
Non-Procedural Logic Programming 

Seppo Keronen 

Wilhelm-Schickard-Institut, Universits Tiibingen, Sand 13 
D-72076 Tfibingen, Germany 

seppo~logik.informatik.uni-tuebingen.de 

A b s t r a c t .  We present a logic programming language where both pro- 
blem domain and computational knowledge are expressed in logic. A logic 
program in this language consists of an  object-program and  a number  of 
meta-programs. The object program, a collection of formulae, is a des- 
cription of the problem domain of interest. The meta-programs, also just 
collections of formulae, specify desired computational behaviours. The 
object-program and meta-programs are compiled together to produce a 
single, efficient procedural logic (Prolog) program. 

1 Motivat ion 

In 1979 Robert  Kowalski [10] used the slogan 

Algorithm = Logic + Control 

to express the idea that  a computer program should consist of two quite separate 
components: 

- P r o b l e m  D e s c r i p t i o n :  A description of the problem domain is supplied 
as a collection of predicate logic assertions. The problem to be solved is 
represented by a query, again a predicate logic formula. A solution to the 
problem is computed by a process of inference. The process aims to construct 
a proof for the query from a subset of the given assertions. 

- S e a r c h  S t r a t e g y :  An uninformed inference process cannot find solutions for 
any but  the most trivial problems. Tha t  is, finding a proof (or demonstrating 
failure) for a given problem description is itself a difficult problem. The 
knowledge about how the search for a proof is to be carried out needs also 
to be supplied by the programmer. 

The current generation of logic programming languages, such as Prolog, are 
based on the procedural reading of the problem domain assertions. This sim- 
ple, elegant idea has made the practical implementation of logic programming 
languages possible. Technology developed for the interpretation and compilation 
of procedural languages has been applied, resulting in very efficient implemen- 
tations. The desired proof search strategy is expressed in terms of procedural 
constructs embedded in the problem domain assertions. Such a control language 
is easily and efficiently implementable. A control construct appears as just  ano- 
ther procedure call in the sequential execution flow of the program. 



184 

We now want to expand and refine Kowalski's schema. Firstly, a proof search 
strategy is not the only kind of computational knowledge that needs to be sup- 
plied by the programmer. Again taking Prolog as a point of reference: 

- I n p u t / O u t p u t :  Communication is an essential part of any program. A large 
number of constructs, 'read', 'write', 'consult' for example, are embedded in 
the program clauses to specify this component. 

- Resource  Use: Limited resources, such as time, space and processors need 
to be allocated wisely. A 'time-out' construct as well as some form of excep- 
tion mechanism is usually provided. 

- Learning:  Revision of the problem domain theory, as more is learned from 
external agents or simply to avoid expensive recomputation, is currently 
specified using 'assert', 'retract' and so on. 

- C o m p u t a t i o n a l  Models:  Computer hardware and low level software can 
compute answers faster than deduction from axioms. Commonly arithmetic 
functions and an external language interface are made available. 

- O p t i m i z a t l o n s :  Implementation options and parameters, for instance choo- 
sing between interpretation, compilation or partial evaluation, need to be 
specified. 

Secondly, the specification of a proof search strategy may be factored into a 
number of separate concerns. Prolog distinguishes two components: 

- Order  of  Search: Textual order of clauses and subgoals is traditionally 
used to specify the order in which inferences are to be made. More recently, 
co-routining constructs, such as 'wait' and 'block' provide a limited escape 
mechanism from the procedural execution model. 

- Search Space Prun ing :  A search space often contains dead-ends, infinite 
branches and duplicate solutions. Constructs such as '!' (cut) and 'once' can 
be used to prune some of these unwanted portions of the search space. 

We argue that the procedural specification of computational knowledge, as 
described above, falls far short of the ideal. The following symptoms are familiar 
to any Prolog programmer: 

- Readab i l i ty  of  Programs:  Unlike the problem domain language, the com- 
putation domain language is not declarative. The rearrangement and embed- 
ded constructs even destroy the readability of the problem domain assertions. 
These factors lead to programs that are dimcult to understand and verify. 

- Reusabi l i ty  of  Programs:  In principle a given problem domain descrip- 
tion can be used in many different ways. For example, the specification of an 
electronic circuit could be used in design, fabrication , fault diagnosis, tea- 
ching etc.. In practice the embedded computational language inhibits such 
reuse. 



185 

- E x p r e s s i v e  P o w e r  o f  P r o b l e m  D o m a i n  L a n g u a g e :  O n l y  a s m a l l  s u b -  

l a n g u a g e  of predicate calculus is available. When extending the expressive 
power of the language, it can be difficult to extend the procedural semantics 
to cover the new constructs. 

- E x p r e s s i v e  P o w e r  o f  C o m p u t a t i o n  D o m a i n  L a n g u a g e :  The proce- 
dural language lacks the expressive power for many necessary control con- 
structs. Part ly to escape this problem many programs are written as meta- 
interpreters, in effect forcing the programmer to invent a new language for 
expressing the problem. The result is that  program development effort is 
higher and programs are less efficient than need be. 

- P a r a l l e l  E x e c u t i o n :  A sequential procedural language is not well suited 
for parallel execution. 

Motivated by the above observations we are developing a new logic program- 
ming langauge based on the following refinement of Kowalski's schema: 

Algorithm = ProblemDomainTheory + 
Comput  at ionDomainTheory 

In other words we demand that  computational knowledge as well as problem 
domain knowledge be expressed declaratively as a logical theory. Further, we 
argue that  computational behaviour should be specified as a set of separate 
subtheories. 

Comput  at ionDomainTheory = SearchOrderTheory + 
SearchPruningTheory + 
Inpu t /Outpu tTheory  + 
ResourceUseTheory + 
LearningTheory + 
ConnectiontoComputationalModelsTheory + 
OptimizationsTheory + 

This approach provides decisive advantages over a procedural, non-separable 
language: 

- R e a d a b i l i t y  o f  P r o g r a m s :  Both domain knowledge and control knowledge 
are expressed declaratively. As a first approximation, the various theories can 
be read and understood separately. It is only when a computat ional  theory 
refers to the particulars of the domain theory, that  the domain theory needs 
to be understood first. 

- R e u s a b i l i t y  o f  P r o g r a m s :  The one domain theory may be paired with 
different computational theories implementing different uses of the domain 
knowledge. Computat ional  subtheories can be plugged in for purposes such 
as different search strategies, debugging, execution on different machines etc. 



186 

- Expressive Power  of  P r o b l e m  D oma in  Language:  It is no longer ne- 
cessary to assign a procedural reading for each problem domain language 
construct. This relaxation makes the extension of the problem domain lan- 
guage easier. 

- Expressive Power  of  C o m p u t a t i o n  D oma in  Language:  PotentiMly the 
full power of the predicate cMculus may be available. The expressiveness of 
this language, however, can have a serious impact on execution speed. This 
point is taken up later. 

- Paral le l  Execut ion:  The language is no longer tied to a procedurM execu- 
tion model. Only the relevant computationM subtheories need be rewritten 
for parallel execution. This paper, however, focuses on the implementation 
of a sequentiM language only. 

In order to obtain these gains we do not need to sacrifice the advantages, most 
notably execution speed, of procedural logic programming. The implementation 
put forward in this paper compiles the problem domain and computation theories 
together into a single efficient procedural logic (Prolog) program. 

Our motivations and methods are related to existing work in the area of 
multi-level inference systems and meta-interpreters. The next section examines 
these relationships. Section 3 provides a brief introduction to the language with 
examples. Section 4 outlines a semantics for the language based on multiple, 
communicating reasoners. Section 5 describes briefly the compilation of the lan- 
guage into Prolog. We conclude with some examples and comments on future 
directions. 

2 M u l t i - l e v e l  I n f e r e n c e  S y s t e m s  

Let us assume that predicate logic is an appropriate language for representing 
and reasoning about complex problem domains. Let us also recognise that the 
control of reasoning is a complex task which in itself requires reasoning. It fol- 
lows that we should employ predicate logic to represent and reason about control. 
This simple argument leads us to consider systems where reasoning takes place 
at two or more levels, namely object-level reasoning about the original problem 
domain, meta-level reasoning about object-level inference, meta-meta-level rea- 
soning about meta-level inference and so on. Such multi-level inference systems 
have been studied by a number of investigators during the last 20 years, inclu- 
ding [2], [5], [6], [12] in the logic programming community, as well as [4], [8], 
[15], [18] and others working on automated theorem proving, proof editors and 
expert systems. A survey of this work, up to 1989, can be found in [15]. 

A subclass of multi-level inference systems, called meta-interpreters has seen 
vigorous development within the main-stream of logic programming, see for ex- 
ample [1]. A meta-interpreter typically implements just two levels of reasoning. 
The two levels are collapsed into a single meta-level by having a specification 
of the object-level simulated at the meta-level. At first sight a meta-interpreter 
would seem to be an ideal vehicle for representing computational knowledge. 



187 

After all isn't the object level computation fully and declaratively specified by 
its meta-interpreter? On closer examination, however, this approach suffers from 
serious problems: 

- S e p a r a t i o n :  The meta-interpreter is called on to carry knowledge about 
a number of distinct computation domains, such as control, input /output  
etc. as listed earlier. So again we have the problems of inadequate separation. 
How do we plug in different proof search strategies, for example, without 
affecting the other functions? 

In contrast we advocate separate theories for search order, search space pru- 
ning, input /output ,  learning etc.. The separate theories may be indepen- 
dently developed, maintained and reused. 

- C o n t r o l  o f  M e t a - L e v e h  How is the computational knowledge for the meta- 
interpreter to be specified? The usual solution seems to be to fall back on a 
procedural semantics for this language. This means that  the computational 
specification is obscured by control annotations. The parallel execution of 
the meta-interpreter is also not possible. 

In contrast each of our recta-level theories is small (in any case finite), and 
so we can assume that  the deductive closure of these finite theories is always 
computed. For the parallel execution of the problem domain computation, 
the allocation of processing units is just another recta-theory to be supplied. 

- Exp re s s ive  Power :  The specification of the object-language is in no way 
constrained. A meta-interpreter can implement an arbitrary object-language 
either intentionally or due to a bug in the specification. 

In our approach knowledge about each of the domains is expressed uniformly 
as a collection of predicate logic assertions. 

- Eff ic iency:  Implementations based on meta-interpretation are inefficient. 
Partial evaluation techniques no longer appear as promising as they once 
did [15]. 

Our implementation is based on compiling the object-level and meta-level 
together into a single efficient Prolog program. 

Leon Sterling's group [13] [14] has pioneered the idea of a computational 
specification consisting of a number of separate meta-theories to be composed 
into a single efficient meta-interpreter. Our main departures from this work are 
that  our meta-language is not Prolog and that  our implementation is based on 
compilation instead of meta-interpretation. 

3 T h e  L a n g u a g e  

A logic program for us consists of a number of separate (sub)programs, being 
a single problem domain (sub)program (or object-program) and multiple com- 
putation domain (sub)programs (or meta-programs). The problem domain sub- 
program is a collection of predicate logic formulae interpreted as a description 



188 

of the problem domain of interest. The deductive closure of this subprogram 
is typically very large and its search space will often contain infinite branches, 
and multiple paths to solutions. As a small example of such a badly behaved 
program see figure 1. What is important here is the clarity and completeness of 
the description not computational behaviour. 

edge(a,b). 
edge(c,b). 
edge(a,c). 
edge(X,Y) :- edge(Y,X). 

path(X,Y) :- edge(X,Y). 
path(X,Z) :- path(X,Y), path(Y,Z).  

Fig. l .  example object-program 

In what follows we assume a simple proof theoretic view of such a subpro- 
gram. We regard the facts (atomic formulae) of the program as assumptions, 
and the clauses (implications) as rules of inference that may be applied to derive 
new atomic formulae, see [9] and [7]. For example the program of figure 1 entails 
the formula path(a,c), since we can construct the proof 

edge(c,b) 
edge(a,b) edge(b,c) 
path(a,b) path(b,c) 

path(a,c) 

When our inference engine constructs such a proof it applies rules by backward 
chaining, starting from the desired conclusion as the root of the proof tree moving 
towards the facts that are the leaves of the proof tree. 

Like the problem domain subprogram, each computation domain subprogram 
is also just a collection of predicate logic formulae. A computation subprogram 
is interpreted as specifying part of the behaviour of the object-level inference 
engine. For example the program shown in figure 2 is a search space pruning 
strategy that may be applied when searching for proofs given the problem do- 
main program of figure 1. Program 2 is a loop detector consisting of a single 
implication: The antecedent tests for a goal formula that is more general (or 
equivalent) to one of its ancestor goals. The conclusion demands the failure of 
such a goal. 

open(Formulal,Goal), 
ancestor(Goal,Formula2), 
subsumes(Formula1,Formula2) 

-: fail(Goal). 

Fig. 2. example met~program 



189 

Notice that contrary to the object-level, meta-level rules are applied in the 
forward direction, starting from the facts of the current computation state and 
moving towards their consequences. The meta-level operator "- :" in contrast to 
the object-level " : - "  is used to indicate this difference. Notice also that control 
programs, such as the program of figure 2, specify proof theoretic moves that 
may (and should) be formally justified. In this case: 

//2 
(G) ~ ~20 
II1 GO 
GO 

That is, any proof of a goal G8  relying on the mor e general subgoal G may be 
pruned, since the simpler proof 1/20 for GO will always exist. 

As a more complex example, the program shown in figure 3 specifies an 
iterative deepening search strategy. Like program 2, program 3 is domain inde- 
pendent, and may therefore be combined with any problem domain program. 
Also, program 2 and program 3 specify two quite independent strategies that 
may be combined separately or together with a given object-program. 

open_query(_,_) ~ clause 1 
-: write('iterative deepening parameter? ') 

-: read(Depth) 
-: remember(limit(Depth)), 

remember(parameter(Depth)). 

open(_,Goal), 
l imi t (Dep th ) ,  
depth(Goal,Depth) 
-: fail(Goal), 

remember(limit~xceeded). 

clause 2 

fail_query(QueryFormula,Query), 
limit_exceeded, 
parameter(Increment) 
-: forget(limit~xceeded), 

forget(limit(Depth)), 
plus(Depth,Increment,NewDepth) 
-: remember(limit(Ne,Depth)) 

-: open_query(QueryFormula). 

clause 3 

Fig. 3. meta-program for iterative deepening search 



190 

Program 3 consists of three clauses: 

- Clause 1: When a query is opened, ask the user to supply a value for 
the depth parameter, and then add two facts, recording the value of the 
parameter and search limit, to the meta-program. 

- Clause 2: When a goal whose depth matches the search limit is opened, fail 
the goal and record the fact that the depth limit was exceeded. 

- Clause 3: When the query fails due to the search limit having been exceeded, 
reopen the query with a deeper search limit. 

This program illustrates a number of important points discussed in the remaining 
paragraphs of this section. 

The language contains a fixed vocabulary of introspection and command 
predicates: 

- Inspec t ion  Predica tes :  The current state of object-level proof search is 
available for inspection by the meta-level. The execution state of individual 
goals (open, succeeded, failed, blocked) and the location of goals in the proof 
tree relative to the root of the proof tree (the query) and other goals can be 
examined. 

- C o m m a n d  Predica tes :  The conclusions inferred at the meta-level are in- 
terpreted as commands by the object-level inference engine. This vocabulary 
includes input/output and theory change commands, as well as commands 
that affect the state of the current proof tree. 

The specification of the order in which computations are to be performed is 
often necessary. Recall that in the Prolog language all operators have a sequen- 
tial operational semantics. Here just the meta-level implication operator '-:' is 
assigned a procedural meaning. The expression 

A - : C  

is read, when A then C. The nesting of implication is allowed in the conclusion. 
For example in clause 1 we specify that a write operation (writing a prompt) 
be executed succesfully before the parameter value (requested by the prompt) 
is read, and that the value is remembered only once it has been read. The 
implementation is free to evaluate M1 operators, other than the '-:', in any order 
or in parallel. 

4 I n t r o s p e c t i o n  

Our approach is an evolutionary advance on, rather than a radical departure 
from, current logic programming practice. Consider, for instance, the construct 

.hen( Condition, Goal) 



191 

found in modern Prolog implementations [3]. This is best thought of as a piece of 
meta-language that  instructs the implementation to suspend execution of Goal 
until the given Condition is satisfied. In other words, the computat ion state is 
available for introspection and constraints on computational  actions derived from 
this knowledge are obeyed by the implementation. This is exactly the relationship 
between our meta-level and object-level subprograms. 

meta4evel 

inbospection 

object4evel 

Fig. 4. 

Consider a set of reasoners, one each for the subprograms making up the logic 
program. This arrangement is illustrated in figure 4. Each meta-level reasoner is 
coupled to the object-level reasoner by an introspection relationship [15]. Figure 
5 focuses on the relationship between any one meta-level reasoner and the object- 
level reasoner. We distinguish the two directions of this relationship: 

- The upward reflection of a part of the proof search state as a logical theory 
(collection of atomic formulae) accessible to inspection by a meta-level rea- 
soner. 

- The downward reflection of a theory (collection of atomic formulae) specify- 
ing inference engine actions as computational  behaviour by the object-level 
reasoner. 

Fig. 5. 



192 

Each meta-level reasoner is associated with a theory generated by three know- 
ledge sources: 

- P r o o f  Search State:  An extensional (collection of atomic formulae) des- 
cription of the current state of proof search. 

- SubprogrAm: An intensional (requiring inference), partial specification of 
computational behaviour is supplied by the meta-level subprogram. 

- Defaul t  Behaviour :  In the case that no commands are derivable from 
meta-programs, the object-level actions may be formalized as a default theory. 

For a given proof search state a recta-level reasoner has the task of computing 
the complete extension (collection of atomic formulae) of its associated theory. 
In other words, control of the inferences carried out by metaAevel reasoners is 
not required. The most natural computational mechanism would of course be 
parallel forward chaining from the proof search state to the commands implied 
by that state. 

The expressive adequacy of the meta-language depends crucially on how 
much of the computation state, and what computational actions, are made 
available for reasoning. One usually pays for increased expressive power by suf- 
fering reduced execution speed. We will study this tradeoff in the next section. 
The meta-level constructs used in current procedural languages provide a star- 
ting point for a compromise between expressive power and performance. From 
this baseline extensions, such as controlled loop checking for example, can be 
readily made. 

5 Implementation 

A direct implementation of the language, based on the communicating multiple 
reasoners semantics presented in the preceding section, would be extremely inef- 
ficient on current hardware. In this section we demonstrate that we can instead 
compile the meta-programs and object-program together into a single efficient 
procedural logic (Prolog) program. 

path(X,Y) 

path (X, Z) 

| 

@ 

Y p a t h ( X , Y ) ,  p a t h ( Y , Z )  

Fig. ~. 



193 

Let us adopt, as the default search strategy for the object level inference 
engine, the depth first, left to right search strategy of Prolog. This implies that 
in the absence of any meta-programs the object-program is correctly executed 
by Prolog. This leaves the problem of what to do with the meta-language state- 
ments. We take the view that these statements specify control constructs to be 
inserted into the object-program. 

Consider the procedure path/2 shown in figure 6. When executed by a Prolog 
inference engine, then at the points indicated in the figure, we know the following 
about the proof search state: 

1. a path/~ goal is opened 
2. a clause is selected 
3. a proof has been found 
4. a clause is rejected 
5. the goal has failed 

We can engineer meta-language inspection predicates to target these points. For 
example, the predicate 

open(path(A, B), Re:f) 

is such a targeting predicate. It becomes true as the flow of execution moves 
through point 1 in figure 6 as a path/2 goal is opened. The parameter Ref here 
is a unique reference to a goal node in the proof tree, required as a parameter 
for other predicates in the same meta-language statement. 

Once we have a target, the proof search state may be further inspected. For 
example we may write: 

depth(Ref, Depth) 

to find the depth of the referred to goal in the proof tree; Or 

vat(A) 

to find out whether the first argument of the goal is a variable. The compiler 
inserts these tests into the object program at locations indicated by targeting 
predicates. 

Any commands specified in meta-language statements are also inserted into 
the points indicated by the targeting predicates. For example the statement 

open(path(A,B),Goal), 
found(path(C,D),Goal), 
ground(A), ground(B) 
-: commit(Goal). 

prunes the search space preventing multiple solutions for ground path/2 goals. 
Together with the object program of figure 6 it compiles into the Prolog program 
shown in figure 7. Notice how code has been placed into multiple points and 
additional clauses have been generated by this single meta-language statement. 



194 

path(X,Y) :-  ground(X), ground(Y), 
edge(X,Y), 
!. 

path(X,Y) : -  (nonground(X) -> t rue  
edgo(X,W). 

path(X,Z) : -  ground(X), ground(Z), 
path(X,Y), path(Y,Z),  
!. 

path(X,Z) : -  (nonground(X) -> true 
path(X,W), path(Y,Z).  

; nonground(Y)), 

; nonground(Z)), 

Fig. 7. compiler output 

Our implementation scheme should now be clear: We have separated the 
amalgamated Prolog language into an object-language and a meta-language. 
The object program and meta-programs are pure logic programs. All the Prolog 
meta-predicates are available in the new separate meta-language. The task of 
the compiler is to re-amalgamate the object and meta-programs resulting in a 
single executable Prolog program. 

The compilation process becomes a little more complicated than indicated 
above, as multiple targeting predicates and constructs such as goal suspension 
are included in the meta-language. These issues will be addressed in a future 
paper. 

6 C o n c l u s i o n  

We have out]ined a logic programming language where both problem domain 
and computational knowledge are expressed in logic. A logic program consists of 
a number of separate theories, a single problem domain theory and a number of 
interchangeable computation domain theories. The object-program (problem do- 
main description) and meta-programs (computational behaviours) can be com- 
piled together to produce a single, efficient procedural logic (Prolog) program. 

A prototype compiler for the language described in this paper has been de- 
veloped using SICStus Prolog as both the implementation and target language. 
Experience with this implementation indicates that the main practical advan- 
tages of our approach are the following: 

- The problem domain description can be more easily developed, verified and 
understood, as it is not loaded up with procedural constructs. 

- Computational behaviours are easier to specify, verify and understand, as a 
collection of rules rather than procedural constructs hidden in the problem 
domain description. 

- A problem domain description may be combined with various search strate- 
gies, input/output behaviours etc. without modifying the description. 



195 

- Any efficiency problems can be diagnosed by reading the Prolog program 
generated by the compiler. 

The main  l imitat ion is tha t  we are confined to a proof  search mechanism tha t  
represents just  a single object proof  at a time. In this f ramework we cannot 
express control strategies, such as breadth first search for example,  tha t  explore 
multiple part ial  proofs concurrently. Also, only a very restricted meta- language 
is accepted by our current implementat ion.  Future work will focus on bet ter  
compilat ion techniques and on increasing the expressive power of the recta- 
language. 

References  

1. Harvey Abramson and M.H. Rogers (eds). Meta-Programming in Logic Program- 
ming. MIT Press, 1989. 

2. Kenneth A. Bowen and Robert A. Kowalski. 'Amalgamating Language and Meta- 
language in Logic Programming'. in K. L. Clark and S-J~. T ~ ! l u n d  (eds). Logic 
Programming. Academic Press, 1982. 

3. Mats Carlsson et al. SICStus Prolog User's Manual (version ~.I). Swedish Institute 
of Computer Science, 1991. 

4. Randall Davis. 'Applications of Meta Level Knowledge in the Construction, 
Maintenance and Use of Large Knowledge Bases'. in R. Davis and D. Lenat. 
Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill, 1980. 

5. K. Eshghi. Meta-Language in Logic Programming. PhD thesis, Department of 
Computing, Imperial College, 1986. 

6. Herve Gallaire and Claudine Lasserre. 'Metalevel Control for Logic Programs'. in 
K. L. Clark and S-A. TLrnlund (ecls). Logic Programming. Academic Press, 1982. 

7. Lars Halln~is and Peter Schroeder-Heister. A Proof Theoretic Approach to Logic 
Programming. I, Clauses as Rules. Journal of Logic and Computation 1(2) 261- 
283, 1991. 

8. Patrick J. Hayes. Computation and Deduction. Mathematical Foundations of Com- 
puter Science - 2nd Symposium. Czechoslovakian Academy of Sciences, 1973. 

9. Seppo Keronen. Computational Natural Deduction. PhD Thesis, Department of 
Computer Science, Australian National University, Canberra, 1991. 

10. Robert Kowalski. Algorithm = Logic 4- Control. Communications of the ACM 22 
424-436, July 1979. 

11. Pattie Maes and Daniele Nardi (eds). Meta-Level Architectures and Reflection. 
Elsevier, 1988. 

12. L. M. Pereira. 'Logic Control with Logic'. in J.A. Campbell (ed). Implementations 
of Prolog. Ellis Horwood, 1984. 

13. Leon Sterling and Arun Lakhotia. 'Composing Prolog Meta-Interpreters.' in Bowen 
and KowaJski (eds). Logic Programming: Proceedings of the Fifth International 
Conference and Symposium. MIT Press, 1988. 

14. Leon Sterling and L.U. Yalcinalp. Ezplaining Prolog-Based Ezpert Systems Using 
a Layered Meta-Interpreter. Proceedings l l t h  International Joint Conference on 
Artificial Intelligence. Morgan-Kanfmann, 1989. 

15. Frank van Harmelen. Meta-level Inference Systems. Morgan Kaufmann, 1991. 
16. Richard Weybrauch. Prolegomena to a Theory of Mechanised Formal Reasoning. 

Artificial Intelligence 13 133-170, 1980. 


