Birkhoff’s HSP-Theorem for Cumulative
Logic Programs

Beatrice Amrhein

ETH Ziirich Universitat Tibingen
amrhein@math.ethz.ch

Abstract. Birkhoff’s HSP theorem is that the models of a set of alge-
braic equations form a variety, i.e. a category of algebras which admits
homomorphic images, subalgebras and products. We show here first, that
every equational set of retract structures in combinatory logic is a va-
riety, and second, that every set of combinators, closed under certain
operations, is equational. It follows that the models of cumulative logic
programs form an equational variety.

1 Motivation

The solutions of a set of equations form a structure, which is closed under the
operations of building substructures, homomorphic images and products of so-
lutions. This was first shown by G. Birkhoff [5] in 1935 for algebraic equations.
We examined here the characterisation of solutions of cumulative logic programs.
As in the case of symmetric search trees, where this knowledge can be used to
cut symmetric branches, knowledge about the structure of the solutions of a
cumulative logic program can speed up their computation.

2 Cumulative Logic Programs and Combinatory Models

To perform transformations on arbitrary knowledge bases, (even ones containing
rule terms) and to allow more than one argument to such transformations, we
have to build a cumulative hierarchy of rules. Therefore, the language of cumu-
lative logic programs was introduced [ 6], which is based on the language of logic

programs with the following extensions: Clauses are written as {b1,...,bx} — h,
where the head h and the body {li,...,0x} are either atomic formulas or again
clauses.

This cumulative formation of rules to an arbitrary level has its mathematical
counterpart in graph models D4.

Definition1. Let A be a set of atomic formulas. D4 := (26(4); o) is a graph
model over A, where G(A) is defined recursively:

n+1(A) =Gy (A) U{a —a:a € Gy(A), a C G,(A), a finite}
G(4) = Gn(4)



25

Note that within this cumulative hierarchy, pure logic programs are simply sub-
sets of Gy(A). The inclusion of implications in goal formulae, as proposed in [9]
by Miller et al, leads then to subsets of G(A) of the form

{alq(azﬁ(...__*an)...), }

where a; (1 <1 < n) are finite subsets of A.

Graph models are rich enough in structure to form models for knowledge
bases of arbitrary complexity, where even transformations of functions (such as
derivation or fixed point operation) are included as elements. [1]

The application operation o is defined as:
VoW :={a:a—aeV,a CW}

The result of applying V to W depends on the elementary instructions p — =
of V, which give output r any time the input W contains p. The application
operation can be used to explain the execution of pure logic programs as a
solution process for a corresponding fix-point equation as in the case of pure
logic programs, the application operation o corresponds to Kowalski’s semantics
operator Tp as defined in [8], i.e. for a combinator V' and a set W of ground
terms we obtain

VoW = Tp, (W)
where Py is the logic program derived from combinator V.

It’s a well-known fact that these structures (QG(A) ;o) builld combinatory
algebras.

Definition2. [3] Aun applicative structure M := (M; ) is an algebraic struc-
ture with carrier set M and a binary operation -, which we call application. By
combinatory algebra we denote an applicative structure M := (M ;) which is
combinatory complete, which means that for every term ¢(vy, ..., v5) (built
up from elements of M and vanables by means of the application - and paren-
theses), an element T € M exists such that Ymy, ... my € M :

T-my---mp =t(my,...,mg)

Lemma 3 Schonfinkel, Curry. An applicative structure M is combinatory
complete iff there exists K and S such that

Yvy, vy Kvivy = vy
Yuy, va, vz : Svivpvs = vivz(vavs)

In order to present a readable and comprehensive treatment of the objects
in a graph model D4 the following notation will be used:



26

Variables: a,b,¢, . .. for elements of A
r,s,t,...  for elements of G(A)
0,0,7,...  for finite subsets of G(A)
v.Ww for elements of Dy
Terms: UVW for (U o V) o W, 1.e. we employ left-associativity and
omit o

o — p—r foro— (p— r);right-associativity for arrow terms
corresponds to the left-associativity for the application
We define
K={c—{(p—r)): reo}
S={(r—=(c—=(—r)): Ipo,...,pn Cp,3r1,...,7n:
pi—ori€o(1<i<n), (po— {r1,...,mn}t—r))ET}
With this we obtain
Lemmad4. Every graph model is a combinatory algebra.
Definition5. M := (M; - K,S,L) is a combinatory model if M :=
(M; -, K,S) is a combinatory algebra with combinators Lj (k € IN) satisfy-
ing the axioms:

Yu,v1,..., 0k EM : Liuvy---vp = uvy v (1)
Vul,uz (S M . ( Lk’ul = LkUz
SV, ., v EM jugvy - v = uavy - vk ) (2)

As can easily be seen, the graph model combinators

Lk+1 = {po—)(----—)(pk—-—yr)...):
I Cpi (1<i<k), P~ (= (pp—1) ) €Epo}

have the above mentioned properties (1) and (2), which means that D4 is indeed
a combinatory model.

When querying a Prolog program, the resolution mechanism implicitly sear-
ches for the least fixed point of a program equation v = F - v. By combinatory
completeness, we can state a combinator Y with the property:

YV = V(YV)

which guarantees solutions for every fix-point program-equation in any graph
model.

Equations of cumulative logic programs are solved explicitly using the algo-
rithms formulated in [10] in the case of fix-point equations, or in more general
cases using the semi-algorithm as sketched in 7]

A problem is in general a set of equations < a,b > where a and ) are
combinators (programs). Solutions of a problem are, therefore, again elements
of the graph model, which means, again cumulative logic programs. In general
we get an (program-)approximation to a solution in the sense of [6], in more
special cases the solutions can be found in the ground set A [10].



27
3 Definitions

In the original Theorem of Birkhoff, the signature of the algebras has to be fixed
to define the language of the equations. In an analogous way, we first have to
determine the language of the considered equations.

Definition6. Let M be a combinatory model. Let @ := {#; : j € J} be a
set of distinguished combinatorsin M. s is called @-termif s € @, s = K or
s =8, and if s;,sy are O-terms, then (s;s3) is also a @-term.

A pair < s,t > is called @-equation, if s and ¢ are @-terms, or if there is a
k€ IN with s = L;s’ and t = Lit', where s’ and t' are ©-terms.

Because of combinatory completeness, every term ¢ can be written in the
form t'vy---v;, where v1,,...,v; are the variables contained in t. We will,
therefore, restrict our attention to @-equations.

In the first section, retractions will play the role of the solution sets (as do
algebras in the original theorem of Birkhoff).

Definition7. Let M be a combinatory model. A combinator x in M is called
retraction, if for all v € M:

z(zv) = av
With retract of « we denote the set ret(z):= {v € M : av = v}.

We can now build restricted quantifier eliminators over retractions. For an
arbitrary retraction = we denote by

LY := BL(CBxz), and L} :=B(BL(CBz))(BL})
where B and C are combinators defined as:

Yo, v2,v3 : Buvivevy = vi(vavs)

and
Vvl,vz,vg . Cv1v21)3 = V103V

Then, we can show:

Lemma 8. For any retraction z, L® is a normalising combinator for the retract
of x, which means that for all k € IV:

Yu,v1,...,v% 1 Liuvy - v = u(wor) - (@og)

Yuy, ug (\7’1}1 v wp(aer) - (evg) = up(avy) - (Tvg) © Liug = Liu-z)



28

By these restricted quantifier eliminators, we can also eliminate variables in
equations like s(xvy) = t(xv1)(xvy), because:

s(zvy) = t(zv)(zvy) & K(s(xvi))(zvy) = t(zvy)(zvy)
& K(s(zvy))(zvy) = t(xvr)(wvy)
© BKs(zv)(zvz) = t(xv1)(zvy)
& L(BKs)= L3t

which means we can restrict our attention on equations without quantifiers.
The examined equations will be over a fixed language £:= ©@U{K,S} and
variables, which will be eliminated by L-combinators:

Definition 9. A retraction z is called a solution of a @-equation < Lys, Lyt >,
if LYs = Ljt which is equivalent to:

Yoy, .., z(s(zvr) - (ovg)) = e(t(zv) - - (zvr))

or literally, a retraction « is a solution of < Lgs, Lyt > if the following holds:
for all vy,...,vx € ret(x), if svy---vp € ret(x) and tvy---vgp € ret(x) then
svy - - v = tvy - - - v must hold.

Ezample. Let s and ¢ be combinators of the form:
s :={0—a, {v} = ({v} —>v): a€ A}
t = {{a} = a: o C G(A), o finite }
A retraction z is then a solution of < s,t > if the elements of ret(x) are of

the form {{a}, {{a} — a},.. .}.

Note 10. To keep the formulas readable, we introduce the following abbreviation:
Let z be a retraction, s a combinator and vy, ...,v; any variables. Then, we
write s(ZT) for s(zvy)- - - (xvg).

4 Birkhoff’s Theorem for Retract Equations

Our target will be to show Birkhoff’s theorem for equations with retract-solutions
in a combinatory model M. Solutions of such equations are originally algebras
or (relational) structures of some special type. Our approach will be different:
we examine equations whose solutions are retractions. These retractions are not
usually closed under @-terms, which means that solutions need not be structures
in the usual sense.

In [11] it 1s shown how to represent any algebraic or relational structure in a
combinatory model using retractions. Our approach is therefore a generalisation
of Birkhoff’s original theorem.

Assume z is a retract solution of some set of equations I'. First, we investi-
gate the question of how to find new solutions of I" from solutions z. For this
we define subretractions, homomorphic images and products of retractions.



29

Definition1l. y is called a @-subretraction of «, if

Yo y(yv) =y (3)
v oz(yv) = yv (4)

and for all 8; € ©, Yvy,.. ., v
z(6;(7v)) = y(0;(yv)) (5)

O-subretractions are retractions (3), which define subsets of the retract of «
(4) and which preserve @-equations (5). Hence, as can easily be observed, they
satisfy the following lemma:

Lemmal2. Let z be a retraction and y a @-subretraction of z. If = is a
solution of some @-equation < Lps, Lyt >, then y is a solution too.

Proof. Yuy,...,vs: o(5(T)) = 2(t(7))
= z(s(z(y))) = =(t(z(yv)))
= a(s(7)) = =((79))
= y(s()) = y(s(yv))
0

In a next step we define @-homomorphisms and show that @-homomorphic
images of a solution x are also solutions:

Definition13. Let x and y be retractions in M and ¢ € M a combinator. ¢
is called a @-homomorphisin from x to y if for all 4 € ©:

u(0(p(av))) = y(p(0(z7))) (6)
@ is called a O-epimorphesm, if for all 0;,0; € @:
Yor, .ot y(0i(p(ev))) = y(6; (p(ev)))
= y(0:(y)) = y(6; (¥v)) (7)

A combinator ¢ is a ©-homomorphismifit is compatible with ©-combinators
in ret(y) (6). However, to be a ©-epimorphism, ¢ needs not be onto ret(y).
With these deﬁnlhons we can show:

Lemma 14. Let z and y be retractions and ¢ a @-epimorphism from « to .
If z is a solution of a @-equation < Lps, Lyt >, then so is y.

Proof. Assume x is a solution of some @-equation < Lgs, Lyt >, so by definition
of L holds for all vy,..., v :

x(s(Z7)) = = (¢(TV))

and

y(p(s(70))) = y(p(s(2v)))

As ¢ is a ©-homomorphism, we can infer



30

Y(s(p(zv))) = y(s(p(zv)))
which is equivalent to
Ly (Brys) = L¥* (B*yt)
and by (7)
Ly(B*ys) = L{(B*y)
we conclude that y is also a solution. O

A third possibility to find new solutions is by forming products of given
solutions.

Definition15. Let J and {z(Jj): j € M} be retractions. y is called a @-pro-
duct of {x(Jj): j € M} if the following equations are satisfied:

for all v:
y(yv) = yv (8)

for all § € @ and all vq,..., v;:
y(0(yv1) - - - (yor))(J5)
= a(J5)(0(«(J5)(v1(I5))) - - («(T5)(vk (T 5)))) (9)

and

LY (y(6(7v))) = y(6(7v)) (10)

To be a @-product of a given set of retractions, y itself has to be a retraction
(8). The equations in (9) and (10) confirm that the @-terms in the projections
y(Jj) of y have the same normal form as those in (Jj). These conditions are
sufficient to satisfy the following lemma.

Lemmal6. Let {z(Jj) : j € M} be a set of solutions of some @-equation
< Lys, Lyt >. If yis a @-product of {z(Jj): j € M} then y is also a solution.

Proof. Let < Lgs,Lit > be a @-equation such that {z(Jj) : j € M} are
solutions of it. Hence:
Vi €ret(J), Vv, ..., v :

(@) (s((x5)(v17)) - - - (&) vd))) = (&) (E((27)(v17)) - - - ((2F)(vr 7))
By equation (9) we can infer for all vq,...,vg:
Vi: y(s(@)(J5) = y(t@))(J5)
By definition of L7 this is equivalent to:
L (y(s(7v))) = L7 (y(t(7v)))
and as the @-terms are in normal form over J we conclude:
y(s(@v)) = y(s(w))

thus, the product y is also a solution of < Lyps, Lit >. O



31

4.1 Proof of a HSP-Theorem for Retract-Solutions

Now, we have found operations, which preserve @-equations. It 1s much more dif-
ficult, however, to ascertain whether or not these three operations (@-subretrac-
tion, @-homomorphism, @-product) are sufficient to construct all solutions of a
given set of equations. The following theorem provides an answer:

Theorem17. Let M := (M, ,K,S, L} be a combinatory model. Given a
set K := {zi:i€ I} of retractions in M, K is equational iff K is closed under
O-subretractions, @-epimorphisms and @-products.

Proof. We will split the proof into lemmas 18 and 19. Let I'(z;) be the set of
©-equations, of which z; € K is a solution. We define I'(K) := NMjerI'(x;). Let
y be a solution of I'(K). M is not empty, so is ret(y) either, because for all v
in M, yv is an element of ret(y).

We define ¥ to be the following set of combinators:

v o= {p : p(yv) = x(p(yv))}

We choose a retraction y with the property [ret(x)| > [¥]. Without loss of
generality, we can assume that y is an enumeration of ¥ so ¥ = {p; : 1 € x}.
Let «X be a power of x. We then define the following combinator:

P(yu)(xi) = @i(yu)

In a next step we describe the image of ¢ in «X: Let vy be an element of
ret(y).
xXu Jv, u = ¢(yv)
zu =< X(0(zv)) vy, ..., vk, u = 2X(0(d(yv)))
zX(p(yvo)) else

Lemma 18. z i1s a @-subretraction of zX.

Proof. We first show that z is a retraction:

z(xXu) v, u = ¢(yv)

z(zu) = ¢ 2(2X(0(4(yv)))) or
z(zX(P(yvo))) else

As zX(¢(yv)) = ¢(yv), the assumption is clear.

In the second step, we show that z is a @-subretraction. We have to show
that for all § € @ and all vy,..., vg:

eX(0(zvy) -+ (zvr)) = 2(8(zvy) - - (2vr))

z(0(zv1) - - (zvr)) = 2(0(d(yw1)) - - - ($(ywe))) for some wy, ..., wg.



32

2(0((yw1)) - - - ((yw))) = 2(¢(O(yw1) - - - (ywr)))
aX(¢(0(ywy) - - - (ywi)))
eX(0(¢(yw1)) - - (d(yws)))

eX((zv1) - - (zve))

0

0

It remains to be shown that y is a homomorphic image of the retraction z.
We define:

v v, u = $(yv)
vl = {y(s(w(—zv>)) Jur,..., vk, 35 € 0 w= 2X(s(70))

Lemma1l9. % is a @-epimorphism from z to v.

Proof. Let u and v be combinators in ret(y) with « # v. By definition of ¢ we
can also infer that ¢v # ¢u, which means that zX(¢$v) # zX(du).

Assume that y(s(yv)) # y(t(yv)) for some O-terms Lis and Lit. As y
is a solution of I'(K) we can also infer that xX(s(z¥v)) # xX(¢(2Xv)), hence
2(s(zv)) # 2(t(zv)), from where we can infer, that ¢ is well defined. Obviously,
1 is also a @-epimorphism.

a

This completes the proof for Theorem 17, as we have constructed a @-subret-
raction z of a @-product zX and a @-homomorphism ¥ from z to y.

5 Birkhoff’s Theorem for Combinator Solutions

In a second approach, we drop the condition that solutions have to be retrac-
tioms, i.e. every combinator (or every cumulative logic program) is admitted as
a solution (or as an approximation).

The intended meaning of such a solution (set) is the following: Let « be any
combinator, a combinator a is an element of a set Z if a can be written as
a=a'zr. Or to put it simply:

% :={az:a € D}

This gives a generalization of the retract-construction we used in the last
section. Let z be any retraction, then za is an element of the retract of .
However, za can be written as za = Claz and because o’ = Cla, a is shown
to be an element of Z.

Therefore, the equations we examine will be of the form < s,t >, where a
combinator z is a solution of this equation, if « satisfies sx = tx.



33

As in the previous section, we first try to find operations which preserve @-
equations. Roughly speaking, these are multiplications from the right and from
the left. The strength of combinatory logic allows us to deduce some results from
these two operations already.

Definition20. Let @ be a set of distinguished combinators and I' any set of
©-equations, 1.e.
I C {<s,t>: st O-terms}

Now, a combinator z is a solution of I' if = satisfies sz = tx for every pair

<s,t>in I'.

This is a more general definition than the one we had before, because for every
term of the form z(s(Z®)) we can (by combinatory completeness) find a term of
the form s'z, which is equivalent to z(s(Zv)).

If sz =tz then for all combinators v and p, v(sx)p = v(tz)p holds. This
leads to the definition of @-restrictions.

Definition21. y is called a @-restriction of « if there are combinators v, u so
that for all O-terms s:

sy = v(sa)n (i)
Obviously, the following lemma is true:

Lemma 22. If a combinator « is a solution of a set of equations [, then every
restriction of x is a solution, too.

Proof. Let < 5,1 > be a @-equation and assume @ to be a solution of this
equation. Then:
st =te = Yy, v(sz) = v(tx)
= Yy, pv(so)p = vita)p
= sy =1y

|

© is always a @-restriction of itself. We can show this by choosing v = 1 = K,
because for all s, K(sa)K = sa.

We will call a combinator ¢ homomorphic on z if ¢ cormmutes on the ©-
elements of «.

Definition23. A combinator ¢ is a @-homomorphism on x if ¢ satisfies for

all @-terms u: p(ur) = u(pr)

wx 1s then called the @-homomorphic image of ¢.



34

Every homomorphism on z leads to a @-restriction of z. Because ¢(sz) is
equal to K(p(sz))! for all ©-terms s, and as K(p(sz))I isequal to BKp(sz)l,
we can choose v = BKyp and p = I and obtain s(pz) = v(sz)p.

Therefore, we can state:

Lemma24. If y is the homomorphic image of a combinator z (and of a O-
homomorphism ¢), then y is a O-restriction of x.

Lemma 25. Let z be a solution of any @-equation < s,t > and ¢ a @-homo-
morphism on z. If y = ¢z is the homomorphic image of ¢, then y is a solution
of <s,t>.

Proof. Let s and ¢ be any @-terms such that z is a solution of < s,¢ >.
st =tx = p(sz) = p(tz)
= s(px) = t(px)
= sy=1ty
a

We will call a combinator y a product of a set of combinators {«j: j € J},
if its projections (yj), 7 € J behave on @-terms the same way as (xj), j € J.

Definition26. Let J be any retraction and {zj:j € J} a set of combinators
in D. yis called a @-product of {xj:j € J} if for all O-terms s:

LY (sy) = sy (12)

and

L7 (sy) = L7 (Bsz) (13)

These two conditions are sufficient to show the following lemnma:

Lemma27. If {zj:j € J} are solutions of any @-equation < s, > and y is
a O-product of {xj: j € J}, then y is also a solution of < s,¢ >.

Proof. Assume y to be a @-product of the set of combinators {zj : j € J}, and
s and t two @-terms, so that for all 7in J, zj is a solution of < s,t >:

Vi s(e(J5)) = t(«(]5))

= V5 : (sy)(Jg) = (ty)(J7)
= L7(sy) = L7 (ty)

= sy =1y

because by equation (12) sy and ty are in normal form. O



35

Proof of the HSP-Theorem

We have shown that every @-restriction, every @-homomorphic image, and
every @-product of solutions of @-equations are new solutions. In the next theo-
rem we will show that the converse is also true. We begin with some definitions.

Let © be the set of O-terms and z a combinator. We define @ to be the
following set of combinators:

&, .= {p; : v, pj, Vs € O, pis = vj(sx)p;}
= {pj : @i = C(B(Cvjp;))z, vj, n; € D}

Let & be a retraction with [ret(x)| > |$].
For j € x let zj be the image of @ under ¢; ,i.e.

sz2(kj) = s (= vi(se)u;)
Some of the ¢; may occur more than once if |ret(x)| > |@,].

Lemma28. Let K := {x; : j € k} be a set of combinators in D, I" the sef of
O-equations which are satisfied by K and z the @-product of K. Let ¢, and
zj be the combinators as defined above and z the @-product of these zj, j € x.
Every solution y of I' is then a @-homomorphic image of z.

Proof. Define ¢ as the following homomorphism:
B(s5) = sy (= s(yz))
We have to show that 1) is well defined.
Assume sz =1z for any ©-terms s and ¢. By definition of z we find:
sz =12 = Y sz(kj) = 12(k])
= Vi () (s2) ) = () (1) (1)

Now, assume sz # tx. We choose ¢; with v = p = K and find v(sa)pn #£
v(tz)p. We can then infer sz # tz, but this is a contradiction.

So sz = tx must be true and, furthermore, sy = ty also, as y is a solution
of I'. So v is well defined. 0

Finally, we can show:
Theorem 29. Let D := (D; - K, S, L) be a combinatory model and KX = {u; :
J € J} aset of combinators which is closed under @-restrictions, @-products and
O-homomorphic images.

Let I" be the set of @-equations which are satisfied by all of these combinators
in K. If yis a solution of the equations I', then ¥ is an element of K.

Proof. Let & Le a @-product of {z; : j € J}. Defining 7 the same way as
above, every z(kj) is a O-restriction of the product x. So 7 is a @-product of
O-restrictions of .

y 1s then the @-homomorphic image of z where the homomorphisin v is
defined as before.



36

References

(1]

K. Aberer, Combinatory differentiul fields and constructive analysis. PhD thesis
ETH No. 9357, ETH Ziirich, (1991).

B. Amrhein, Universal Algebra in Combinatory Logic. PhD thesis ETH No. 10 005,
ETH Ziirich, (1992).

H.P. Barendregt. The Lambda Calculus. North Holland, Amsterdam, (1984).

M. J. Beeson. Foundations of Constructive Mathematics. Springer, (1984).

G. Birkhoff. On the Structure of Abstract Algebras. Proc. Cambridge Phil. Soc.
31, (1935). ~

E. Engeler. Cumulative Logic Programs and Modelling. Logic Colloquium ’86,
North Holland, pp. 83 - 93, (1988).

E. Engeler. Sketch of a New Discipline of Modelling. Report Math. Dept. ETH
Ziirich, (1988).

J. W. Lloyd. Foundations of Logic Programming. Springer (1987).

J. Hodas, D. Miller, Logic Programming in a Fragment of Intuitionistic Linear
Logic, Logics in Computer Science, Amsterdam, (1991).

G. Schwirzler Knowledge- Based Modelling of Cooperative Processes. PhD thesis
ETH No. 9926, ETH Ziirich (1992).

T. Weibel, Eztension of Combinatory Logic to a Theory of Combinatory Repre-
sentation, TCS, 97: 157-173, (1992).



