitutions". (16) shows that, by using canonical (i.e. most general) continu-
ations, during the search the selection of the assumption Hi may be completely
non-deterministic. (15) and (16) allow us also to state that a search strategy
like the one of Prolog is complete in the search spaces for T(A). But (15) and
(16) are based on (5), which may not hold in an arbitrary search space. When
the latter is the case, we will say that the regularity property holds. This remark
will be the basis of section 5, where we discuss regular search spaces, i.e. search
spaces satisfying the regularity property 5, for a very general kind of axioms. In
the next section we discuss the case of Horn axioms.

3 Pro log C o m p u t a t i o n s and the SLD-System

Eventually we link the SLD-system to Horn programs: to a program P corres-
ponds a set of axioms, indicated by Ax(P), in the obvious way. For example, let
us consider the following program SUM:

sum(X, O, X).
s,,m(X, s(Y), s(Z)) : -sum(X, Y, Z)

and the corresponding axioms Ax(SUM)

Axl VX.sum(X,O,X)
Ax2 VX, Y, Z.(sum(X, Y, Z) --* sum(X, s(Y), s(Z)))

Examples of proof trees H0, //1 a n d / / 2 using Ax(SUM) are:

sum(X,O,s(O)) Ax2 Axl Axl

sum(X, s(O), s(s(0))) Ax2 sum(O, O, O) Ax2 sum(s(O),O, s(0)) Ax2

sum(X,s(s(O)),s(s(s(O))) sum(O,s(O),s(O)) Ax2 sum(s(O),s(O),s(s(O))) Ax2

s~m(O, s(s(O)), s(s(O))) sum(s(O), s(s(O)), ~(s(s(O)))

H0 has assumption sum(X, O, s(0)) and consequence sum(X, s(s(O)), s(s(s(O))));
/I1 a nd / / 2 are proofs (of their consequences). //1 an d / I2 are similar, since they
have the same set of axiom occurrences {([1], Ax2},([0, 1], Ax2}, ([0, 0, 0], Axll}
(paths are represented by sequences of numbers, in the usual way); the following
proof tree is the mgpt in their similarity class:

Axl

sum(X,O,X) Ax2

sum(X,s(O),s(X)) Ax2

sum(X, s(~(o)), ~(s(X)))

Now we address the following problem: given a program P and an atomic
formula C, search for a p r o o f / / : : 8C. From now on, in this section, we will call
C a goal. We give the following definition.

229

D e f i n i t i o n 1 7 . Consider a program P and a goal C and let T(P) be the set
of the proof trees with axioms from Ax(P) and T(P, C) be the set of the proof
t rees /7 :: OC with axioms from Ax(P). Define Gen(P) and Gen(P, C) to be the
corresponding sets of mgpts.

Example 1. Let us consider the following program p1 (see [17], pp. 56-7).

Axl p(X,Z) ~ q(X,Y),p(Y,Z).
Ax2 p(X, X).
Ax3 q(a,b).

then these are all finite trees in Gen(P, C) for the goal p(X, b):

Q p(x, ~))

/
, ~) p(~, ~)

p(a,b)

, ~) p(~, b) A ~ f F~

Y p(a, b)

\
Ax2

q(X, b) p(b, b)
~(x, ~)

/
, b) p(~, b) s2

p(a, b)

Axl

$1

Ax3
q(a, b)

Ax2
q(b,b) p(b, b) dxl

p(b, b) Ax l

p(a, b)

F2

The success nodes S1, $2 contains proofs and the proof tree in the failure node

1 From now on, we sha.ll only quote the program, with the obvious a.xioma.tic version.

230

F2 has open assumptions, but no continuations. The oval boxes show the canon-
ical continuations obtained by choosing the leftmost assumption. The rectangles
show the canonical continuations selecting other assumptions. By (16), we ob-
tain, selecting other assumptions, more proof trees, but the success set remains
the same. Then we can stop at F1, taking it as a failure node.

As last step consider the quotient Gen(P, C)/=~ under renaming of variables.
This passage is required since each resolution step considers variants of the input
clauses to ease unification. We claim that (Gen(P,C)/ - , ~_) corresponds to
every SLD-tree for P tO {~- C} under each selection rule, i.e. it contains every
possible derivation. In fact, given opportune duplications of nodes with more
than one parent, it can be looked at as a tree s.t.

- the root is C
- every axiom comes from Ax(P)
- every node is an equivalence class [17 :: OC], with 17 :: OC E Gen(P, C)
- every child of a node is obtained by a canonical continuation applying an

axiom of Ax(P).

P r o p o s i t i o n l S . 0 is a computed answer substitution for P tO {~--- C} if)" there
is a II :: OC E Gen(P, C)/ =-, with no open assumption.

Proof. Two straightforward inductions, respectively on the length of the SLD-
refutation and on the structure of the most general proof tree.

As a corollary of the above construction, we obtain Lloyd's l emma on the
independence of the computat ion rule (selection function), see [17] theorem 9.2.
This result establishes a sort of Church-Rosser property for SLD-resolution;
if P U {+-- C} is unsatisfiable, then, whichever be the a toms selected in the
inference steps, a refutation is reached. In this context it just stems from the
fact that Gen(P, C) is a regular search space and from property 16 of regular
search spaces 2. In this way, we can consider search trees built using a given
selection function, where a selection function F is a function which associates to
every proof tree H a fixed assumption in a leaf, called the assumption selected
by F and denoted by F(17). We require that F(17) depends only on the rules
applied in H, i.e. that for any similar 17, 17', F(I1) and F(ll') select the same
leaf.

D e f i n i t i o n 19. Let F be a selection function. A F-proof-sequence is a (possibly
infinite) sequence [170], [H i] , . . . , [Tin],... such that (for i > 0) IIi+l is a canon-
ieal continuation of Hi selecting the assumption F(lli). An F-search tree for a
program P and a goal C is a subtree of (Gen(P, C) / - , -<), such that every chiM
of a node is obtained by a canonical continuation applying an axiom of Ax(P)
and selecting the assumption chosen according to F.

2 Indeed, a SLD-derivation of P U { ~ C} with current goal ~ Ha, . . . H , corresponds
to a derivation of a proof tree / / :: OC with assumptions Hx , . . .Hn; a.pply (16) to
/ / : : OC.

231

The independence result says that the proofs (i.e, pts without assumptions)
contained in (Gen(P, C) / - , _-4) and the ones contained in a complete F-search
tree (namely an F-search tree such that the leaves contained therein have no
continuations) are the same. Of course, the former contains more proof trees
than the ones in F-search trees. In particular, it contains, for every rule F, the
corresponding complete F-search tree.

This correspondence can be also applied w.r.t, finite failure: a finitely failed
F-search tree for a program P and a goal C is just a finite and complete F -
search tree for P, C such tha t all the leaves contained therein are proof trees
with open assumptions. Nevertheless, given the a symmet ry of finite failure w.r.t.
derivability, the independence result does not hold anymore: a SLD-tree can be
finite under a selection function F1 and infinite under another function F2. We
have to impose a fa irness condition [17] on the selection function to ensure
tha t we find a finitely failed tree if one exists. Fairness can be characterized as
follows.

D e f i n i t i o n 2 0 . A F-proof-sequence is fair if it is finite or every (instance of an)
a tom appearing in it is selected by F. An F-search tree is fair' if every pa th of
the tree is a fair F-proof-sequence.

P r o p o s i t i o n 2 1 . I f there is a finitely-failed fair F-search tree for a p r o g r a m P

and a yoal C, the.. e,~:ry [H :: 0C] ~ (ae, ,(P, C) / - , ~_) ha~ open assump~io.s.

P r o p o s i t i o n 2 2 . There is a finitely-failed F-search tree for a program P and a
goal C iff P O {+- C} has a finitely-failed SLD-tree.

The notion of fairness can be made more explicit with the following example of
fair selection function F*: F * (H) is the leftmost among tile assumptions o f / /
with minimal height.

4 T h e S L D N F - S y s t e m

For our t reatment of SLDNF-resolution, we need a new A A R to apply the
negative (only-if) part of the completion axioms [5], together with a suitable no-
tion of negative goals. To distinguish positive and negative goals, we introduce
a new symbol F-p, used in a way similar to sequent calculi where P is a list of
existential parameters (eigenvariables), as originally suggested by Kleene. When
the rule does not update this list, we shall simply omit it. Moreover, we need
an A A R to switch a negated positive goal into a negative goal and a negated
negative goal into a positive one.

P o s i t i v e G o a l s a n d t i le P o s i t i v e R u l e . Positive goals are of the form t- L,
where L is a literal. When n is an a tom A, the (+)-rule (or positive rule) allows
to apply axioms corresponding to normal clauses, in the following way:

232

~- OL1 . . . I- OL, V(Lt A . . . A L , ~ A) (+) V(A)

b OA b OA
(+)

N e g a t i v e Goa l s a n d t h e Swi t ch a n d W e a k e n i n g Ru le s . The negative goals
are of the form F b, where F is a list of literals L 1 , . . . , Ln. There are several
possible configurations: let us s tar t from the switch ones. To switch a negated
positive goal into a negative goal or a negated negative goal into a positive one
we apply the switch rule (s):

OA F V(--,A ---, - ,B) I- OA V(~B ---+ --,A)
(s) (s)

~- O-,B O-,B, 1" t-
Whenever B = A, the rule is said to be restr ic ted (to axioms of this form). In-
tuitively, the restricted switch rule can be seen as mirroring the evaluation steps
of a goal selecting a negative literal under N F : the goal succeeds since t- A fails
(on the left hand side) and the goal fails since F A succeeds (on the right hand
side). Note, however, that under the same proviso the rule corresponds to -~-1~
and -~-L in the sequent calculus with primitive negation. The weakening rule (w)
is:

F F V(-~A --* true)
--A, r F (w)

To achieve a uniform treatment, we have expressed the rules (s) and (w) as
A A R s , even if they have a logical character.

N e g a t i v e Goa l s a n d t h e N e g a t i v e Ru le . Next, we need a suitable negative
rule (-) to apply the only-if part of the completion. First we show how (-) can be
derived in minimal logic, starting from the identity and freeness axioms (see the
Equality Theory in [5]) together with the completed definitions of the predicates
involved in a logic program (ibidem). Secondly, we explain (-) in a simplified
c a s e .

- Rule derivation. We derive our A A R (-) inside the minimal sequent calculus.
Let us start with the identity axioms (id l) , (id2)and the substitution rules,
(u l) and (u2) which are derivable from the freeness axioms. Note that this
equational theory can be shown to be complete and decidable ([15], Theorem
5.5).

�9 (idl) ~ - t = t
�9 (id2) t l = tu, L (t l) F L(t2)
�9 (ul) tx = t2 1- Eq(cr) if a is an idempotent mgu of t t , t2 and Eq(a) is

the conjunction of the equations obtained from the bindings in cr
�9 (u2) t l = t ~ t - if no unifier o f t l , t~exists

Now, consider the completed definition of a predicate p of the form

V~(p(z_) ~-~ 3_ul(z - = t l A M1) V 3_u2(z_ -- t 2 A M2))

233

Here we are assuming tha t p is defined by two clauses with b o d y M1, M2; it
is clear how to extend it to the general case. Consider the direction --+, tha t
we call the failure axiom ofp . Thanks to that , we can build proof trees of the
form shown in the following, where a_ is a list of te rms and, for the sake of
this example, we suppose tha t a l is a m gu of a, t 1 and tha t a_, ~-2 do not unify.

aa M1, aa F b~_~
(*)

a = tl I-,,, Eq(al) Eq(aa), M1, r F_~,(cut)

a = tl, M~, F ~-al (3L)

3u_~ (a = h ^ M~), 1" ~-

a_ = t2 F._~

a = t2, M2, F I-~_2

3 % (a = t_ 2 A M2), F t-
(3L)

FAx(p)
(0

p(~), r

Let FAx(p) denote the failure axiom of p: (f) can be derived f rom p(a) ~-
3_u 1 (a = t 1 A M1)V3u2(a = [2 AM2). The (3L) rules are i terated 3-1eft applic-
ations, where the involved eigenvariables are ment ioned below the turnstile;
(*) can be obtained by one or more applicat ions of the identi ty rules, wi thout
in t roducing subst i tut ions (in par t icular no subst i tu t ion arises on the eigen-
variables).
The above derivation lives in the minimal sequent calculus, thanks to the
identi ty and failure axioms. Remark tha t we view the identi ty rules as a "lo-
gicM" par t tha t is c o m m o n to every p rogram to be executed in any calculus
with unification: thus this proof depends in an essential way f rom the failure
axiom Fax(p). It is summoned in the second of the following derived AARs.
The Negative Rule. (-) is a derived rule whose form depends on the following
exhaust ive unification possibilities, under the guidance of subst i tu t ion cq,
given the proviso on the eigenvariables decorat ing F:
a 1 unifies with t_ 1 and t2;
a_ 2 unifies with [1 but not with t_e;
_~ unifies with t 2 but not with t_l;
a 4 does not unify with t_ 1 nor with [2 �9

~rlMl,O'lF}-ul,% P azM2,a2FF~l~2p FAx(p) o'lMl,CrlF}-ulp FAx(p)~_) (_)

P (a l) , r }-p p(a2) , F ~-p

a2M2,a2F F%p FAx(p)(_) FAx(p)
(-)

p(_~), r ~ p(o,,), v F

By the dependence on a l , a2, a__3, a 4 (5) no longer holds. Indeed different
forms of proof trees m a y correspond to the same axiom and rule occurrences: a
hence they are similar, though uncomparable , pts.

Finally, to every normal p rogram P we associate a set Comp*(P) of comple-
tion axioms:

3 Enlarging the number of rules, the similarity dependencies may increase.

234

- Success axioms. For every clause of P, the corresponding success axiom:

S A x (A : - L 1 , . . . , L ~) =a~! V(LI A . . . A L , --* A)

- Failure axioms. For every predicate symbol p, the corresponding failure ax-
iom:

F A x (p) =d~l V(p(x_) ~ 3u l (x = tl A Mx) V - . . V 3uk (x_ = t k A Mk))

If k = 0 (i.e. no clause contains p in the head), F A x (p) is Vx.-~p(x_) and the
corresponding A A R is the obvious one.

A S L D N F - p r o o f tree H with axioms from Comp*(P) is a p t which uses the
rules (+), (-) to apply the axioms of Comp*(P) and restricted (s) and (w) to
apply the corresponding logical axioms. We say that a goal is an assumption of a
S L D N F - p r o o f tree, if it occurs in some leaf. S L D N F - p r o o f s will be S L D N F -
proof trees without assumptions.

The set of S L D N F - p r o o f trees is an example of what we will call a non-
regular search space, since property 5 does not hold. Before better analysing
non-regularity, we relate S L D N F - p r o o f s to s t a n d a r d - S L D N F resolution. Let
us consider finitely failed S L D N F - t r e e s and SLDNF-re fu ta t i ons with a safe
selection function (only ground negative literals are selected), as defined in [17].
We claim the following result.

T h e o r e m 2 3 . Let P be a normal program and L a literal. I f there is a finitely
failed S L D N F - t r e e for PU{~--- L}, then there is a S L D N F - p r o o f H with axioms
from Cornp*(P) which is a continuation of L F-. l f there is a SLDNF-re fa la t i on
of P U {*--- L}, then there is a S L D N F - p r o o f 17, with axioms from Cornp* (P),
which is a continuation of F- L.

Proof. By induction on the rank of the finitely failed S L D N F - t r e e or of the
SLDNF-re fu ta t ion .

- Basis for finitely failed trees. Let 7r be the tree on the left below for the goal
~-- A, matching with unifiers cril, �9 �9 at , the clauses Bil ~-- Mil , �9 �9 B i , ~--
M i , , and then finitely failing as suggested by the dots. The corresponding
S L D N F - p r o o f is shown on the right. Note that every continuation applies
the failure axiom of the selected a tom and that all the leaves are failure
axioms (i.e. there is no assumption and our pt is a proof).

~ - A
J

/ ~ aq Mq I- .. . o',,, Mi. I%
,-- o'q Mq . �9 �9 ~ al. Mi .

. AI-

FAx(p)

Remark that no substi tution on the root of the proof tree arises from this
construction, i.e. the root remains the start ing goal A b-.

235

- Basis for refutations. Let Go, G1 , . . . , Gn, (with clauses C 1 , . . . , Cn and sub-
sti tutions 01 , . . . , 0n) be a refutation, with Go = ~ L. Start ing with i = 0,
associate to Go , . . . , Gi (where Gi =*--- L i t , . . . , Liki) a p t with assumptions
[- Lil , �9 �9 P Lik, , as follows:

Step O. Associate ~ L to Go;

Step i + 1. Let H ::~ 6iL be the pt associated to Go, . . . , Gi a.t step i, and
let Gi+l be obtained applying Ci to the selected a tom A; build the canon-
ical continuation of the pt, selecting the corresponding assumption ~- A and
applying SAx(Ci) (for every step k, 5~ = 01. . .0k and the assumptions of
the pt correspond to G~). Remark that the goal proved by the final pt is the
instance by 5,~ of the starting goal.

Step for finitely failed trees. Let ~r be a finitely failed S L D N F - t r e e of rank
k + 1, with root *- L. Starting from the root of lr, for every node where the
selected literal L,~ is positive, translate it as in the basis. If Lm = -~A, we
may have the following cases.
1. We are in a leaf of 7r, L, , = -~A (with A ground) and there is a S L D N F -
refutation of rank k of P U {~--- A}. By inductive hypothesis, we have a
S L D N F - p r o o f II of I- A (A is ground and no substi tut ion modifies it).
Build the continuation replacing the goal containing the selected literal by
the proof:

/7

t- A V(-~A ~ --A)
(s)

-~A, F F-

2. We are in an intermediate node of 7r (there is a finitely fa.iled tree for
P U {~- A}, hence there is no refutation of rank k for P U {~- A}). Build the
continuation:

F F V (~ A - + t r u e)

-,A, F ~-
(w)

- Step for refutations We proceed as in the basis, by Step 0 and Step i + 1,
provided that the selected literal Lm is positive. But in Step i + 1 we may
have L~ = -~A. In this case, there is a finitely failed tree of rank k for
P U {~-- A}. By inductive hypothesis, we have a S L D N F - p r o o f H :: A ~-.
Then we can build the proof:

H

A ~- V(--A ~ -~A)
(s)

~--~A

and replace with this proof the assumption ~- -~A of the pt built at step i.

236

Remark that the goal proved by the final pt may be more instantiated than
the starting goal only if at least a positive literal has been selected.

SLDNF-resolution works in an unsafe way if open negative goals are selec-
ted. In our model, we can distinguish two different causes for that:

(a) soundness problems (substitutions on existential parameters)
(b) completeness problems (non-regularity of the search spaces).

As far as (a) is concerned, this corresponds to the fact that a substitution on
the existential parameters (eigenvariables) may be introduced in some continu-
ation step, as shown by the following example (taken from [17], pp. 93-94):

Ax l p ~ - ~ q (X)

Ax2 q(a)

In standard Prolog, using an unsound selection function, the goal ~-- -"p succeeds
(since ~-- p fails), although it is not a logical consequence of the completion Of the
program. In our model, safeness is enforced not by an external condition on the
selection function, but by the usual proof-theoretic proviso on existential para-
meters, i.e. that they cannot be instantiated by substitutions, as the following
pt shows. Once we have obtained the goal F-~ q(u), with existential parameter
u, we cannot continue our proof tree in a sound way; so we do not obtain any
proof of ~p.

t- u q(u)
(s)

p -+ 3x - . q (x)

p P --,p ~ ~p
(s) F- -,p

(-)

This shows that we have a natural way to distinguish proofs of negated goals
(where such a proof has no assumptions) from proof trees with assumptions that
cannot be continued. The latter corresponds to unprovability.

With respect to (b), we show that there are SLDNF-proofs which are not
achievable by usual SLDNF-resolution, namely that the search strategy is in-
complete w.r.t, the problem of finding SLDNF-proofs. We show that this kind
of incompleteness is due to the non-regularity of the rule (-).

Let us consider the following example.

Ax l even(O).

Ax2 even(s(X)) : - ~ e v e n (X)

Its completion contains the obvious success axioms and the following failure
axiom:

FAx(even) =de/ Vx.(even(x) --+ x = 0 V 3u(x --- s(u) A -.even(,,)))

237

and a SLDNF-proof of F- ~even(s(O)) is:

Axl
(+)

~w~(O) ~v~n(o) -~ -~ven(O)
(s)

-even(O) f- FAx(even)
-- - - (-)

even(~(O)) ~ -~even(~(O))

~eve~(40))

--+ -~even(,(o))
(s)

On the other hand, if we start f rom t- ~even(X), we obtain a finitely failed
(not safe) tree. In our approach, this tree represents the following search steps
for a SLDNF-proof:

(I-~even(X) .)
I

(ven(X) VX.(- ven(X) -even(X)
I

FAx(even)

even(O) VX.(-~ewn(X)--+ ~even(X)Is)/j
~- -~even(O)

The final proof tree is sound (no binding on existential parameters arises), but
it is not a proof: we have the unprovable assumption ~-. Then, we ought not
interpret failure as negation: here we do not reach any proof. The si tuation is
different from the previous ground case, where search successfully reaches a proof
of F ~even(s(O)).

As one can see, we do not arrive at a solution since no backtracking is made
on substitutions: indeed, starting from k- ~even(s(X)) we would have at tained
a solution. The need to backtrack on substitutions is due to the non-regularity
of the search space. If only ground negated goals are selected, then failure rules
are regular, since no further instantiation is possible.

To recover regularity, we may split the failure axiom of a predicate. For
example, we split FAx(even) in:

rax(~ven(O)) =~4 ~ven(O) -+ tr~e
rAx(even(s(x))) =~ j Vx.(eve~(s(x)) -+ ~eve~(x))

Then, by FAx(even(O)), our search fails, but by FAx(even(s(X))) it is successful
by backtracking on the axioms. This corresponds to the fact that , for searches

238

only using natural numbers, the above split axioms give rise to a regular search
space. Splitting failure axioms in ground instances always gives rise to regular
search spaces. The problem is that, in general, there are infinitely many ground
instances, i.e. we obtain a regular but infinite axiomatization. This is analogous
to what is (theoretically) suggested in [1], where the ground instantiation of the
program is adopted to obtain answers to negative open queries. On the contrary
a regular splitting of the failure axioms is finite, if it exists, even for programs
with infinite Herbrand universe. One possibility is to identify a covering of the
ground terms of the language, i.e. a finite set of terms such that every other
term is obtained through instantiation of the covering. In the example above,
{0, s(X)} is a covering for the natural numbers. Let us proceed one step further:
consider the < relation defined as follows

A x l O < X

Ax2 s (X) <_ s (Y) ~- x <_ y

A covering for pairs of numerals is {(0, X) , (s(X), s (Y)) , (s(X), 0)}. This induces
the following regular splitting of the failure axioms:

A x l 0 < X -+true

Ax2 s (X) < s (Y) ~ x < y

Ax3 s (X) < 0 --* false

Note that if we dispose of the redundant first axiom, this procedure could be
looked at as the synthesis of the complement of the predicate defined in the
original program, namely here the 'greater' relation.

A x l s (X) <_c s(Y) ~ x <_~ y

Ax2 s (X) <_~ 0

Hence, when the covering creates implications with false as consequent, they
can be turned into the base case of the complement of the predicate. This is very
closely related to the notion of intensional negation developed in [4]. It is not
clear yet how general this method might be.

Last we remark that, since failure rules do not introduce unifying substitu-
tions (as shown in the proof), dangerous substitutions can arise only if a positive
assumption F A is selected in a continuation step, and the related unification
modifies the existential parameters of some failure rule; but this cannot happen
(using new names when possible) if no open negated formula is selected in a
continuation. This is particularly true for definite programs and open negative
queries: as no switch is possible after the initial one, no soundness problem can
arise. Moreover, if we control that no link is made on existential parameters,
then we may select open negated goals, as it is well known.

239

5 S y s t e m s B a s e d o n A x i o m - A p p l i c a t i o n R u l e s

The notion of axiom-application rule and of regularity are the key points of our
approach. In this section we try to offer the beginning of a general theory of
AARs, aiming to single out the properties tha t make Prolog successful.

One of the main problems of au tomated theorem proving is to locate proofs in
a given space, known as a search space. For A A R systems, search spaces are sets
of proof trees. If a proof tree H in a search space S is not a proof, it represents
a stage in a search process, whose aim is to find a proof H' E S, where /7' is a
continuation of H. Typical examples are T(P) , the search space of a program
P, and T(P, C), the one of a program P with respect to a goal C, as previously
defined in section 3.

Now we introduce the following general language: first we abstract from the
usual notions of goal and axiom. Secondly we characterize a system of axiom
application rules by giving once for all a fixed (and hopeflllly small) set of rules
to apply axioms of a certain type. Programs are finite sets of those axioms.

5.1 A A R S y s t e m s

An A A R system is a triple (G, A, T~} where:

1. T~ is a set of axiom application rules;
2. A is a set of admissible axioms;
3. aC is a set of admissible goals.

A rule R E 7~ is a partial function from goals and axioms to sequences of
goals, including the empty sequence A, i.e. R : aC x A --+ aC*.

When R(G, A) = G1 ; . . �9 ; Gn 4, we will draw it as

G 1 ; . . - ; G , ; A
(R)

When R(G, A) = A, we write

G(R)
Example 2. The SLD-system has only one axiom application rule sld, defined
on every goal G and axiom V(A1 A - .. A A,, -+ B) such that G = OB:

sht(G,g(Ai A . . . A Am -+ B)) = OA1;. . . ;0A, ,

The SLDNF-sys t em instead contains the rules (+), (-), (s), and (w). The latter
three rules may be applied to negative goals. Since a negative goal may contain
many formulae, we decorate (s), (w), (-) by an index j to select Lj in a goal
L1,. �9 L~ kp. For example:

(-2)(p(a),p(b) k-p,Vx.(p(x) ---+ q(x) V v(x))) = p(a), q(b) ~-p; p(a), v(b) ~-p

4 From now on, sequences (of goals) will be indicated by Gx ; �9 �9 ; G~

240

The set of proof trees "T(~,,4, 7¢) is defined inductively as follows:

D e f i n i t i o n 2 4 . Every G E G is a p t . If //1 :: G1,..., 17n :: Gn are pts and
R(G, A) = G1;... ;Gn, then the following is also a proof tree:

Hi 17n

G~; ... Gn; A
a (R)

The definitions of axiom, assumption, proof, consequence of a proof tree are
analogous to the ones given previously in section 2.

Next we restrict to sets ~ of goals for which a notion of substi tution as an
answer/result of the computat ion makes sense. We assume as well that axioms
and rules are not affected by substitutions. Moreover, for the sake of simplicity,
we will t reat possible eigenvariables as constants.

Remark that , under the previous definitions, /-/ may be in ~r(G,.4, 7¢), while
017 is not. To ensure this, we introduce the following

D e f i n i t i o n 2 5 . We say that an AAI~ system (~, .A, TO) is closed under substitu-
tion if G E G entails OG E ~ and, for all R E 7¢ and A E .4, if R(G, A) is defined,
then, for every substitution 0, R(OG, A) is defined and R(OG, A) = OR(G, A)

Note that the set of values of R(G, A) is connected to the concept of definicns
and closure under substi tution is related to A-sufficient substitutions in [1 i], see
section 6 for more details.

P r o p o s i t i o n 2 6 . I f (~,.A, 7"¢) is closed under substitution, so is T(Cj,.A, ~), i.e.
17 E 7-(~, A, T¢) entails OH E T(G, A, T¢)

Therefore the following relations, relying on the notion of substitution, and
thus requiring the closure condition, can be defined in the same way ~ for SLD:
_<,-, ~.

Similarity among proof trees is extended to take into account sharing the
same axiom/rule-occurrences, where an axiom/rule-occurrence is a triple (p, A,/~)
such that p is a path from the root to a node containing an axiom A applied by
a rule R.

However, in general .-. and < do not satisfy the regularity property 5, so that
a similarity class may contain many non-equivalent maximal proof trees and the
notion of mgpt becomes problematic.

5.2 R e g u l a r A A R S y s t e m s

Now, let us consider how we could approach the following search problem: given
a goal G E G, find a p roof / - / :: OG for some substitution 0. First of all, we
need a method to compute one-step continuations (or resolvents, in a sense to
be made precise below). Since our aim is to compute substitutions, in a first
approximat ion we may say the following: given G E ~, A E .4 and R E TO, A can

241

be applied to G by R iff there is 0 s.t. R(OG, A) = G 1 ; . . . ; G,~, in other words
we can build the continuation

G1; " " ;G~ ; A
(R)

OG
0/7

Using the above notion of application of an axiom by a rule, we identify applic-
ations as one-step continuations. A possibility would be then to try all possible
applications, but this would be doomed to incompleteness unless we allow to
backtrack on substitutions. This point is clearly exemplified by the lack of regu-
larity (and also of closure under substi tution) detected in SLDNF-derivations.

Hence we analyse the property of regularity and we link it to the notion of
abstract SLD-resolution; we then show how a SLD-like search strategy turns out
to be complete for regular search spaces.

D e f i n i t i o n 2 7 . A set S of proof trees is a regular search space iff, tbr every
similar H I , / I 2 E S, there is a / 7 E $ such that HI < / / and H2 < H.

For regular search spaces, the property 5 of section 2 holds by definition.
Moreover, we require that substitutions are well-behaved, so as the equivalent
of proposition 6 can be established. Namely, we assume that there is an (non
negative integer) measure re(H) such that H1 _< 172 entails ru(H1) > m(/72),
provided H1 ~ H2.

In a regular search space S, the notion of mgpt can be defined as for the SLD-
system, and the related properties persist. In particular, for any such space $,
the following definition is sensible.

D e f i n i t i o n 2 8 . Let S be a regular search space and T(S, G) be the set of the
proof trees H :: OG C S (where G is a goal); define Gen(S) and Gen($, G) to
be the corresponding sets of mgpts.

As in Section 3, (Gen(S, jC) /= , ___) corresponds to search trees in ,3. Indeed,
we introduce an abstract version of a canonical one-step continuation of a pt (see
section 2, as the nodes covering it, i.e. its immediate successors. More precisely,
we say that a one-step continuation

G1; "'" ; G . ; A
H1 = (R)

0G
^ - -

•11

is canonical iff, for every other similar continuation

H1; .- . ; H m ; A
/ /2 - (R)

~G

242

we have tha t H2 < Hi . Thus we have:

(.) m = n and there exists/i s.t. a = 58 and H i = 5Gi

Regularity ensures that for every goal and applicable rule, there is unique canon-
ical continuation. We can also look at that through an abstract SLD-resolutiou
method, denoted by Res. Indeed T(g , ,4 , 7~) is regular iff there exists an operator
Res satisfying the following property:

Res (G,A ,R) = (0, G1; . . . ;G~> iffR(OG, A) = G 1 ; . . . ; G ~ , and for every
other aG s.t. R(aG, A) = H i ; . . . ; H m the forementioned property (.)
holds.

For example, the usual SLD-resolution is based on the existence of mgus.
This operator Res is an abstraction for q-(g,,4,T~) of the SLD-step; given

the goal G, new goals are produced in the most general way. Yet, it must be
remarked that now backtracking is essentially bidimensional, since axiom/rule-
occurrences must be taken into account. Eventually the operator imports all
the search properties of Prolog, in particular the independence of the selection
function. Hence, for every selection function F, the corresponding F-search tree
with root G contains the same proofs contained in Gen(S, G).

Summarizing, an AAR system is regular iff the set of its proof trees is a
regular search space. In a regular AAR system, any F-search strategies work as
in the SLD-system, and the same main results hold.

5.3 S o u n d n e s s a n d C o m p l e t e n e s s I s s u e s fo r A A R S y s t e m s

The regularity property guarantees the completeness of an A A R system, in the
following sense. Let G E G be a goal such tha t there is a proof H :: 0G; then, for
every selection function F, in the F-search tree start ing from G there is a success
node containing a pl'oof H* such t h a t / 7 < H*. In other words, completeness is
relative to the set of the proofs of the system considered.

We propose A A R systems as a generalization of logic programs; from this
point of view, an AAR system is not to be considered as a general logical system,
but as a small par t of some more general (logical) system adequate to solve, in
an efficient way, a particular" class of problems. In this sense, we may look at
s tandard SLD-systems as small systems suitable for proving definite goals using
Horn axioms. Indeed, the completeness of SLD-systems can be read as follows;
SLD-systems are sufficient to solve all the problems which are solvable in full
classical (intuitionistic, minimal) logic, if we restrict to the problems which can
be formulated in this language. Uniform proofs [20] are a second example: such
a proof procedure is complete for the language of hereditary I tarrop formulae
w.r.t, intuitionistic derivability.

More precisely, we say that an AAR system (g, `4, T~) is embedded in a logical
s y s t e m / : if the goals can be interpreted as formulae of the latter and the rules

243

are sound, i.e. for every axiom A E .A and every G E ~, R (G , A) = G 1 ; . . . ; G ,
entails G1, �9 �9 G,~ t-z G. Of course, we assume tha t the axiom application rules
are sound, that is, they are admissible in the logical system.

We will distinguish two kinds of axioms: logical axioms, i.e. formulae valid
in the logic /2 under consideration, and program axioms (for example, Horn
clauses in logic programs). Only some kinds of formulae are allowed as logical or
program axioms. The set of the allowed logical axioms may be empty (as in the
SLD-sys tem) , or contain some particular kind of axioms (such as the ones used
in switch or weakening rules in S L D N F) . In those cases, no logical axioms or
only a few of them are used, because part of the logical system Z: is implicit in
the application rules T~.

For every set P of program axioms, and every goal G, a computa t ion means
searching for proofs H :: OG using the axioms of P and the allowed logical axioms
(if any). If the system is regular, then it will compute a proof in T(6, .4,T~),
provided there exists one. But this does not imply the completeness w.r.t, the
underlying logical system, which can be defined as follows.

D e f i n i t i o n 2 9 . An A A R system (G,.A,T~) embedded in a logical system Z: is
complete with respect to Z: if, for every set P of program axioms and every
goal G, if there is a proof of OG from P in Z;, then there is a proof H :: OG in
T(G, .A, T~) with program axioms from P.

Take, as an example, the S L D N F - s y s t e m : are there classes of axioms and
goals such that this A A R system is complete with respect to minimal logic
(M I N) ? A partial answer is negative, in the following sense:

P r o p o s i t i o n 3 0 . There is a normal program P and a goal L such that L is
derivable from Cornp(P) in minimal logic, but there is no pt in the S L D N F
system.

Proof. Let L be --,p and P the following program:

A x l p~--q,r .

Ax2 q ~-- a.

Ax3 r ~-- ~a.

Ax4 a ~-- a.

It is easy to check that , although -~p has a minimal proof from Cornp(P), every
pt is infinite. This depends on the absence of the rules for minimal negation.

5.4 E x a m p l e s o f A A R s

Our work on A A R s originated from an analysis of S L D and SLDNF-sy s t ems ;
we are just beginning to address the problem of giving some general theory of
A A R systems. We conclude this section just with some examples, to illustrate
the general idea and some related problems. The first example is mot ivated by
the possibility of proof-theoretically sound proof transformations. In the second
example we show how to work with schemas and, in the last one, how to formalize
tradit ional sequent systems.

244

F i b o n a c c i N u m b e r s in an E x t e n d e d S L D - S y s t e m . This example is de-
veloped in an extended version of the SLD-system, where we allow compound
formulae. The SLD-sys tem has only the axiom application rule sld, which leads
to a regular system. We generalise such systems to the case where A1 , . . . , An, B
are conjunctions of atoms. At first glance, it seems that the explicit introduc-
tion of A does not enrich the SLD-system, since conjunctions can be treated by
commas. Nevertheless, we obtain a richer framework, since it turns out that we
have a more flexible way of applying the axioms. Let us consider the usual Horn
axioms for computing Fibonacci numbers:

AxO f(O, s(O))

A z l f(s(O), s(O))

Ax2 Vx, a, b, c . (f (x , a) A f (s (x) , b) A +(a, b, c) ---* f (s(s(x)) , c))

Using the possibility of compound formulae, we can rewrite the above axioms as
follows:

A x l f(O, s(O)) A f(s(O), s(O))
Ax2 Vx, a, b, c . (f (x , a) A f (s(x) , b) A +(a, b, c) --+ f (s (x) , b) A f (s(s(x)) , c))

An example of a proof tree is the following

Axl �9 �9 �9
sld sld

f(O,s(O))Af(s(O),s(O)); +(s(O),s(O),s(s(O))); Ax2 ...
~ld

f(s(O),s(O)) A f(s(s(O)),s(s(O))); +(s(O),s(s(O)),s(s(s(O)))); Ax2
sld

f(s(s(O)), s(s(O))) A f(s(s(s(O))), s(s(s(O))))

Many unfold/fold transformations of logic programs can be treated similarly.

U s ing S c h e m a t a . One can easily extend the SLD-sys tem to compound for-
mulae, by considering also logical axioms of the following form:

(A) V(A A B --+ A A B) (Vl) V(A --+ A V B)
(V2) V(B ~ A V B) (3) V(A(x) --+ 3x.A(x))

Applying sld to (A), (Vl), (B) ((V2) is omitted, since it is dual to (Vl)), we
obtain the usual introduction rules in a style similar to natural deduction:

9A; 8B; V(A A B ---+ A A B) 8A; V(A ---* A V B) 0A(t); V(A(x) --+ 3x.A(x))
sld sld sld

t~(A A B) O(A V B) t~3x.g(x)

The difference with respect to natural deduction is that every inference is decor-
ated by the applied logical axiom and subsliLulions are present. Notice that

245

we have an infinite number of logical axioms. Then we would need an in-
finite backtracking. Nevertheless, for a goal like, e.g. h(x) A k(g(y), x), it is
possible to consider only the most general continuation related to the axiom
Vx, y.(h(x) A k(g(y), x) ~ h(x) A k(g(y), x)); in this way no solution of the goal
is lost, even if we do not backtrack on the other applicable axioms.

This means that we can consider V(A A B --e A A B) as a single schema and
compute the canonical continuations by the first of the following resolution rules
for the schemata (A), (V1), (V2), (3). In the last one n must be a new variable,
in order to achieve a most general continuation:

nes(h n k, (A), sld) = h, k appl.ax. V(h A k -~ h A k)
nes(h V]g, (Vl), sld) = h appl.ax. V(h ---+ h V k)
nes(h V k, (V2), sld) = k appl.ax. V(k ~ h V k)
Res(3x.h(x), (3), sld) = h(n) appl.ax. V(h(x) ---* 3x.h(x)) (n new)

For every goal G and every schema S, Res(G, S, sld) computes both the applied
axiom (namely the instance of the schema matching the goal) and the corres-
ponding canonical continuation. For example, using Res, the continuation of a
proof t r e e / 7 with selected goal h(x) A k(g(y), x) is:

k(g(v), W, A k(g(y), x) ^ k(g(y),
h(x) A k(g(v), x)

/7
Note that the proof tree does not contain the schema, but its first-order

instance Vx, y.(h(x) A k(g(y), x) --~ h(x) A k(g(y), x)) computed by Res. Note also
that other instances of the schema can be applied to the above goal. Therefore,
by means of Res, we generate a subspace of the search space that we would
have obtained by backtraking on all the instances. For every goal G, we obtain
a regular subspace containing all the answers for G, where similarity is related
to the instances (of the schemata) occurring in proof trees.

The situation is more difficult w.r.t, the elimination rules. For example, A-
elimination can be obtained as an application of a schema as V(A A B --+ A).
But in this case we cannot obtain a general finite resolution method. Indeed,
applying the above to a goal A, we have infinitely many choices of B. Even more
serious problems arise while trying to find AARs for the other elimination rules.
The fact is that elimination rules may work on assumptions and assumptions
are not explicit in the goals. A way to solve this problem exploiting resolution
over schemata is to use sequents, distinguishing positive and negative goals and
providing more rules, as shown in the next subsection.

Last, it is immediate to see that the usual presentation of first-order systems
is not regular (according to our notion of regular AAR system); to recover regu-
larity we need either an AAR or a second-order presentation. For example, let us
consider the following instances r l and 7r2 of the A-introduction rule of natural
calculus:

p(x) A q(x) u(x) A v(x)

246

7rl and 7r2 apply the same schema, hence they are similar; but there is no first-
order 7r such that 7rl < lr and ~r2 < 7r. Using AARs, ~1 and 7r2 become decorated
by different axioms and are no longer similar. Moreover, for any two similar
proof trees, we have a more general form including them.

S i m u l a t i o n o f C l a s s i c a l S e q u e n t C a l c u l u s w i t h A A R s . In this section we
present a version of the classical (first-order) sequent calculus as AARs, using
schemata. Here goals have the form F }- .4, where the sequents are lists of formu-
lae. Contrary to the usual calculus, we search for instances OF F- 0A. Schemata
and their instances are written in a suitable metalanguage. The following con-
ventions are used: the comma "," induces a splitting of the premises, while ";"
creates a single sequent. Formulae annotated with "-" belong to the left of the
turnstile, while unannota ted ones stay on the right. This corresponds to using
the following axiom application rules, where -4-(OB) occurs in an integer position
:hj (with the same sign), accordingly in F or A, and (F t- A)[+j/ZY] denotes
the deletion of the formula at + j and the insertion of the formulae of Z' in F or
A, according to their sign:

1) Rj(F I- A, V(A1, . . . , A,, --~ +B)) = (F I- A)[:hj/OA,]... (r t- A)[+j/OA,~]

2) R~(F ~- A,V(A~;... ;A,, --. +B)) = (F ~- A)[+j / (OA~, . . . , OA,,)]

If + B is +VxH(x) or -3xH(x) , Rj replaces x by an eigenvariable (t-p is an-
notated by the eigenvariables P, as in (4)). If -4-B is -VxH(x) or +3xH(x), Rj
replaces x by a new variable, to obtain a most general continuation. The rules
tha t apply W-L and W-R (weakening) and A X involve pairs of indices, i.e. they
are of the form Ri,j.

Next, we list the schemata below:

~ - R

,....~ w L :

A - R :

A-LI

A- L2

V - L :

V - RI

V - R2

-~-L:

V - L :

V - R :

3 - L :

3 - R :

: V(-H; K => H --+ K)

V(H,-K ~ -(H --~ K))

V(H,K ~ H A K)

V(-H ~ -(H ^ K))

V(-K => -(H A K))

V(-H,-K ~ -(H v K))
V(H ~ H v K)
V(K ~ H v K)
V(H => -(-,g))
V(-H ~ - ,H)

V (- H ::v -VxH)
V(H ~ VzH)
V (- H =v - 3 x H)

V(H ~ 3xH)

247

W - L : V (- H =:r - H , - K)

W - R : V(H ~ H , K)

C - L : V (- H , - H ~ - H)

C - R : V (H , H : ~ H)

A X : V(::~ - H , H)

A resolution rule for the above schemata, except AX, works as explained in
the previous subsection: a resolution step substitutes the metavariables of the
'applied' schema by the formula(s) occurring in the goal, in the position(s) indic-
ated by the rule; in this way, it computes a single instance and the corresponding
canonical continuation.

For AX, if the rule is Ri,j, the goal F I- A, the formula indicated by - i A
and the one indicated by + j B, and a is a mgu of A, B, then the resolvent is
aN l- aA.

Backtracking is performed mainly on the indexes. Indeed, if we exclude con-
traction (i.e. C-~ and C-R), at most one of the schemata can be applied by a rule
Rj (as is well-known, contraction cannot be eliminated, but there are present-
ations where its use is very much reduced [6]). Moreover, only three schemata
can be applied by a rule Rid.

Example 3. We show the quest for an answer substitution for u, v such that the
following sequent is provable:

~'(a) V ~'(b), W.(r(~:) ~ h(x)) F /4u), / t(v)

where a, b are constants. One of the nodes in the search-tree is, for example:

r(a) }- r (n l) ; r(a), h (n l) I-- h(u), h(v); aa3
R2

~(~), ~(,,~) --. h (~) e h(u), h(~); .,,~
"R2

r(a), Vx . (r (x) ---* h(x)) I- h(u), h(v);

1:/2
r(b), r(n2) ---+ h(n2) I-- It(u), h(v); ar~2

R2 r(b), w . (, - (~) -~ h(~)) ~ h(,,), h(,,); ,.,~
R1

.(~) v ~(~), w.(~(. .) ~ h(~)) ~ h(,0, h(,,)

where an1 is the instance - r (a) , - r (b) ~ -(r(a) V r(b)) of the schema V-L,
aa2 is the instance Vx.(-(r(x) ~ h(x)) ~ -Vx.(r(x) ~ h(x))) of the schema V-
L, and so on; nl , n2 are new variables. From this node, we can apply AX. We can
select any one of the open goals, for example r(a), h(nl) l- h(u), h(v). Applying

Res(R2,1, r(a), h(nl) f- h(u), h(v), AX), the indicated formulae are h.(nx) and
h(u) and we obtain the substitution {u/n~}. The new goals of this continuation
are ~'(~,) ~ ~'(,~,), ~(~) ~ ~(,~) and ,'(b), h(,,~) ~ /4~,),/,(v), and now only one
successfld continuation can be reached (in many ways), giving rise to a proof:

Applying Res(R2,2, r'(a), h(n~) l- h(u), h(v), AX), we get a proof:

248

T/ :: r(a) V r(b),Vx.(r(x) ---* h(x)) t- h(b), h(a).

The above is only a first and rough sketch. The study of infinite A A R s using
first-order schemata is part of our future work.

6 R e l a t e d W o r k

In this section we review (some) papers related to our approach.

6.1 R e s o l u t i o n

Gallier [9] gives a general presentation of resolution theorem proving as deriva-
tion in certain sequent calculi: the given set of clauses is presented as a sequent
where every cedent is exclusively composed of atoms: the goal is to derive the
empty sequent by means of different versions of the cut rule, to which various re-
finements of resolution correspond. The starting point is CNF: every such clause
--,A1 V ..- V --,An V B1 V ..- V B,~ can be put in the so-called Kowalski normal
form A1 A • - • A An ---* B1 V . . . V Bin. This looks like a sequent. Then just take
clauses as sequent axioms and try to derive the empty sequent, alias the empty
clause. The only relevant rule (apart from factoring) is a cut with unification,
where/1, A are possibly empty sets of atomic formulae and 0 -- mgu(A, AI).

F F A , A A I , F It- A I
(e - cut)

e (r , r ' e

From this perspective, logic programming is linear resolution on definite clauses
with selection function. It is easy to enforce it by syntax, where the first premise
is the program clause and the second the goal.

F~- A A ' ,A~ -
(sld - cut)

o(r,
More recently Snyder [26] has embedded these systems in a two-sorted paramod-
ulation calculus, in order to cope with equality, and the only rules are those for
equality - namely, identity, left and right paramodulation.

The Simplified Problem Reduction Format [22] is a Gentzen system that em-
ploys sequents of the form F F A to perform theorem proving in the non-Horn
fragment. Inference rules are generated from the input set of clauses as follows.
Given a Horn clause H ~-- H1 ., Ha we associate the inference rule

F I- H I - . . F ~- Un(H)

F ~ - H

For each non-Horn clause H1, , Hm ~-- L ; , . . . , Ln, there is the following split-
ling rule

249

F ~- Lt . . . F P L~ F, H1 ~- U . . . F , Hm }- U
(split)

F~-U
In a refutational setting U can be taken to be empty, and a set of clauses is unsat-
isfable if the empty sequent i- can be derived. It is easy to show tha t the two rules
are derivable in Gallier 's calculus through a sequence of cuts and contractions.

Fit t ing [7], among other things, stresses the similarities between resolution
and tableaux systems, where the usual operations on semantic tableaux ~ la
Smullyan are seen as skolemization steps until resolution steps are applicable,
i.e. the atomic level has been reached for some node. The beauty of Fit t ing 's
book lies in the demonstrat ion of the essential parenthood that links all those
calculi, at, the price of a somehow unfamiliar formulation of them.

6.2 Log ic P r o g r a m m i n g

The first step is, through simple classical equivalences, to view Horn clauses
positively as rules and goals as existentially closed conjunctions of a toms to be
proved by those assumptions. Historically this can probably be da ted back to
Gabbay and Reyle [8]. As mentioned before, we can distinguish two approaches:

1. Clauses as axioms (programs as theories) and some form of Gentzen calculus
to infer goals, as very clearly expressed in a series of papers by Miller et
al. [20]. The same idea is presented in [24] but w.r.t, natural deduction,
where this interpreter is shown to be equivalent to normal derivations in
minimal logic. This approach is also mot ivated by the enlarged language
in consideration (hereditary Harrop formulae), where every connective a.nd
quantifier is allowed by the syntax, though not arbitrarily; this explains tile
use of the full (minimal) natural deduction.

2. Clauses as rules [10]: Horn (and beyond) programs shouhl be seen as set
of inference rules for the derivation of (not necessarily ground) atoms. This
view is coherent with the idea of programs defining a continuous mapping
on the lattice of Herbrand interpretations: then logic programs can be seen
as inductive definitions of such interpretations. A formal system C(P) is
associated to a program P consisting of rules as done above. Differently from
us, the authors define a specialized calculus, called linear derivation, which
proves pairs of the form (G, 0), and demonstra te it to be sound and complete
w.r.t. C(P). A linear derivation is essentially a SLD-derivation upside-down,
in a structure-sharing, forward-chaining style, i.e. where substi tutions are
split from goals. This intermediate calculus is required to act, ually compute
the answer substitution. The rest of the paper is dedicated to enlarge the
paradigm of logic programming with the notion of higher-order rules; this
is connected with the possibility of having implications as goals, which is
also a feature of Miller's approach and it is the basis of the sequel of the
paper, where [11] a definitional approach to logic programming is sketched:
the relationship with our calculus is analyzed in section 6.3.

250

Regarding negation-as-failure St/irk [27] has (independently) given a sequent
formulation of Clark's completion that is very close to ours. His calculus NF(P)
consists of

- Clark's equality and freeness axioms
- Negation rules (our switch rules)
- cut rules, where ~ is a set of equations and F of literals

~ [- s = t ; s = t , F ~ - A ~ [- A ; A,F~-

Z, Fi- A Z ,T ' t -
- Program rules from P, divided into positive and negative introduction. For

example, given the above program for even we have:

~ t = 0 E ~ t = s (X) ; z ~ ~ e v e n (X)

~- even(t) z ~ even(t)

t = o, r ~ ; t = s (X) , - ~ e v e n (x) , r

even(t), F ~-

Much more is however contained in Stiirk's thesis; to quote a few, he shows
that a sequent is provable in NF(P) iff it is true in all 3-valued models of
the completion. Furthermore a completeness result is proved w.r.t. S L D N F -
resolution for programs satisfying the cut-property [28].

Harland [14] proposes a sequent calculus based on intuitionisic logic that
directly incorporates N F without referring to the completion. The usual rules,
restricted to deal with Horn logic, induce a positive derivability relation; fur-
thermore, he introduces a negative system of disprovability, denoted by ~-- with
judgments of the type: if a conjunction fails then so does one of the conjuncts and
so forth. The two systems are interlinked by the rules for NF, which correspond
to our switch rule (s).

F ~ - - F F i - F
(~ - R +) (9 - R -)

F ~- --,F F ~-- -,F

Structural rules have a paramount importance in this calculus: due to the non-
monotonic nature of NF, in the positive fragment weakening is restricted to
introduce only already provable formulae on the left. In the negative system
structural rules, cut included, are not eliminable.

Note that this is not strictly a calculus of finite failure, since sequents of the
form p *-- p F-- p are provable, although with the essential use of weakening.
Of course, due to the recursion-theoretic complexity of unprovability, every such
axiomatic fornmlation is bound to be incomplete. Moreover the boundary seems
fuzzy, as, for example, p is independent from the program p ~- q, q ~ p.

The calculus without structural rules is shown [13] to be sound and complete
w.r.t, finite faihlre and SLDNF-resolution (extended to first-order hereditary
Harrop formulae). Having to model the operational behavior of NF, both the

251

positive and the negative system make explicit references to unification, Skolem
functions and so forth. Still, the system is not meant for proof search and requires
a relative complement algorithm to provide answers to open negative queries.

6.3 Regularity, Anti-Unif icat ion, A-Sufficiency

For first-order terms, regularity is analogous to the problem of generalization
or anli-unificalion [16]. Addressed b y Reynolds and Plotkin in 1970, it has be-
come popular in AI under the name of 'explanation-based generalization'. In
the lattice of terms under the subsumption ordering, unification [generalization]
corresponds to lower [upper] bounds, and in particular mgus [msgs] to glb [lub].
Under the propositions-as-types interpretation, proof trees are terms of a certain
type (the goal to be proven). Yet, due to the unpleasant properties of higher-
order [anti]unification, the lattice structure can be preserved only by restricting
to higher-order patterns, long/3~/-normal forms with constrained occurrences of
free variables. Pfenning [23] has given [anti]unification algorithms in the Calcu-
lus of Constructions. There regularity and the existence of a mgpt come fi'om
anti-unification of higher-order patterns. In our approach similarity is the prim-
itive notion and it may end up either in regular or not regular systems. The
above would suggest the question whether every regular A A R system might be
described in terms of patterns.

The calculus D(P) [11] is obtained by adding a definitional rule to C(P)
(see [3] for a richer set of rules and the programming language GCLA based on
them). Let the definieus of an atom A be the set D(A) = {OY I [3 ~ Y ,A = OB}.
Then, given the proviso of A-sufficiency: for all 0, D(OA) = O(D(A)), we have
the rule:

F, D(A) t- F
(P

F, A F F

Note that Mt, hough G is derived in D(P) using (P ~-), the former may not be a.
logical consequence of the program, nor of any standard extension known in the
literature like comp(P) or CWA(P) . Indeed the system does not need a logical
language at all and has, as a semantics, the theory of partial inductive definitions
[12].

It is clear that the AAR systems are very strictly related to the definitional
approch to logic programming [11], though the latter seems to be more powerfld.
While we postpone a comparison of the two systems at the more abstract version
(generalized AARs versus partial inductive definitions), we may formulate a first
result showing the containment of the SLDNF-sys tem into D(P), under the
proviso of A-sufficiency.

P r o p o s i t i o n 3 1 . Let g be a SLDNF-proof of L in T(Comp(P) , L), "which we
assume to be closed under substitution: then D(P) F L.

Proof A simple induction on /7 , using the closure under substitution to ensure
the proviso in the application of (P F-).

252

That the other direction does not hold is shown by the counter-example in
the proof of (30), which is provable in D(P).

Moreover, there is a strong relationship between regularity and A-sufficiency:
namely, given a fixed a predicate definion A, in a logic program, every A-sufficient
substitution generates a clause in a (not necessarly unique) regular splitting of
the failure axiom of A. Thus, if 0 is A-sufficient, the rule OA ~- . . . is regular.
It seems that the clauses produced this way may not be a total covering of the
terms in the language of the program, and that splitting can solve cases where
GCLA computations do not find the needed sufficient substitutions.

7 C o n c l u s i o n a n d F u t u r e W o r k

From our original goal of giving a proof-theoretic reconstruction of logic pro-
gramming, as started in [21], we are now in the position of proposing a signific-
ant enrichment of the logic programming paradigm. This alone is good evidence
of the fruitfulness of the proof-theoretic approach. Moreover, this itinerary has
been common to other researchers: by stressing the constructive features of logic
programming [20] has formulated the notion of uniform proof. Similarly, [10],
[11] have devised a definitional approach to logic programming.

Analogously, from our analysis of SLD and SLDNF-resolution, we have
elicited the properties (regularity, closure under substitutions et al.) that can
turn any A A R system into a Prolog-like programming language.

Concluding, we believe that our proof theoretic interpretation gives a clear
explanation of some well-known phenomena and suggests some interesting re-
search directions. We plan to develop our work towards a general theory of
regular AARs: many other areas deserve investigation:

- LF. We need to understand whether the theory of regular search spaces can
serve as a (substantially weaker) logical framework in the sense of LF, and
conversely, whether the latter can be shown to be regular.

- P a r t i a l E v a l u a t i o n . The positive and negative A A R systems developed
to formalize SLD and SLDNF-resolution, especially the ordering on proof
trees, seems a suitable tool to proof-theoretically reconstruct fold/unfold
transformations and partial evaluation in a substantially neater way than in
[181.

- A b d u c t i o n . Analogously, the same tools can provide a basis for abduction:
the open assumptions of a goal can serve as the abducted premise.

- D o m a i n T h e o r y . Remark that the notion of regularity corresponds in
order-theoretic terms to a directed set in a partial order: if every directed set
has a lub (a mgpt), the partial order is a pre-domain. Thus an A A R system
is a regular search space provided that its set of pts is a domain. This opens
the possibility of providing a domain-theoretic semantics to general AARs.

- R e l a t i o n s w i t h GCLA. It is possible that the algorithms for A-sufficiency
may be useful for finding regular splitting, and vice-versa our term covering
approach may provide richer A-substitutions.

253

- A P r o g r a m m i n g L a n g u a g e . P rov ide a first e x p e r i m e n t a l i m p l e m e n t a t i o n
of a logic l anguage where the s t ruc tu re of clauses and goals is a rb i t r a ry ,
p rov ided i t can be shown to be regular .

A c k n o w l e d g m e n t . We would like to t h a n k Roy Dyckhoff and F r a n k Pfenn ing
for the i r va luable c o m m e n t s on earl ier versions of th is paper .

References

1. Apt K.A., Blair H. A. & Walker A.: Towards a Theory of Declarative Knowledge.
In: Foundations of Deductive Databases and Logic Programming, Minker J. (ed.),
pp. 89-148, Morgan Kauflnann, 1988.

2. Apt K.A.: An Introduction to Logic Programming. In: Handbook of Theoretical
Computer Science, Leuween J. (ed.), Elsevier 1990.

3. Aronsson M., Eriksson L-H., G/~redal A. & Olin P.: The Programming Language
G C L A : a Definitional Approach to Logic Programming. New Generating Comput-
ing 7, pp. 381-404, 1990.

4. Barbuti R., Mancarella P., Pedreschi D. & Turini F.: A Transformational Approach
to Negation in Logic Programming. Journal of Logic Programming 8, pp. 201-228,
1990.

5. Clark K.L.: Negation as Failure. In: Logic and Data Bases, Gallaire H. ~ Minker
J. (eds.), Plenum Press, New York, pp. 293-322, 1978.

6. Dyckhoff R.: Contraction-Free Sequent CMculi for Intuitionistic Logic. Journal of
Symbolic Logic 57, pp. 795-807, 1992.

7. Fit t ing M.: First-Order Logic and Automated Theorem Proving. Springer-Verl;~g,
1990.

8. Gabbay D. M. & Reyle U.: N-Prolog: an Extension of Prolog with Hypothetical
Implications 1. Journal of Logic Programming 1, pp. 319-355, 1984.

9. Gallier J.: Logic for Computer Science, Foundations of Automatic Theorem Prov-
ing. Harper K: Row, New York, 1986.

10. Hal ln~ L. & Schroeder-Heister P.: A Proof-Theoretic Approach to Logic Program-
nfing: Clauses as Rules. Journal o] Logic and Computation 1, pp. 261-283, 1990.

11. Hallns L. &~ Schroeder-Heister P.: A Proof-Theoretic Approach to Logic Prograin-
ming: Programs as Definitions. Journal of Logic and Computation 1, pp. 635-66(I,
1991.

12. Halln/ts L.: Partial Inductive Definitions. Theoretical Computer Science 87, pp.
115-147, 1991.

13. Harland J.: On Hereditary Harrop Formulae as a Basis for Logic Programming.
PhD Thesis, Edinburgh 1991.

14. Harland J.: Towards a Static Proof System for Negation as Failure. Citri/TR-92-
49, University of Melbourne, 1992.

15. Kunen K.: Negation in Logic Programming. Journal of Logic Programming 4, pp.
289-308, 1987.

16. Lassez J-L., Maher M.J. & Marriot K.: Unification Revisited.: In: Foundations of
Deductive Databases and Logic Programming. Minker J. (ed.), Morgan Kauflnann,
pp. 587-626 , 1988.

17. Lloyd J.W.: Foundations of Logic Programming. Second E• Edition,
Springer-Verl~g, Berlin, 1987.

254

18. Lloyd J.W. & Shepherdson J.: Partial Evaluation in Logic Programming. Journal
of Logic Programming 11, pp. 217-242, 1991.

19. Miller D.: A Logical Analysis of Modules in Logic Programming. Journal of Logic
Programming 6, pp. 79-108, 1989.

20. Miller D., Nadathur G., Pfenning F., Scedrov A.: Uniform Proofs as a Foundation
for Logic Programming. Annals of Pure and Applied Logic 51, pp. 125-157, 1991.

21. Ornaghi M. & Momighano A.: A Proof-Theoretic Reconstruction of Logic Pro-
gramming. Abstract. In: Workshop on Proof and Types, Pfenning F. (ed.) JIC-
SLP92, Washington, pp 22-23, 1992.

22. Pl~isted D.A.: Non-Horn Logic Programming without Contrapositives. J Journal
of Automated Reasoning 4, pp. 287-325, 1988.

23. Pfenning F.: Unification and Anti-Unification in the Calculus of Constructions.
Proc. of LICS91, pp. 74-85, 1991.

24. Pfenning F.: Dependent Types in Logic Programming. Types in Logic Program-
ming, Pfenning F. (ed.), MIT Press, Cambridge, pp. 285-312, 1992.

25. Shepherdson J.C.: Negation in Logic Programming. In: Foundations of Deductive
Databases and Logic Programming, Minker J. (ed.), Morgan Kaufmann, pp. 19-88,
1988.

26. Snyder W. & Lynch C.: Goal-Oriented Strategies for Paramodulation, RTA-91,
Book R:V. (ed.), Lecture Notes in Computer Science 488, Springer-Verlag, pp.
150-161, 1991.

27. Stgrk R.: The Proof-Theory of Logic Programs with Negation. PhD Thesis, Uni-
versity of Bern, 1992.

28. Sts R.: Cut-Property and Negation as Failure. Technical Report, University of
Bern, 1992.

