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Abstract. This paper presents work on programming methodologies for the pro- 
gramming tool GCLA. Three methods are discussed which show how to con- 
struct the control part of a GCLA program, where the definition of a specific 
problem and the set of intended queries are given beforehand. The methods are 
described by a series of examples, but we also try to give a more explicit descrip- 
tion of each method. We also discuss some important characteristics of the meth- 
ods. 

I Introduction 

This paper contributes to the as yet poorly known domain of programming methodo- 
logy for the programming tool GCLA. 

A GCLA program consists of  two separate parts; a declarative part and a control 
part. When writing GCLA programs we therefore have to answer the question: "Given 
a definition of a specific problem and a set of queries, how can we construct the control 
knowledge that is required for the resulting program to have the intended behavior?" Of  
course there is no definite answer to this question, new problems may always require 
specialized control knowledge, depending on the complexity of  the problem at hand, the 
complexity of the intended queries etc. I f  the programs are relatively small and simple 
it is often the case that the programs can be categorized, as for example functional pro- 
grams or object-oriented programs, and we can then use for these categories rather stan- 
dard control knowledge. But if the programs are large and more complex such a 
classification is often not possible since most large and complex programs are mixtures 
of functions, predicates, object-oriented techniques etc., and therefore the usage of 
more general control knowledge is often not possible. Thus, there is a need for more 
systematic methods for constructing the control parts of large and complex programs. 

In this paper we discuss three different methods of constructing the control part of 
GCLA programs, where the definitions and the sets of intended queries are given 
beforehand. The work is based on our collective experiences from developing large 
GCLA applications. 

The rest of this paper is organized as follows. In Sect. 2 we give a very short intro- 

*" This work was carried out as part of the work in the ESPRIT working group GENTZEN and 
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duction to GCLA. In Sect. 3 we present three different methods for constructing the 
control part of a GCLA program. The methods are described by a series of examples, 
but we also try to give a more explicit description of each method. In Sect. 4 we present 
a larger example of how to use each method in practice. Since we are mostly interested 
in large and more complex programs we want the methods to have properties suitable 
for developing such programs. In Sect. 5 we therefore evaluate each method according 
to five criteria on how good we perceive the resulting programs to be. In Sect. 6 finally, 
we summarize the discussion in Sect. 5, and we also make some conclusions about pos- 
sible future extensions of the GCLA system. 

2 I n t r o d u c t i o n  t o  GCLA 

The programming system Generalized Horn Clause LAnguage (GCLA 1) [1, 3, 4, 5] is 
a logical programming language (specification tool) that is based on a generalization of 
Prolog. This generalization is unusual in that it takes a quite different view of the mean- 
ing of a logic program - -  a definitional view rather than the traditional logic view. 

Compared to Prolog, what has been added to GCLA is the possibility of assuming 
conditions. For example, the clause 

a <= (b -> c). 

should be read as: "a holds if c can be proved while assuming b." 

There is also a richer set of queries in GCLA than in Prolog. In GCLA, a query cor- 
responding to an ordinary Prolog query is written 

\ -  a.  

and should be read as: "Does a hold (in the definition D)?" We can also assume things 
in the query, for example 

c \- a. 

which should be read as: "Assuming c, does a hold (in the definition D)?", or "Is a 
derivable from c?" 

To execute a program, a query G is posed to the system asking whether there is a 
substitution t~ such that Go holds according to the logic defined by the program. The 
goal G has the form F I- c, where F is a list of assumptions, and c is the conclusion from 
the assumptions F. The system tries to construct a deduction showing that Go holds in 
the given logic. 

GCLA is also general enough to incorporate functional programming as a special 
case. 

For a more complete and comprehensive introduction to GCLA and its theoretical 
properties see [5]. [1] contains some earlier work on programming methodologies in 
GCLA. Various implementation techniques, including functional and object-oriented 
programming, are also demonstrated. For an introduction to the GCLA system see [2]. 

1. To be pronounced "gisela". 
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2.1 GCLA Programs 

A GCLA program consists of two parts; one part is used to express the declarative con- 
tent of the program, called the definition or the object level, and the other part is used to 
express rules and strategies acting on the declarative part, called the rule definition or 
the meta level. 

The Definition. The definition constitutes the formalization of a specific problem 
domain and in general contains a minimum of control information. The intention is that 
the definition by itself gives a purely declarative description of the problem domain 
while a procedural interpretation of the definition is obtained only by putting it in the 
context of the rule definition. 

The Rule Definition. The rule definition contains the procedural knowledge of the 
domain, that is the knowledge used for drawing conclusions based on the declarative 
knowledge in the definition. This procedural knowledge defines the possible inferences 
made from the declarative knowledge. 

The rule definition contains inference rule definitions which define how different 
inference rules should act, and search strategies which control the search among the 
inference rules. 

The general form of an inference rule is 

Rulename(A 1 ..... A m, PT I ..... PT n) <= 

Provi so, 

(PT 1 -> Seq I), 

�9 ,, t 

( PT n - > Seq n) 

-> Seq. 

and the general forms of a strategy are 

Strat(A 1 ..... A m ) <= PT 1 ..... PT n. 

or 

Strat(A I ..... A m ) <= 

(Proviso I -> Seql), 

...p 

(Proviso k -> Seq k). 

Strat(A I ..... A m ) <= PT 1 ..... PT n. 

where 

�9 A~ are arbitrary arguments. 

�9 P r o v i  so  is a conjunction of provisos, that is calls to Horn clauses defined else- 
where. The P r o v i s o  could be empty. 
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�9 s e q  and seq i  are sequents which are on the form (AnCeceden~ \ -  

C o n s e q u e n t  ), where An ~ecedenC is a list of  terms and c o n s e q u e n r  is an ordi- 

nary GCLA term. 

�9 PTi are proofterms, that is terms representing the proofs of the premises, seq i .  

Example :  Default  Reasoning .  Assume we know that an object can fly if it is a bird 
and if it is not a penguin. We also know that Tweety and Polly are birds as well as are 
all penguins, and finally we know that Pengo is a penguin. This knowledge is expressed 
in the following definition: 

flies (X) <= 

bird(X), 

(penguin(X) -> false). 

bird (tweety) . 

bird (polly) . 

bird(X) <= penguin(X) . 

penguin (pengo) . 

One possible rule definition enabling us to use this definition the way we want, is: 

fs <= 

right(fs), % First try standard right rules, 

left if false(fs). % else if consequent is false. 

left if false(PT) <= % Is the consequent false? 

(_ \- false). 

left if false(PT) <= % If so perform left rules. 

no false assump(PT) 

false left(_) . 

no false assump(PT) <= % No false assumption, 

not(member(false,A) % that is the term false is not a 

-> (A \- _) �9 % member of the assumpEion list. 

no false assump(PT) <= 

left (PT) . 

member(X, [XI ]) . % Proviso definition. 

member (X, [_i R] ) : - 

member ( X, R) . 

If we want to know which birds can fly, we pose the query 

fs \\- (\- flies(X)). 

and the system will respond with x : tweety and x : polly. 

If we want to know which birds cannot fly, we can pose the query 

fs \\- (flies(X) \- false). 

and the system will respond with x : p e n g o .  
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3 H o w  to C o n s t r u c t  the P r o c e d u r a l  Part  

3.1 Example: Disease Expert System 

Suppose we want to construct a small expert system for diagnosing diseases. The fol- 
lowing definition defines which symptoms are caused by which diseases: 

symptom(high_temp) <= disease (pneumonia) . 

symptom(high_temp) <= disease (plague) . 

symptom(cough) <= disease (pneumonia) . 

symptom(cough) <= disease(cold). 

In this application the facts are submitted by the queries. For example, if we want to 
know which diseases cause the symptom high temperature we can pose the query: 

disease(X) \- symptom(high_temp). 

Another possible query is 

disease(X) \- (symptom(high_temp),symptom(cough)) . 

which should be read as: "Which diseases cause high temperature and coughing?" If we 
want to know which possible diseases follow, assuming the symptom high temperature, 
we can pose the query: 

symptom(high_temp) \- (disease(X);disease(Y)) . 

Yet another query is 

disease (pneumonia) \- symptom(X) . 

which should be read as: "Which symptoms are caused by the disease pneumonia?" 
We will in the following three subsections use the definition and the queries above, 

to illustrate three different methods of constructing the procedural part of a GCLA pro- 
gram. 

3.2 Method 1: Minimal Stepwise Refinement 

The general form of a GCLA query is S IF Q where S is a proofterm, that is some more 
or less instantiated inference rule or strategy, and Q is an object level sequent. One way 
of reading this query is: "S includes a proof of  Qa for some substitution ~." 

When the GCLA system is started the user is provided with a basic set of inference 
rules and some standard strategies implementing common search behavior among these 
rules. The standard rules and strategies are very general, that is they are potentially use- 
ful for a large number ofde~hnitions, and provide the possibility of posing a wide variety 
of queries. 

We show some of the standard inference rules and strategies here, the rest can be 
found in [2]. 

One simple inference rule is axiom/3 which states that anything holds if it is 
assumed. The standard axiom/3 rule is applicable to any terms and is defined by: 
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axiom(T, C, I) <: 

term(T), 96 proviso 

term(C), % proviso 

unify(T,C) % proviso 

->(I@[TIR] \- C). % conclusion 

The proof of a query is built backwards, starting from the goal sequent. So, in the rule 
above we are trying to prove the last line, that is the conclusion of the rule. Note that 
when an inference rule is applied, the conclusion is unified with the sequent we are try- 
ing to prove before the provisos and the premises of the rule are tried. Thus, the ax iom/  
3 rule tells us that if we have an assumption T among the list of assumptions I@ [TI m] 
(where ' @' / 2 is an infix append operator) and if both T and the conclusion c are terms, 
and if T and c are unifiable, then c holds. 

Another standard rule is the definition fight rule, d _ r i g h t  / 2. The conclusions that 
can be made from this rule depend on the particular definition at hand. The d_right/ 
2 rule applies to all atoms: 

d right(C, PT) <= 

atom(C), % C must be an atom 

clause(C,B) , % proviso 

(PT -> (A \- B)) % premise, use PT to prove it 

-> (A \- C). % conclusion 

This rule could be read as: " I f  we have a sequent i \ -  C, and if there is a clause 
D < = t3 in the definition, such that c and D are unifiable by a substitution ,~, and if we 
can show that the sequent h \ -  B holds using some of the proofs represented by the 
proofterm PT, then (A \ -  C)t~ holds by the corresponding proof in f r i g h t  (c, PT). 

There is also an inference rule, definition left, which uses the definition to the left. 
This rule, d. l e  f t / 3 ,  is applicable to all atoms: 

d_left(T,I,PT) <: 

atom(T), % T must be an atom 

definiens(T,Dp,N), % Dp is the definiens of T 

(PT -> (I@[DpLY] \- C)) % premise, use PT to prove it 

-> (I@[TIY] \- C). % conclusion. 

The definiens operation is described in [5]. If  T is not defined mp is bound to false. 
As an example of an inference rule that applies to a constructed condition we show 

the a _ r i g h t / 2  rule which applies to any condition constructed with the aITOW con- 
structor ' - >'  / 2 Occurring to the fight of the turnstile, ' \ - "  

a_right((A -> C) ,PT) <: 

(PT -> ([AIP] \- C)) % premise, use PT to prove it 

-> (P \- (A -> C)). % conclusion 

One very general search strategy among the predefined inference rules is arl / 0, which 
in each step of the derivation first tries the ax iom/3  rule, then all standard rules oper- 
ating on the consequent of a sequent and after that all standard rules operating on ele- 
ments of the antecedent. It is defined by: 
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arl <= 

axiom( ..... ), % first try the rule axiom/3, 

right(arl), % then try strategy right/l, 

left(arl). % then try strategy left/l. 

Another very general search strategy is i ra /0 :  

Ira <= 

left(Ira), % first try the strategy left/l, 

right(ira), % then try strategy right/l, 

axiom( ..... ). % then try rule axiom/3. 

If we are not interested in the antecedent of sequents, we can use the standard strategy 
r /0 ,  with the definition: 

r <= right (r). 

In the definitions below of the strategies right/1 and le ft/i, user_add_right/2 
and u s e r  a d d _ l e f t / 3  Call be defined by the user to contain any new inference rules 
or strategies desired: 

r i g h t  (PT) <= 
user_add right(_,PT), % try users specific rules first 

v_right (_,PT, PT) , % then standard right rules 

a_right (_, PT) , 

o_right ( .... PT) , 

true right, 

d_right (_, PT) . 

left (PT) <= 

user_add_left ( .... PT), % try users specific rules first 

false_left(_), % then try standard left rules 

v_left ( .... PT), 

a_left ( .... PT, PT), 

o_left ( .... PT, PT), 

d_left ( .... PT), 

pi_left ( .... PT). 

We see that all these default rules and strategies are very general in the sense that they 
contain no domain specific information, apart from the link to the definition provided 
by the provisos c l a u s e / 2  and d e f i n i e n s / 3 ,  and also in the sense that they span a 
very large proof search space. 

Construct ing  the Procedural  Part. Now, the idea in the minimal stepwise refine- 
ment method, is that given a definition D and a set of intended queries 0., we do as little 
as possible to construct the procedural part ~ that is we try to find strategies S 1 . . . . .  S, 
among the general strategies given by the system, such that Si IF Qi, with the intended 
procedural behavior for each of the intended queries. If such strategies exist then we are 
finished, and constructing the procedural part was trivial indeed. In most cases however 
there will be some queries for which we cannot find a predefined strategy which 
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behaves correctly, they all give redundant answers or wrong answers or even no 
answers at all. 

When there is no default strategy which gives the desired procedural behavior, we 
choose the predefined strategy that seems most appropriate and try to alter the set of 
proofs it represents so that it will give the desired procedural behavior. To do this we 
use the tracer and the statistical package of the GCLA system to localize the point in the 
search space of a proof of the query which causes the faulty behavior. Once we have 
found the reason behind the faulty behavior we can remove the error by changing the 
definition of the procedural part. We then try all our queries again and repeat the proce- 
dure of searching for and correcting errors of the procedural part until we achieve 
proper procedural behavior for all the intended queries. The method is illustrated in 
Fig. 1. 

G H 

\ / 

B ,~,<......~,~...~ D 

A 

Fig. 1. Proof search space for a query S II- A. A is the query we pose to the 
system. The desired procedural behavior is the path leading to G marked in the 
figure, however the strategy S instead takes the path via F to H. We localize the 
choice-point to C and change the procedural part so that the edge C - - E  is chosen 
instead. 

Example: Disease Expert System Revisited. We try to use the disease program 
with some standard strategies. For example, in the query below, the correct answers are 
X : pneumonia and, on backmackJng, x : plague. The true answers mean that 

there exists a proof of the query, but it gives no binding of the variable x. 
First we try the strategy a r l / 0 :  

I ?- arl \\- (disease(X) \- symptom(high_temp)). 

X = pneumonia ? ; 

true ? ; 

true ? ; 

true ? ; 

X : plague ? ; 



128 

After this we get eight more t r u e  answers. Then we try the strategy l r a / 0 :  

I ?- ira \ \ -  (disease(X) \ -  symptom(high_temp)). 

This query gives eight t r u e  answers before giving the answer pneumonia the ninth 
time, then three more t r u e  answers and finally the answer p lague .  We see that even 
though it is the case that both a r l  / 0 and l r a / 0  include proofs of the query giving the 
answers in which we are interested, they also include many more proofs of the query. 
We therefore try to restrict the set of proofs represented by the strategy a r l  / 0 in order 
to remove the undesired answers. 

The most typical sources of faulty behavior are that the d _ r i g h t / 2 ,  d_l  e f t / 3  and 
axiom/3 rules are applicable in situations where we would rather see they were not. An 
example of what can happen is that if, somewhere in the derivation tree, there is a 
sequent of the form p \ -  x, where p is not defined, and the inference rule d _ l e f t / 3  
is tried and found applicable, we get the new goal f a l s e  \ -  x, which holds since any- 
thing can be shown from a false assumption, if we use a strategy such as a r 1 / 0 or 1 r a /  
0 that contains the false_left/l rule. 

By using the tracer we find that this is what happens in our disease example, where 
d _ l e f t / 3  is tried on the undefined atom d i s e a s e / 1 .  To get the desired procedural 
behavior there are at least two things we could do: 

�9 We could delete the inference rule f a l s e _ l e f t / 1  from our global a r l / 0  strat- 
egy, but then we would never be able to draw a conclusion from a false assumption. 

�9 We could restrict the d_ le  f t  / 3 rule so that it would not be applicable to the atom 
disease/l. 

Restricting the d_l  e f t / 3 rule is very simple and could be made like this: 

d_left (T,I, PT) <= 

d_left_applicable (T), 

definiens (T,Dp,N) , 

(PT -> (I@[DplR] \- C) 

-> (I@[TIR] \- C). 

d_left_applicable (T) : - 

atom(T), % standard restriction on T 

not(functor(T,disease,l)). % application specific. 

Here we have introduced the proviso d_left_applicable/l tO describe when 
d _ l e f t / 3  is applicable. Apart from the standard restriction that d _ l e f t / 3  only 
applies to atoms we have added the extra restriction that the atom must not be d i s -  
ease/l. 

Now, we try our query again, and this time we get the desired answers and no others: 

I ?- arl \ \ -  (disease(X) \ -  symptom(high_temp)). 

X = pneumonia ? ; 

X = plague ? ; 

n o  
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With this restriction on the d l e f t / 3 rule the a r 1 / 0 strategy correctly handles all the 
queries in Sect. 3.1. 

Further Refining. One very simple optimization is to use the statistical package of 
GCLA and remove any inference rules that are never used from the procedural part. 

Sometimes there is a need to introduce new inference rules, for example to handle 
numbers in an efficient way. We can then associate an inference rule with each operation 
and use this directly to show that something holds. Such new inference rules could then 
be placed in one of the strategies user_add_right/2 or user add_left/2 which 
are part of the standard strategies right / 1 and left / i. 

3.3 Method 2: Splitting the Condition Universe 

With the method in the previous section we started to build the procedural part without 
paying any particular attention to what the definition and the set of intended queries 
looked like. If we study the structure of the definition, and of the data handled by the 
program, it is possible to use the knowledge we gain to be able to construct the proce- 
dural part in a more well-structured and goal-oriented way. 

The basic idea in this section is that given a definition a) and a set of intended queries 
O., it is possible to divide the universe of all object-level conditions into a number of 
classes, where every member of each class is treated uniformly by the procedural part. 
Examples of such classes could be the set of all defined atoms, the set of all terms which 
could be evaluated further, the set of all canonical terms, the set of all object level vari- 
ables etc. 

In order to construct the procedural part of a given definition, we first identify the 
different classes of conditions used in the definition and in the queries, and then go on 
to write the rule definition in such a way that each rule or strategy becomes applicable 
to the correct class or classes of conditions. The resulting rule definition typically con- 
sists of some subset of the predefined inference rules and strategies, extended with a 
number of provisos which identify the different classes and decide the applicability of 
each rule or strategy. 

Of course the described method can only be used if it is possible to divide the object- 
level condition universe in some suitable set of classes; for some applications this will 
be very difficult or even impossible to do. 

3.4 A Typical Split 

The most typical split of the universe of object-level conditions is into one set to which 
the d _ r i g h t / 2  and d _ l e f t / 3  rules but not the axiom/3 rule apply, and another set 
to which the a•  om/3 rule but not the d _ r i g h t  / 2 or d _ l e  f t  / 3 rules apply. To handle 
this, and many other similar situations easily, we change the definition of these rules: 

d_right (C, PT) <: 

d_right applicable(C) , 

clause (C, B) , 

(PT -> (A \- B)) 
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-> (A \- C). 

d_left (T, I, PT) <= 

d_left_applicable (T) , 

definiens (T,Dp,N) , 

(PT -> (I@[Dplm] \- C)) 

-> (I@[TIR] \- C). 

axiom(T, C, I) <= 

axiom_applicable (T) , 

axiom_applicable (C) , 

unify (C,T) 

-> (I@[TI_] \-C). 

All we have to do now is alter the provisos used in the rules above according to our split 
of the universe to get different procedural behaviors. With the proviso definitions 

d_right_applicable(C) :- atom(C) . 

d_left_applicable(T) :- atom(T). 

axiom_applicable (T) :- term(T) . 

we get exactly the same behavior as with the predefined rules. 

Example 1: The Disease Example Revisited. The disease example is an example 
of an application where we can use the typical split described above. We know that the 
d_right / 2 and the d_left / 3 rules should only be applicable to the atom symptom/ 
i, so we define the provisos d_right_applicable/1 and d_left_applicable/1 

by: 

d_right_applicable (C) :- functor (C,symptom, i) . 

d_left_applicable(T) :- functor(T, symptom, l) . 

We also know that the axiom/3 rule should only be applicable to the atom disease/ 
i, so axiom_applicable/1 thus becomes: 

axiom_applicable(T) :- functor(T,disease,l). 

Example 2: Functional Programming. One often occurring situation, for example 
in functional programming, is that we can split the universe of all object level terms into 
the two classes of all fully evaluated expressions and variables and all other terms 
respectively. 

For example, if the class of fully evaluated expressions consists of all numbers and 
all lists, it can be defined with the proviso canon/1:  

canon(X) :- number (X) . 

canon([]) . 

canon(X) :- functor(X,' ',2). 
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To get the desired procedural behavior we restrict the ax iom/3  rule to operate on the 
class defined by the above proviso and the set of all variables, and the d _ r i g h t / 2  and 
d _ l e  f t  / 3 rules to operate on any other terms, thus: 

d_right_appl icable (T) : - 

atom(T) ,not (canon(T)) . % noncanonical atom 

d_left_applicable (T) : - 

atom(T) ,not (canon(T)) . % noncanonical atom 

axiom_applicable (T) :- vat (T) . 

axiom_applicable(T) :- nonvar(T),canon(T) . 

Here we use n o t / 1  to indicate that if we cannot prove that a term belongs to the class 
of canonical terms then it belongs to the class of all other terms. 

3.5 Method 3: Local Strategies 

Both of the previous methods are somehow based on the idea that we should start with 
a general search strategy, among the inference rules at hand, and restrict or augment the 
set of proofs it represents in order to get the desired procedural behavior from a given 
definition and its associated set of intended queries. However, we could just as well do 
it the other way around and study the definition and the set of intended queries and c o n -  

s t r u c t  a procedural part, that gives us exactly the procedural interpretation we want right 
from the start, instead of performing a tedious procedure of repeatedly cutting away (or 
adding) branches of the proof search space of some general strategy. In this section we 
will show how this can easily be done for many applications. Any examples will use the 
standard rules, but the method as such works equivalently with any set of rules. 

Collect ing Knowledge.  When constructing the procedural part we try to collect and 
use as much knowledge as possible about the definition, the set of intended queries, of 
how the GCLA system works etc. Among the things we need to take into account in 
order to construct the procedural part properly are: 

�9 We need to have a good idea of how the GCLA system tries to construct the proof 
of a query. 

�9 We must have a thorough understanding of the interpretation of the predefined 
rules and strategies, and of any new rules or strategies we write. 

�9 We must decide exactly what the set of intended queries is. For example, in the dis- 
ease example this set is as described in Sect. 3.1. 

�9 We must study the structure of the definition in order to find out how each defined 
atom should be used procedurally in the queries. This involves among other things 
considering whether it will be used with the d l e f t / 3 or the d_ r  igh  t / 2 rule or 
both. For example, in the disease example we know that both the d _ l e  f t / 3  and 
the d _ r i g h t  / 2 rule should be applicable to the atom symptom/ 1, but that neither 
of them should be applicable to the atom d i s e a s e / 1 .  We also use knowledge of 
the structure of the possible sequents occurring in a derivation, to decide if we will 
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need a mechanism for searching among Several assumptions or to decide where to 
use the axiom/3 r u l e  etc. For example, in the disease example we know that the 
axiom/3 rule should be applicable to the atom d i sease /3 . ,  but not to the atom 
sympt am/i. 

Constructing the Procedural Part. Assume that we have a set of condition con- 
structors, C, with a corresponding set of inference rules, R Given a definition D which 
defines a set of atoms DA, a set of intended queries Qand possibly another set ~ of 
undefined atoms which can occur as assumptions in a sequent, we do the following to 
construct strategies for each element in the set of intended queries: 

�9 Associate with each atom in the sets D.~ and ~ a distinct procedural part that 
assures that the atoms are used the way we want in all situations where they can 
occur in a derivation tree. The procedural part associated with an atom is built using 
the elements of R d_r  i gh t / 2, d_l  e f t / 3, axiom/3,  strategies associated with 
other atoms and any new inference rules needed. 

We can then use the strategies defined above to build higher-level strategies for all the 
intended queries in 0., 

For example, in the disease example C is the set {' ; ' /2 ,  ' ,  ' /2 }, 9%is the set 
{o_right/3, o_left/4, v_right/3, v_left/3 }, Dand Qare as given in Sect. 3.1, 
DAis the set {symptom/l} and UAis the set {disease/l}. 

According to the method we should first write distinct strategies for each member 
of D.~, that is symptom/1. The atom symptom/1 Can OCCur on the right side of the 
object level sequent so we write a strategy for this case: 

symptom_r <= d_right (symptom (_) , disease) . 

Vghen symptom/1 occurs on the right side we want to look up the definition of symp- 

tom/l SO we use the d_right/2 rule, giving a new object level sequent of the form 
A \ -  d i s e a s e  (X), and we therefore continue with the strategy d i s e a s e / 0 .  

Now, s ympt om/1 is also used on the left side and since we can not use syrup t om_r/ 
0 to the left, we have to introduce a new strategy for this case, symptom_l/0:  

symptom_l <= d_left (symptom(_) ,_, symptom__12) . 

sympt om_l 2 <= 
o_left ( .... symptom_12, symptom_12 ) , 
o_right ( .... symptom_12), 
disease. 

When symptom/1 occurs on the left side we want to calculate the definiens of symp- 
tom/ 3' so we can use the d_l  e f t / 3 rule, giving a new object level sequent of the form 
(disease(}'/) ;...;disease(Yn) ) \- (disease(Xl) ;...;disease(Xk)). In this 

case we continue with the strategy symptom_12/0, which handles Sequents of this 
form. The strategy sympt om_12 / 0 uses the strategy d i s e a s e / 0  to handle the individ- 
ual d i s e a s e / 3 '  atoms. 

We now define the d i s e a s e / 0  strategy: 
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disease <= axiom(disease(_) .... ). 

Finally we use the strategies defined above to construct strategies for all the intended 
queries. The first kind of query is of the form d i s e a s e ( D )  \ -  
symptom(X I) ..... symptom(Xn). These queries can be handled by the following 
strategy: 

dl <= v_right (_, symptom_r, dl) , symptom_r. 

The second kind of query is of the form symptom(s) \- 

(disease (X I ) ; ...; disease (X n) ). These queries are handled by the strategy d2 / o: 

d2 <= symptom. I. 

What we actually do with this method is to assign a local procedural  interpretation to 
each atom in the sets DA and ~ This local procedural interpretation is special ized to 
handle the particular atom correctly in every sequent in which it occurs. The important 
thing is that the procedural part associated with an atom ensures that we will get the cor- 
rect procedural behavior if we use it in the intended way, no matter what rules or strat- 
egies we write to handle other atoms of the definition. Since each atom has its own local 
procedural interpretation, we can use different programming methodologies and differ- 
ent sorts of procedural interpretations for the particular atom in different parts of  the 
program. 

In practice this means that for each atom in DA and q ~  we write one or more strat- 
egies which are constructed to correctly handle the particular atom. One way to do this 
is to define the basic procedural behavior of each atom, by which we mean that given 
an atom, say p / l ,  we define the basic procedural behavior of p /1  (in this application) 
as how we want it to behave in a query where it is directly applicable to one of the infer- 
ence rules d_right /2, d_l e f t /3 or axiom/3, that is queries of the form A \ - p (X) 

ora I ..... p(X) ..... A n \- C. 

Since the basic strategy of an atom can use the basic strategy of any other defined 
atom if needed, and since strategies of more complex queries can use any combination 
of strategies, we will get a hierarchy of strategies, where each member has a well- 
defined procedural behavior. In the bottom of this hierarchy we find the strategies that 
do not use any other strategies, only rules, and in the top we have the strategies used by 
a user to pose queries to the system. 

Example .  In the disease example we constructed the procedural part bottom-up. In 
practice it is often better to work top-down from the set of intended queries, since most 
of the time we do not know exactly what strategies are needed beforehand. 

This means that we start with an intended query, say A 1 ..... A n \ - p (X), construct- 
ing a top level strategy for this assuming that we already have all sub-strategies we 
need, and then go on to construct these sub-strategies so that they behave as we have 
assumed them to do. 

The following small example could be used to illustrate the methodology: 

classify (X) <: 

wheels (W) , engine (E) , (class (wheels (W) , engine (E) ) -> X) . 
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class(wheels (4) ,engine(yes)) <= car. 
class (wheels (2) ,engine(yes)) <= motorbike. 
class (wheels (2),engine(no)) <= bike. 

The only intended query is A 1  . . . . .  A n \ -  c l a s s i f y  (X), where we use the left-hand 
side to give observations and try to conclude a class from them, for example : 

I ?- classify \\- (engine(yes),wheels(2) \- classify(X)). 

X = motorbike ? ; 

no 

We start from the top and assuming that we have suitable strategies for the queries 
A 1 ..... A n \- wheels(X), A 1 ..... A n \- 

engine (X) and A 1 ..... class (X) ..... A n \- C, we construct the top level strategy 

classify/0: 

%classify \\- (A \- classify(X)) 
classify <= 

d right (_,v_rights ( .... [wheels, engine, a_right (_,class) ] ) ) . 

where v rights/3 is a rule that is used as an abbreviation for several consecutive 
applications of the v r i g h t  / 3 rule. All we have left to do now is to construct the sub- 
strategies. The strategies e n g i n e / 0  and w h e e l s / 0  are identical; e n g i n e / 1  and 
w h e e l s / 1  are given as observations in the left-hand side, so we use the axiom/3 rule 
to communicate with the right side, giving the basic strategies: 

%engine \ \ -  (A�94 ..... engine(X) ...... An \ -  Conc) 
eng ine  <= ax iom(eng ine (_ )  . . . .  ) . 

%wheels \ \ -  (A1 ..... wheels(X) ..... An \ -  Conc) 
wheels <= axiom(wheels(_) .... ). 

Finally c 1 a s s  / 0 is a function from the observed properties to a class, and the rule def- 
inition we want is: 

%class  \ \ -  (A1 ..... c l a s s (X ,Y)  ..... An \ -  Conc) 
c l a s s  <= d _ l e f t ( c l a s s ( _ , _ ) , I , a x i o m (  . . . .  I ) ) .  

Of course we do not always have to be so specific when we construct the strategies and 
sub-strategies if we find it unnecessary. 

4 A Larger Example: Quicksort 

In this section we will use the three methods described above to develop some sample 
procedural pans to a given definition and an intended set of queries. Of course, due to 
lack of space it is not possible to give a realistic example, but we think that the basic 
ideas will shine through. 

The given definition is a quicksort program, earlier described in [1] and [2], which 
contains both functions and relational programming as well as the use of new condition 
constructors. 
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4.1 The  Def ini t ion 

Here is the definition of  the quicksort program: 

qsort([]) <= []. 
qsort ( [FIR] ) <= 

pi L \ (pi G \ (split(F,R,L,G) -> 

append(qsort (L) ,cons (F,qsort (G)) ) ) ) . 

split(_, [], [], []). 

split(E, [FIR], [FIZ],X) <= E >= F,split(E,R,Z,X). 

split(E, [FIR],Z, [FrX]) <= E < F,split(E,R,Z,X) . 

append([],F) <= F. 

append([FIR],X) <= cons(F,append(R,X)) . 

append(X,Y)#{X \= [_I_],X \= []} <= 

pi Z\ ((X -> Z) -> append(Z,Y)) . 

cons(X,Y) <= pi Z \ (pi W \ ((X -> Z), (Y -> W) -> [ZIW])). 

In the definition above qso rt / i, append/2 and c ons / 2 are functions, while sp i i t / 

4 is a relation. There are also two new condition constructors: ' > : '  / 2 and ' <' / 2. 
We will only consider one intended query 

qsort(Z) \- Y. 

where x is a list of  numbers and z is a variable to be instantiated to a sorted permutation 
of x. 

4.2 M e t h o d  1 

We first try the predefined strategy g c l a / 0  (the same as a r l / 0 ) "  

I ?-gcla \\- (qsort([4,1,2]) \-X). 

X = qsort([4,1,2]) ? 

yes 

By using the debugging tools, we find out that the fault is that the a x i o m / 3  rule is appli- 
cable to qs o r t  / 1. We therefore construct a new strategy, q__axi om/3,  that is not appli- 
cable to q s o r t / 1 :  

q axiom(T,C,I) <= 

not(functor(T,qsort,l)) -> (I@[TI_] \- C). 

q_axiom(T,C,I) <= axiom(T,C,I) . 

We must also change the a r l / 0  strategy so that it uses q._ax iom/3  instead of  a x i o m /  

3: 

arl <: q_axiom( ..... ),right(arl),left(arl) . 
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Then we try the query again: 

I ?- gcla \\- (qsort([4,1,2]) \- X). 

no 

This time the fault is that we have no rules for the new condition constructors ' > : ' / 2  
and ' <' / 2. So we write two new rules, g e _ r i g h t  / 1 and i t  r i g h t  / 1, which we add 
to the predefined strategy u s e r a d d r i g h t / 2 :  

ge right(X >: Y) <: 

number (X) , 

number (Y) , 

X >= Y 

-> (A \- X >= Y). 

it right(X < Y) <= 

number (X) , 

number (Y) , 

X<Y 

-> (A \- X < Y). 

Here number/1  is a predefined proviso. 
We try the query again: 

E ? -  g c l a  \ \ -  ( q s o r t ( [ 4 , 1 , 2 ] )  k-  X ) .  

X = a p p e n d ( q s o r t ( [ 1 , 2 ] ) , c o n s ( 4 , q s o r t ( [ ] ) ) )  ? 

y e s  

We find out that the fault is that the q__axiom/3 strategy should not be applicable to 
append/2 .  We therefore refine the strategy q.._axiom/3 so it is not applicable to 
append/2 either: 

q_axiom(T, C, I) <: 

not (functor (T,qsort, i) , 

not (functor(T,append, 2) -> (I@[TI_] \- C) . 

q axiom(T,C,I) <= axiom(T,C,I). 

We try the query again: 

I ?- gcla \\- (qsort([4,1,2]) \- X). 

~  �9 

This time we get no answer at all. The problem is that the q__axiom/3 slrategy is appli- 
cable to c o n s / 2 .  So  we  refine q.. a x i o m / 3  once  again: 

q_axiom(T, C, I) <: 

not (functor(T,qsort,l)), 

not (functor (T,append, 2) ) , 

not(functor(T,cons,2)) -> (I@[Tt ] \- C). 

q axiom(T,C,I) <= axiom(T,C,I). 
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We try the query again: 

I ? -  g c l a  \ \ -  ( q s o r t ( [ 4 , 1 , 2 ] )  \ -  X ) .  

X = [ 1 , 2 , 4 ]  ? ; 

true ? 

yes 

The first answer is obviously correct but the second is not. Using the debugging facili- 
ties once again, we find out that the problem is that the d _ l  e f t / 3 rule is applicable to 
lists, so we construct a new strategy, q__d_le f t  / 3, that is not applicable to lists: 

q_d_left (T,I,_) <= 

not (functor(T, [],O)), 

not(functor(T,'.',2)) -> (I@[TI_] \-_). 

q_d_left (T,I,PT) <: d_left(T,I,PT) . 

We must also change the 1 e f t / 1 strategy, so that it uses the new q _ d _ l  e f t / 3 strategy 
instead of  the d _ l e  f t / 3 rule: 

left (PT) <= 

user add_left ( .... PT) , 

false_left (_) , 

v left ( .... PT), 

a left( .... PT,PT) , 

o_left ( .... PT, PT) , 

q_d left( .... PT), 

pi left ( .... PT) . 

We try the query again: 

1 2- gcla \k- \- X). 

X = 

X : 

yes 

[i,2,4] ? 

[I,2,_A] ? 

(qsort ( [4, I, 2] ) 

t 

The second answer is still wrong. The fault is that q_d_left/3 is applicable to num- 
bers. We therefore refine the strategy q _ d _ t  e f t / 3  sO it is not applicable to numbers 
either: 

q_d_left (T, I,_) <= 

not (functor (T, [] ,0)), 

not (functor(T,' .' ,2)) , 

not(number(T)) -> (I@[TI_] \-_). 

q_d_left (T,I,PT) <= d_left (T,I,PT) . 

We try the query once again: 

I 2- gcla \\- (qsort([4,1,2]) \- X). 

X = [ 1 , 2 , 4 ]  ? ; 

no 
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And finally we get all the correct answers and no others. 
One last simple refinement is to use the statistical package to remove unused strat- 

egies and rules. The complete rule definition thus becomes: 

arl <= q_axiom( ..... ),right(arl),left(arl) . 

left (PT) <= 

a_left ( .... PT, PT) , 

q_d_left ( .... PT), 

pi_left ( .... PT) . 

q_d_left (T, I,_) <= 

not (functor(T, [],0)), 

not(functor(T,' .',2)) , 

not(number(T)) -> (I@[Ti_] \- _) . 

q_d_left (T,I,PT) <: d_left(T,I,PT) . 

user_add_right (C,_) <= ge_right (C) ,it_right(C) . 

q__axiom(T, C, I) <= 

not (functor (T, qsort, I) ) , 

not (functor (T,append, 2) ) , 

not(functor(T,cons,2)) -> (I8[TI_] \- C). 

q_axiom(T,C,I) <= axiom(T,C,I). 

ge_right (X >= Y) <= 

number (X) , 

number (Y) , 

X >: Y 

-> (A \- X >= Y). 

It right(X < Y) <= 

number (X) , 

number (Y) , 

X<Y 

-> (A \- X < Y). 

constructor ( ' >=' ,2) . 

constructor ( '<' , 2) . 

4.3 Method 2 

First we use our knowledge about the general structure of GCLA programs. Among the 
default rules all but d l e f t / 3 ,  d _ r i g h t / 2  and axiom/3 are applicable to condition 

constructors only. One possible split is therefore the set of all constructors and the set 
of all conditions that are not constructors, that is terms: 

cond_constr(E) :- functor(E,F,A),constructor(F,A). 

terms(E) :- term(E) . 
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Now, all terms can in turn be divided into variables and terms that are not variables, that 
is atoms. We therefore split the t e r m s / 1  class into the set of variables and the set of  
atoms: 

vars(E) :- var(E) . 

atoms(E) :- atom(E). 

The atoms can be divided further into all defined atoms and all unde3~ned atoms. In this 
application we only want to apply the d_left/3 and d_right/2 roles to defined 
atoms. We also know that the only undefined atoms are numbers and lists, that is the 
data handled by the program, so one natural split could be the set o f  all defined atoms 
and the set of  all undefined atoms: 

def_atoms (E) :- 

functor (E,F,A) ,d_atoms (DA) ,member (F/A,DA) . 

under atoms(E) :- number(E). 

undef atoms(E) :- functor(E, [],0) ;functor(E, ' ',2) . 

In this application the defined atoms are qsort/I, split/4, append/2 and cons/2: 

d_atoms([qsort/l,split/4,append/2,cons/2]) . 

N o w  we use our knowledge about the application. Our intention is to use q s o r t / 1 ,  
append/2  and c o n s / 2  as functions and s p l  i t / 4  as a predicate. In GCLA functions 
are evaluated on the left side of  the object level sequent and predicates are used on the 
right. We therefore further divide the class de f _ a t  ores / 1 into the set of  defined atoms 
used to the left and the set of  defined atoms used to the right: 

def_atoms_r(E) :- 

functor (E, F,A), d_atoms_r (DA) ,member (F/A, DA) . 

def_atoms_l (E) �9 - 

functor (E, F,A) , d_atoms_l (DA) , member (F/A, DA) . 

d_atoms_r( [split/4] ) . 

d_atoms_l ( [qsort/1, append/2, cons/2 ] ) . 

We now conslruct our new q_d_right/2 strategy which restricts the d_right/2 rule 
to be applicable only to members of the class de f _ a t  oms_r  / 1, that is all defined atoms 
used to the right: 

q_d_rigth (C, PT) <= 

def atoms_r(C) -> (_ \- C). 

q_d_right (C, PT) <= d_right (C,PT) . 

T h e  d _ l  e f t / 3 rule  is  restr icted similarly by the q__d_l  e f t / 3 strategy. 
Since the ax iom/3  rule is used to unify the result of  a function application with the 

right hand side, we only want it to be applicable to numbers, lists and variables, that is 
to the members of the classes unde f _ a t o m s / 1  and v a r s / 1 .  We therefore create a new 
class, d a t a / t ,  which is the union of these two classes: 
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data(E) :- vats(E). 

data(E) :- undef_atoms(E). 

And He new q_axiom/3 sWamgy ~usbecom~: 

q_axiom(T,C,I) <= 

data(T), 

data(C) -> (I@[Tt_] \- C). 

q_axiom(T,C,I) <= axiom(T,C,I). 

WhS isle~are He strategies for ~efirstclass, cond_constr/l. We use~edefault 
stra~gy c_right/2toconstructournewq_c_right/2 stm~gy: 

q_c right(C,PT) <= 

cond_constr(C) -> (_ \- C). 

q_c right(C, PT) <= c_right(C,PT),ge_right(C),It right(C). 

Simfl~ly, q_c_le f t / 3 is defined by: 

q . _ c _ l e f t  (T, I ,  PT) <= 
c o n d _ c o n s t r ( T )  -> ( I@[TI_]  \ - _ ) .  

q_c_left (T,I,PT) <= c_left (T,I,PT) . 

Finally we must have a Dp-stra~gD qsort/0: 

qsort <= 

q_c_left( .... qsort), 

q_d_left( .... qsort), 

q_c_right(_,qsort), 

q_d_right(_,qsort), 

q_axiom( ..... ). 

Thus, He comple~ rule definition (where we 
becomes: 

% Class definitions 

cond_constr(E) 

def atoms r(E) 

def atoms_l(E) 

undef_atoms(E) 

unde f_at ores (E) 

data(E) :- vat(E) . 

data(E) :- undef_atoms(E). 

d_atoms_r([split/4]). 

d_atoms_l([qsort/l,append/2,cons/2]). 

% Strategy definitions 

qsort <: 

q_c_left( .... qsort), 

q_d_left( .... qsort), 

have removed redundant classes) 

:- functor(E,F,A),constructor(F,A). 

:- functor(E,F,A),d atoms_r(DA),member(F/A,DA). 

:- functor(E,F,A),d atoms l(DA),member(F/A, DA). 

:- number(E). 

:- functor(E, [],0);functor(E,'.',2). 
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q_c_right (_, qsort ) , 

q_d_right (_, qsort ) , 

q_axi om ( ..... ) . 

q_c_right (C, PT) <= 

cond_constr(C) -> (_ \- C). 

q_c_right(C, PT) <= c_right (C,PT) ,ge_right(C) ,it_right (C) . 

q_c_left (T, I, PT) <= 

cond_constr(T) -> (I@[TI_] \-_). 

q_c_left (T,I,PT) <= c_left (T,I,PT) . 

q_axiom(T,C, I) <= 

data (T) , 

data(C) -> (I@[TI_] \- C). 

q_axiom(T,C,I) <= axiom(T,C,I). 

q_d_rigth (C, PT) <= 

def_atoms_r(C) -> (_ \- C) . 

q_d_right (C, PT) <= d_right (C, PT) . 

ge_right (X >= Y) <= 

numbe r (X) , 

number (Y) , 

X >= Y 

-> (A \- X >: Y). 

It_right (X < Y) <= 

number (X) , 

number (Y) , 

X < Y 

-> (A \- X < Y). 

q_d_left (T, I, PT) <= 

def_atoms_l (T) -> (I@[TI_] \- _) . 

q_d_left (T,I,PT) <= d_left (T,I,PT) . 

constructor ( ' >= ' , 2) . 

constructor('<' ,2) . 

4.4 M e t h o d  3 

We will construct the procedural part working top-down from the intended query. As 
the set o f  rules ~, we use the predefined rules augmented with the rules g e _ r i g h t / 1  
and l t _ r i g h t  / 1 used above. We will use a list, Under,  to hold all meta level sequents 
that we  have assumed we have procedural parts for but not yet defined. When this list 
is empty the construction of  the procedural part is finished. 

When we start Und e r  contains one element, the intended query, 
Undef = [ (qsort (I) \\- (qsort (L) \- Sorted) ) ]. We then define the strat- 

egy qsort / i" 

qsort (I) <= d_left (qsort (_),I,qsort(_,I)) . 
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qsort (T, I) <= 

(I@[TIR] \- C). 

qsort (Til) <= 

qsort2 (T, I) . 

qsort2 ( [] , I) <= 

axiom( [ ] ,_, I) . 

qsort2 ((pi -- \ _),I) <: 

pi_left(_,I,pi left(_,I,a_left(_,I,split,append(I)))) . 

NOW Under contains two elements, Under = [ (split \\- (A \- 

split(F,R,G,L))), (append(I) \\- (A 1 ..... append(L1,L2), .... A n \- L)) ]. 

The next strategy to define is s p l  i t / 0. Method 3 tells us that each defined atom should 
have its own procedural part, but not how it should be implemented, so we have some 
freedom here. The definition of s p l i  t / 4  includes the two new condition constructors 
'>='/2 and '<'/2 so we need to use the ge_right/l and It_right/l rules. One 
definition of s p I i t / 0 that will do the job for us is: 

split <= 

v_right (_, split, split), 

d_right (split ( ....... ), split) , 

gt_right (_), 

It right(_) , 

true right. 

The list U n d e r  did not become any bigger by the definition of s p l i  t / 0 SO it only con- 
~ns one element, Under = [ (append (I) \ \- (A I ..... append (L1, L2) ..... A n \- 

L) ) ]. When we try to write the strategy append/1 we run into a problem; the first and 
third clauses of the definition of append/2 includes functionzl expressions which are 
unknown to us. We solve this problem by assuming that we have a strategy, e v a l  f un /  
3, that evaluates any functional expression correctly and use it in the definition of 
append2 / i: 

append(I)<= d left (append(_,_) ,I,append2 (I)) . 

append2 (I) <= 

pi_left (_, I, a_left (_, I,a_right (_, 

eval_fun (_, [ ) ,_) ) ,append(I) ) ) , 

eval_fun (_, I,_) . 

Again Under holds only one element, Under = [(eval_fun(T,I, PT) \\- 

(I@ [TI R] k-  C) ) ]. When we define e v a l f u n / 3  w e  w o u l d  like to use  the fact that 
the method ensures that we have procedural parts associated with each atom, that assure 
that it is used correctly. We do this by defining a proviso, ca se  o f / 3 ,  which will 
choose the correct strategy forevaluating any functional expression. Lists and numbers 
are regarded as fully evaluated functional expressions whose correct procedural part is 
ax iom/3 :  

eval_fun (T, I, PT) <= 

case_of(T,I,PT) -> (I@[TIR] \- C). 

eval fun(T,I,PT) <= PT. 
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case_of (cons (_,_) , I, cons (I)) . 

case_of (append (_,_) , I, append (I)) . 

case_of (qsort (_) , I,qsort (I)) . 

case_of(T,I,axiom( .... I)) :- canon(T). 

canon([]). 

canon(X) :- functor(X, ' ',2). 

canon(X) :- number(X) . 

In the proviso case of/3 we introduced a new strategy cons/i, SO Undef is still not 
empty, Under = [(cons(I) \\- (A I ..... cons(H,T) ..... A n \- L))]. When we 

define c o n s / 1  we  again encounter unknown functional expressions, to be evaluated, 
and use the e v a l _ f u n / 3  slrategy: 

cons (I) <= 

d_left (cons(_,_),I,pi_left(_,I,pi left(_,I,a_left(_,I, 

v_right (_, a_right (_, eval_fun (_, [ ], _) ), 

a_right (_, eval_fun (_, [ ] , _) ) ) , 

axiom( .... I) ) ) ) ) . 

Now Under  is empty, so we  are finished. In the rule definition be low we  used a more 
efficient sp  1 i t / 0  strategy than the one defined above: 

% top-level strategy 

% qsort \\- (I@[qsort(List) IR] \- SortedList). 

qsort <= qsort (_). 

qsort(I) <: d_left(qsort(_),I,qsort(_,I)) . 

qsort(T,I) <= 

(I@[TiR] \- C). 

qsort(T,I) <= 

qsort2 (T,I) . 

qsort2 ([] ,I) <= 

axiom( [] ,_, I) . 

qsort2 ((pi _ \ _),I) <= 

pi left (_,I,pi left (_,I,a left (_,I,split,append(I)))) . 

% split \\- (A \- split(A,B,C,D)). 

split <= d right (split( ....... ),split(_)) . 

split (C) <= 

(_ \- C). 

split (C) <= 

split2 (C) . 

split2 (true) <= 

t rue_right. 

split2 ((_ >= _,_)) <= 

v right(_, ge right(_),split) . 

split2 ((_ < _,_)) <= 

v_right (_, It_right (_) , split) . 
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% append(I) \\- (l@[append(Li,L2)IR] \-L). 

append(1) <= d left (append(_,_),I,append2(I)). 

append2 (I) <: 

pi_left(_,I,a left(_,I, a right(_, 

eval_fun (_, [ ] ,_) ) , append(I) ) ) , 

eval fun (_, I,_) . % only tried if the strategy 

% the line above fails 

% cons \\- (I8[cons(Hd,Tl)/R] \- L). 

cons (I) <= 

d left (cons(_,_),I,pi left(_, I,pi left(_,I, 

a_left (_,I,v right (_,a_right (_,eval fun(_, [] ,_)) , 

a_right(_,eval fun(_, [],_) )) , 

axiom( .... I) ) ) ) ) . 

% eval_fun(T,I,PT) \\- (I@[TIR] 

eval_fun (T, I, PT) <-- 

case of(T,I,PT) -> (I@[TIR] 

eval_fun(T,I,PT) <= PT. 

case_of (cons (_,_) , I, cons (I)) . 

case_of (append (_,_), I, append (I)) . 

case of (qsort (_) ,I,qsort (I)) . 

case_of (T, I, axiom ( .... I)) :- 

canon(I]). 

canon(X) :- functor(X,'.',2) . 

canon(X) :- number (X) . 

ge_right (X >= Y) <= 

number (X) , 

number (Y) , 

X >= Y 

-> (A \- X >= Y). 

It_right (X < Y) <= 

number (X) , 

number (Y), 

X< Y 

- >  (A \ -  X < Y). 

constructor ( ' >= ' , 2) . 

constructor ( ' < ' , 2) . 

\- C) 

\- C). 

canon(T). 

o n  

5 Discussion 

In this section we will evaluate each method according to five criteria on how good we 
perceive the resulting programs to be. 

The following criteria will be used: 

1. Correctness--  Naturally, one of the major requirements of a programming metho- 
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dology is to ensure a correct result. We will use the correctness criterion as a mea- 
sure of how easy it is to construct correct programs, that is to what extent the 
method ensures a correct result and how easy it is to be convinced that the program 
is correct. A program is correct if it has the intended behavior, that is for each of 
the intended queries we receive all correct answers and no others. Since we are only 
interested in the construction of the procedural part, that is the rule definition, we 
can assume that the definition is intuitively correct. 
E f f i c i e n c y - -  We also want to compare the efficiency of the resulting programs. The 
term efficiency involves not only such things as execution time and the size of the 
programs, but also the overall cost of developing programs using the method in 
question. 
Readabi l i ty  - -  We will use the readability criterion to measure the extent to which 
the particular method ensures that the resulting programs are easy to read and easy 
to understand. 
Main tenance  - -  Maintenance is an important issue when programming-in-the- 
large. We will use the term maintenance to measure the extent to which the method 
in question ensures that the resulting programs are easy to maintain, that is how 
much exlra work is implied by a change to the definition or the rule definition. 
Reusabi l i ty  - -  Another important issue when programming-in-the-large is the 
notion of reusability. By this we mean to what extent the resulting programs can be 
used in a large number of different queries and to what extent the specific method 
supports modular programming, that is the possibility of saving programs or parts 
of programs in libraries for later usage in other programs, if different parts of the 
programs can easily be replaced by more efficient ones etc. For the purpose of the 
discussion of this criterion we define a module  to mean a definition together with a 
corresponding rule definition with a well-defined interface of queries. 

5.1 E v a l u a t i o n  o f  M e t h o d  1 

Correc tness .  If  the number of possible queries is small we are likely to be able to con- 
vince ourselves of the correctness of the program, but if the number of possible queries 
is so large that there is no way we can test every query, then it could be very hard to 
decide whether the current rule definition is capable of deriving all the correct answers 
or not. 

This uncertainty goes back to the fact that the rule definition is a result of a trial and 

error-process; we start out testing a very general strategy and only if this slxategy fails 
in giving us all the correct answers, or if it gives us wrong answers, we refine the strat- 
egy to a less general one to remedy this misbehavior. Then we start testing this refined 
strategy and so on. The problem is that we cannot be sure we have tested all possible 
cases, and as we all know testing can only be used to show the presence of faults, not 
their absence. 

The uncertainty is also due to the fact that the program as a whole is the result of 
stepwise refinement, that is successive updates to the definition and the rule definition, 
and when we use Method 1 to construct programs we have very little conlxol over all 
consequences that a change to the definition or the rule definition brings with it, espe- 
cially when the programs are large. 
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Efficiency. Sometimes we do not need to write any strategies or inference rules at all, 
the default strategies and the default rules will do. This makes many of the resulting pro- 
grams very manageable in size. 

Due to the fact that the method by itself removes very little indeterminism in the 
search space, the resulting programs are often slow however. We can of course keep on 
refining the rule definition until we have a version that is efficient enough. 

Readability. On one hand, since programs often are very small and make extensive 
use of default strategies and rules, they are very comprehensible. On the other hand, if 
you keep on refining long enough so that the final rule definition consists of many highly 
specialized strategies and rules, all very much alike in form, with conditions and excep- 
tions on their respective applicability in the form of provisos, then the resulting pro- 
grams are not likely to be comprehensible at all. 

Maintenance. Since the rule definition to a large extent consists of very general rules 
and strategies, a change or addition to the definition does not necessarily imply a corre- 
sponding change or addition to the rule definition. 

The first problem then is to find out if we must change the rule definition as well. As 
long as the programs are small and simple this is not much of a problem, but for larger 
and more complex programs this task can be very time-consuming and tedious. 

If we find out that the rule definition indeed has to be changed, then another problem 
arises. Method 1 is based on the principle that we use as general strategies and inference 
rules as possible. This means that many strategies and rules are applicable to many dif- 
ferent derivation steps in possibly many different queries. Therefore, when we change 
the rule definition we have to make sure that this change does not have any other effects 
than those intended, as for example redundant, missing or wrong answers and infinite 
loops. Once again, if the programs are small and simple this is not a serious problem, 
but for larger and more complex programs this is a very time-consuming and non-trivial 
task. 

The fact is that for large programs the work needed to overcome these two problems 
is so time-consuming that it is seldom carried out in practice. It is due to this fact that it 
is so hard to be convinced of the correctness of large complex programs, developed 
using Method 1. 

Reusability. Due to the very general rule definition, programs constructed with 
Method 1 can often be used in a large number of different queries. However, by the 
same reason it can be very hard to reuse programs or parts of programs developed using 
Method 1 in other programs developed using the same method, since it's likely that their 
respective rule definitions (which are very general) will get into conflict with each other. 
But, as we will see in Sect. 5.3, if we want to reuse programs or parts of programs con- 
structed with Method 1 in programs conslructed with Method 3, we will not have this 
problem. 

Thus, the reusability of programs developed using Method 1 depends on what kind 
of programs we want to reuse them in. 
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5.2 Evaluation of Method 2 

Correctness .  Programs developed with Method 1 and Method 2 respectively, can be 
very much alike in form. The most important difference is that with the former method, 
programs are constructed in a rather ad hoc way; the final programs are the result of a 
trial and error-process. A program is refined through a series of changes to the defini- 
tion and to the rule definition, and the essential thing about this is that these changes are 
to a great extent based on the program's external behavior, not on any deeper knowledge 
about the program itself or the data handled by the program. 

In the latter method, programs are constructed using knowledge about the classifi- 
cation, the programs themselves and the data handled by the programs. This knowledge 
makes it easier to be convinced that the programs are correct. 

Efficiency. Compared to programs developed with Method I, programs constructed 
using Method 2 are often somewhat larger. However, when it comes to execution time, 
programs developed using Method 2 are generally faster, since much of the indetermin- 
ism, which when using Method 1 requires a lot of refining to get rid off, disappears more 
or less automatically in Method 2, when we make our classification. Thus, we get faster 
programs for the same amount of work, by using Method 2 rather than Method 1. 

Readabil i ty .  A program constructed using Method 2 is mostly based on the program- 
mer's knowledge about the program and on the knowledge about the objects handled by 
the program. Therefore, if we understand the classification we will understand the pro- 
gram. 

The rule definitions of the resulting programs often consist of very few strategies 
and rules, which make them even easier to understand. 

Main tenance .  When we have changed the definition we must do the following, to 
ensure that the rule definition can be used in the intended queries: 

1. For every new object that belongs to an already existing class, we add the new 
object as a new member of the class in question. No strategies or rules have to be 
changed. 

2. For every new object that belongs to a new class, we define the new class and add 
the new object as a new member of the newly defined class. We then have to change 
all strategies and rules so that they correctly handle the new class. This work can 
be very time-consuming. 

If the changes only involves objects that are already members of existing classes, we do 
not have to do anything. 

If we change a strategy or a rule in the rule definition, we only have to make sure 
that the new strategy or rule correctly handles all existing classes. Of course, this work 
can be very time-consuming. 

By introducing well-defined classes of objects we get a better control of the effects 



148 

caused by changes to the definition and the rule definition, compared to what we get 
using Method 1. Many of the costly controls needed in the latter method, can in the 
former method be reduced to less costly controls within a single class. 

Reusability. Due to the very general rule definition, programs developed using 
Method 2 can often be used in a large number of different queries. Yet, by the same rea- 
sons as in Method 1, it can be difficult to reuse programs or parts of programs developed 
using Method 2 in other programs developed using the same method (or Method 1). 

Nevertheless, we can use Method 2 to develop libraries of rule definitions for certain 
classes of programs, for example functional and object-oriented programs. 

5.3 Evaluation of Method 3 

Correctness.  The rule definitions of programs constructed using Method 3, consist of 
a hierarchy of strategies, at the top of which we find the strategies that are used by the 
user in the derivations of the queries, and in the bottom of which we find the strategies 
and rules that are used in the derivations of the individual atoms. 

Since the connection between each atom in the definition and the corresponding part 
of the rule definition (that is the part that consists of those strategies and rules that are 
used in the derivations of this particular atom) is very direct, it is most of the time very 
easy to be convinced that the program is correct. 

Method 3 also gives, at least some support to modular programming, which gives us 
the possibility of using library definitions, with corresponding rule definitions, in our 
programs. These definitions can often a priori be considered correct. 

Efficiency. One can say that Method 3 is based on the principle: "One atom p one 
strategy". This makes the rule definitions of the resulting programs very large, in some 
cases even as large as the definition itself. When constructing programs using Method 3, 
we may therefore get the feeling of "writing the program twice". 

The large rule definitions and all this writing are a severe drawback of Method 3. 
However, the writing of the strategies often follows certain patterns, and most of the 
work of constructing the rule definition can therefore be carried out more or less 
mechanically. The possibility of using library definitions, with corresponding rule def- 
initions, also reduces this work. 

Programs constructed using Method 3 are often very fast. There are two main rea- 
sons for this: 

1. The hierarchical structure of the rule definition implies that in every step of the der- 
ivation of a query, large parts of the search space can be cut away. 

2. The method encourages the programmer to write very specialized and efficient 
strategies for common definitions. In practice, large parts of the derivation of a 
query is therefore completely deterministic. 

Readability. Programs constructed using Method 3 often have large rule definitions 
and may therefore be hard to understand. Still, the "one atom - -  one strategy"-principle 
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and the hierarchical structure of the rule definitions make it very easy to find those strat- 
egies and rules that handle a specific part of the definition and vice versa, especially if 
we follow the convention of naming the strategies after the atoms they handle. 

The possibility of using common library definitions, with corresponding rule defini- 
tions, also increases the understanding of the programs. 

Main tenance .  Programs developed using Method 3 are easy to maintain. This is due 
to the direct connection between the atoms of the definition and the corresponding part 
of the rule definition. 

If we change some atoms in the definition, only those strategies corresponding to 
these atoms might need to be changed, no other strategies have to be considered. 

If we change an already existing strategy in the rule definition, we only have to make 
sure that the corresponding atoms in the definition, are handled correctly by the new 
strategy. We also do not need to worry about any unwanted side-effects in the other 
strategies, caused by this change. 

Thus, we see that changes to the definition and the rule definition are local, wedo  
not have to worry about any global side-effects. Most of the time this is exactly what 
we want, but it also implies that it is hard to carry out changes, where we really do want 
to have a global effect. 

Reusabili ty.  Method 3 is the only method that can be said to give any real support to 
modular programming. Thanks to the very direct connection between the atoms of the 
definition and the corresponding strategies in the rule definition, it is easy to develop 
small independent definitions, with corresponding rule definitions, which can be assem- 
bled into larger programs, or be put in libraries of common definitions for later usage in 
other programs. 

Still, for the same reason, programs developed using Method 3 are less flexible 
when it comes to queries, compared to the two previous methods. The rule definition is 
often tailored to work with a very small number of different queries. Of course, we can 
always write additional strategies and rules that can be used in a larger number of que- 
ries, but this could mean that we have to write a new version of the entire rule definition. 

6 Conclusions 

In this paper we have presented three methods of constructing the procedural part of a 
GCLA program: minimal stepwise refinement, splitting the condition universe and local 
strategies. We have also compared these methods according to five criteria: correctness, 
efficiency, readability, maintenance and reusability. We found that: 

�9 With Method i we get small but slow programs. The programs can be hard to 
understand and it is also often hard to be convinced of the correctness of the pro- 
grams. The resulting programs are hard to maintain and the method does not give 
any support to modular programming. One can argue that Method 1 is not really a 
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method for constructing the procedural part of large programs, since it lacks most 
of the properties such a method should have. For small programs this method is 
probably the best, though. 

�9 Method 2 comes somewhere in between Method 1 and Method 3. The resulting 
programs are fairly small and generally faster than programs constructed with 
Method 1 but slower than programs constructed with Method 3. One can easily be 
convinced of the correctness of the programs and the programs are often easy to 
maintain. Still, Method 2 gives very little support to modular programming. There- 
fore, Method 2 is best suited for small to moderate-sized programs. 

�9 Method 3 is the method best suited for large and complex programs. The resulting 
programs are easy to understand, easy to maintain, often very fast and one can eas- 
ily be convinced of the correctness of the programs. Method 3 is the only method 
that gives any real support to modular programming. However, programs devel- 
oped using Method 3 are often very large and require a lot of work to develop. 
Method 3 is therefore not suited for small programs. 

One should note that in the discussion of reusability, and especially modular program- 
ming, in the previous section, an underlying assumption is that the programmer himself 
(herself) has to ensure that no naming conflicts occur among the atoms of the different 
definitions and rule definitions. This is of course not satisfactory and one conclusion we 
can make is that if GCLA ever should be used to develop large and complex programs 
some sort of module system needs to be incorporated into future versions of the GCLA 
system. 

Another conclusion we can make is that there is a need for more sophisticated tools 
for helping the user in constructing the control part of a GCLA program. Even if we do 
as little as possible, for instance by using the first method described in this paper, one 
fact still holds: large GCLA programs often need large control parts. We have in Sect. 5 
already pointed out that at least some of the work constructing the conlrol part could be 
automated. This requires more sophisticated tools than those offered by the current ver- 
sion of the GCLA system. An example of one such tool is a graphical proof-editor in 
which the user can directly manipulate the proof-tree of a query; adding and cutting 
branches at will. 
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