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A b s t r a c t .  A new practical method is given for the self-calibration of a 
camera. In this method, at least three images are taken from the same 
point in space with different orientations of the camera and calibration 
is computed from an analysis of point matches between the images. The 
method requires no knowledge of the orientations of the camera. Cali- 
bration is based on the image correspondences only. This method differs 
fundamentally from previous results by Maybank and Faugeras on self- 
calibration using the epipolar structure of image pairs. In the method of 
this paper, there is no epipolar structure since all images are taken from 
the same point in space. Since the images are all taken from the same 
point in space, determination of point matches is considerably easier than 
for images taken with a moving camera, since problems of occlusion or 
change of aspect or illumination do not occur. The calibration method 
is evaluated on several sets of synthetic and real image data. 

1 I n t r o d u c t i o n  

The possibility of calibrating a camera based on the identification of matching 
points in several views of a scene taken by the same camera has been shown by 
Maybank and Faugeras ([9, 5]). Using techniques of Projective Geometry  they 
showed tha t  each pair of views of the scene can be used to provide two quadratic 
equations in the five unknown parameters  of the camera. For this, it is necessary 
tha t  the two views be taken from different viewpoints. Given three pairs of views, 
a method of directly solving these equations to obtain the camera  calibration 
has been reported in [9, 5, 8] based on homotopy  continuation. I t  has been 
reported however that  this method requires extreme accuracy of computat ion,  
and seems not to be suitable for routine use. The applicability of these methods 
is further complicated by the problem of finding matched points in images taken 
f rom different viewpoints. This task can be difficult, because of occlusion, aspect 
changes and lighting changes tha t  inevitably occur when the camera moves. 

Recently several other papers on self-calibration have appeared ([3, 2, 4]). 
These papers all rely on known motions of the cameras. In [3] the motion of 
the camera is assumed to be purely translational.  In [2, 4] rotat ional  motions 
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of the camera are considered, but  the rotat ion must be through known angles. 
This simplifies the calibration task enormously. In this paper, on the other hand, 
calibration is carried out solely on the basis of image content, and without a priori 
assumptions of calibration values. Calibration can be carried out by finding point 
matches in as few as three images, though for best results, more images may be 
used. The method is based on analysis of the projective distortion that  an image 
undergoes when the camera is rotated. 

The calibration algorithm is demonstrated on real and synthetic data  and is 
shown to perform robustly in the presence of noise. 

2 T h e  C a m e r a  M o d e l  

A commonly used model for perspective cameras is that  of projective mapping 
from 3D projective space, :p3 to 2D projective space, P~. This map may be 
represented by a 3 x 4 matrix,  M of rank 3. The mapping from ? 93 to p2  takes 
the point x = (x, y, z, 1) T to u = M x  in homogeneous coordinates. (Note: the 
equality relation when applied to homogeneous vectors really means equality up 
to a non-zero scale factor). 

Provided the camera centre is not located on the plane at infinity, the matr ix  
M may be decomposed as M = K ( R [ - R t ) ,  where t represents the location of the 
camera , / g  is a rotation matr ix  representing the orientation of the camera with 
respect to an absolute coordinate frame, and K is an upper triangular matr ix  
called the calibration matrix of the camera. The matr ix  (R[ - Rt)  represents a 
rigid transformation (rotation and translation) of R 3. Given a matr ix  M it is a 
very simple mat ter  to obtain this decomposition, using the QR-decomposition 
of matrices ([1, 10]). 

The entries of the matr ix  K may be identified with certain physically mean- 
ingful quantities known as the internal parameters of the camera. Indeed, K may 
be written as 

K = k,, ,~ (1) 
0 

where 

- ku and k, are the magnifications in the two coordinate directions, 
- p~ and p. are the coordinates of the principal point, 
- s is a skew parameter  corresponding to a skewing of the coordinate axes. 

The purpose of this paper is to give a method for determining the matr ix  K 
of internal camera parameters.  In the method to be described, the camera will 
be held in the same location in space and rotated to different orientations. For 
convenience, the common location of all the cameras Will chosen to be the origin 
of the coordinate system. We will speak of several cameras each with its own 
camera matrix; whereas in fact the cameras will be the same camera, with the 
same interior parameters,  differing only in their orientation. Thus, we consider 
a set of cameras with camera matrices Mj = K(Rj  [ 0). 
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A point x = (x, y, z, 1) T is mapped by the camera Mj to the point u = K ( R j  I 
0)(x, y, z, 1) T = g R j ( x ,  y, z) m. In other words, since the last column of Mj is 
always 0, the fourth coordinate of x is immaterial.  Therefore, in this paper, we 
will drop the fourth column of the camera matrix,  and write instead Mj = K R j  
where K is upper triangular, the same for all cameras, and Rj  is a rotation 
matrix.  This transformation sends points x = (x, y, z) T to u = K R j x .  Note that  
the points kx, where k is a non-zero factor, are all mapped to the same point 
independent of the scale factor. Consequently, Mj represents a mapping between 
a two-dimensional projective object space with coordinates (x, y, z) T and two- 
dimensional projective image space with coordinates (u, v, w) "r. This situation 
has a very convenient feature, not shared by the usual 3D to 2D projective 
mapping, namely that  the mapping Mj from object to image space is invertible. 

3 R o t a t i n g  t h e  C a m e r a  

Now, we will consider what happens to an image taken by a camera when the 
camera is rotated. Thus, let M = K R  and M ~ = K R  ~ be two cameras, and let 
ui = K R x i  and u~ = K R ' x i .  From this it follows that  

u~ = K R ' R - 1 K - l u i  

This simple observation gives the following important  result 

P r o p o s i t i o n  1. Given a pair of images taken by cameras with the same interior 
parameters from the same location, then there is a projective transformation P 
taking one image to the other. Furthermore, P is of the form P = K R K  -1 
where R is a rotation matrix and K is the calibration matrix. 

In standard terminology, the relation P = K R K  -1 may be described by saying 
that  P is a conjugate of a rotation matrix,  K being the conjugating element. 

Now, suppose we have several cameras with matrices Mj = K R j  for j = 
0 , . . . ,  N.  For convenience, we assume that  the coordinate axes are chosen to be 
aligned with the 0-th camera, so that  R0 = I,  the identity matrix,  and hence 
M0 = K.  Write Pj = M j M o  1 = K R j K  -1. This gives the following proposition. 

P r o p o s i t i o n 2 .  Given a set of images J 0 , . . . J N  taken from the same location 
by cameras with the same calibration (or with the same camera), then there exist 
2D projective transforms, represented by matrices Pj,  taking image Jo to image 
Jj.  The matrix Pj may be written in the form 

Pj = K R j K  -1 

where K is the common calibration matrix of the cameras, and Rj  represents the 
rotation of the j - th camera with respect to the O-th. The camera matrix for the 
j - th  camera is Mj = K Rj  = Pj K .  
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4 A l g o r i t h m  I d e a  

The idea of the calibration algorithm will now be described. Suppose we are 
given a set of overlapping images Jo, J1 , . . . ,  JN where N _> 2, all taken from 
the same location with cameras with the same calibration (or the same camera). 
It is required to determine the common calibration matr ix  of the cameras. The 
steps of the algorithm are as follows. 

1. Establish point correspondences between the images. 
2. For each j = 1 , . . . ,  N compute the 2D projective transformation Pj match- 

ing J0 to Jj .  Image-to-image projective transformations may be computed 
from as few as four point matches. 

3. Find an upper triangular matr ix  K such that  K - 1 P j K  = R i is a rotation 
matr ix  for all j > 0. The matr ix  K is the calibration matr ix  of the cameras, 
and R i represents the orientation of the j - th camera with respect to the 
0-th camera. 

4. Refine the estimated camera matr ix  using Levenberg-Marquardt iterative 
techniques ([7]). 

The main subject of this paper comprises step 3 of this algorithm, which will 
be described in section 5. 

5 D e t e r m i n i n g  t h e  C a l i b r a t i o n  M a t r i x  

We now suppose that  transformations Pj are known for j = 1 , . . . ,  N. We wish 
to find the calibration matr ix  K,  which will be an upper triangular matr ix  sat- 
isfying the condition that  K - 1 P j K  = Rj is a rotation matr ix  for all j .  For 
any non-singular matr ix  A, let A - ' r  be the inverse transpose of A. For a ro- 
tat ion matr ix  R, we have R -- R -T .  From the relation Rj = K - 1 P j K  it 
follows that  Rj = K T p j - T K  -T .  Equating the two expressions for Rj gives 
K T p j - T K  -m = K - 1 P j K ,  from which it follows that  

( K K T ) p j  -T  = P j ( K K  T) (2) 

Given sufficiently many views and corresponding matrices Pj equation 2 may be 
used t o  solve for the entries of the matr ix  K K  T. In particular, denoting K K  T 
by C and writing 

(2 = K K  T = d 
e 

the equation (2) gives rise to a set of nine linear equations in the six independent 
entries of C'. It may be seen that  multiplying C' by a constant factor does not 
have any effect on the equation (2). Consequently, C can only be solved up to 
a constant factor. It turns out (see Section 6) that  because of redundancy, the 
nine equations derived from (2) for a single known transformation Pj are not 
sufficient to solve for C. However, if two or more such P1 are known, then we may 
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solve the overconstrained system of equations to find a least-squares solution for 
C. 

Once C = K K  T is found it is an easy matter  to solve for K using the Choleski 
factorization ([1, 10]). The factorization is unique, provided that  K is constrained 
to have positive diagonal entries. A solution for K is only possible when C is 
positive-definite. This is guaranteed for noise-free data, since by construction, 
C possesses such a factorization. With noisy input data, it is possible that  the 
matr ix C turns out not to be positive-definite, and so the calibration matrix 
can not be found. In practice this was found to happen only in the case of gross 
errors in the point matching. 

6 A r e  T w o  V i e w s  S u f f i c i e n t  ? 

We consider now what can be done with only two views. Two views are related 
via a projective transformation P = K R K  - 1 .  The fact that  P is a conjugate of 
a rotation matrix has the immediate consequence that  P and R have the same 
eigenvalues. The eigenvalues of a rotation matrix are equal to 1, exp(iS) and 
exp(-i6) ,  where 8 is the angle of rotation. Therefore, by finding the eigenvalues 
of P,  we are able to find the angle of rotation of R. 

Any rotation is conjugate to a rotation about the x axis. Since P is conjugate 
to a rotation through angle 8, it is therefore conjugate to a rotation about the 
x axis through angle 8, denoted R~. Thus, one may write P = H R ~ H  -1 , and 
hence P H  = H R s .  Knowing P and R~ one obtains H by solving a set of linear 
equations. Now, using QR decomposition, we may obtain H = K R ,  where K 
is upper-triangular and R is a rotation. It follows that  P = K R R ~ R - 1 K  - 1  = 

K f ~ K  - 1  as required. 
The matrix H found by solving P H  = H R =  is not unique, however. In fact, 

if P H  = H R = ,  and diag(~, 1, 1) is a diagonal matrix, then PHdiag(~,  1, 1) = 
gR~diag(a ,  1, 1) = Hdiag(a,  1, 1)R=, since diag(a, 1, 1) commutes with R~. It 
follows that  Hdiag(a,  1, 1) is an alternative solution. In short, there exists a one- 
parameter family of solutions for H (ignoring constant multiples), and hence for 
K.  However, with just one constraint on the calibration matrix it is possible to 
determine K.  Since the skew s is usually very small, the assumption that  s = 0 is 
a very reasonable one, commonly used by other authors ([2]). Alternatively, one 
may make other assumptions about the calibration, for instance that  the camera 
has square pixels, ku = k.. Under either of these assumption it is possible to 
find K from only two views. Details are deferred to another paper. 

7 E x p e r i m e n t a l  V e r i f i c a t i o n  o f  t h e  A l g o r i t h m  

7.1 Tests  w i t h  S y n t h e t i c  D a t a  

First of all, the calibration algorithm was carried out on synthetic data  to deter- 
mine its performance in the presence of noise. The synthetic data was created to 
simulate the images taken with a 35mm camera with a 50mm lens, and digitized 
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with 20 pixels per mm. The field of view is approximately 38 ~ x 26 ~ and the 
image measures 700 x 460 pixels. In this case, the magnification factors ku and 
kv both equal 1000. It was also assumed that  s = 0, and image coordinates were 
taken to be centred at the principal point of the image, so that  pu = pv = 0.0. 

A set of 100 random points were chosen and their computed image coordinates 
in a set of views were used to calibrate the camera. 

Tables 1 and 2 summarize the results obtained with three views. Experiments 
with a larger number of views gave more accurate results. Experiments with real 
images indicate that  images may be matched with an RMS error of about 0.5 
pixels, which suggests that  this is a realistic noise level. The results with synthetic 
data show that  the algorithms are robust for noise levels well beyond this range. 

Noise k, k~ p, p~ skew 
- 1000.0 1000.0 0.0 0.0 0.0 

0.125 999.2 999.5 -0.2 -0.3 0.0 
0,25 998.4 999.0 -0 .4-0 .5  0.1 
0.5 996.8 998.0 -0 .7-0 .9  0.1 
1.0 993.5 996.0 -1 .5-1 .8  0.2 
2.0 956.1 960.7 -7.5 19.1 0.8 
4.0 946.0 955.3 -12.4 26.4 1.5 
8.0 938.7 956.6 -15.8 23.6 3.7 
16.0 1077.9 1108.7-0.2-13.7 5.1 

Table 1. Calibration from three images in the presence of various degrees of noise 
with one run at each noise level. The size of the images was 700 • 460 pixels. The 
three view directions lie in a circle of radius 10 ~ The first row shows the expected 
parameter values, whereas subsequent rows show the effects of different levels of noise 
(measured in pixels). The table shows the calibration results after refinement using 
Levenberg-Marquardt iteration. Errors before the refinement were approximately twice 
as large. 

7 . 2  T e s t s  w i t h  R e a l  I m a g e s  

CMibration tests were carried out on two sets of real images. In the first set 
of images five images of the Capitol building in Washington were taken with a 
35mm camera with a zoom lens. The focal length of the lens was approximately 
40mm (though not known exactly, since it was a zoom lens). The images were 
printed, enlarged and digitized. The images were then scanned at 150 pixels per 
inch, resulting in images of size 776 x 536 pixels. Corresponding points were 
found between the images using STEREOSYS ([6]) and the calibration was 
carried out. A composite of the five images is shown in Fig 1. The calibration 

results are summarized in Table 3. 
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Noise statistic k,, k,, p,~ pv skew 
1.0 Mean 1016.2 1016.4 5.6 -13.0 -0.2 

a 29.1 29.2 7.5 14.7 0.9 
2.0 Mean 979.4 976.1 18.5-1.1 -4.2 

a 44.0 45.2 15.2 2.8 7.5 

T a b l e  2. Result of 100 runs with 3 views, with varying random noise of I and 2 pixels. 
The parameters ku and kv were highly correlated, whereas other parameters showed 
little correlation. The table shows the results after iterative refinement. However, the 
results before refinement were not significantly worse. 

k~ k~ pu p~ skew residual pixel error 
unrefined 1964.4 966.4 392.8 282.0 -4.9 unknown 

refined 956.8 959.3 392.0 281.4 -6.4 0.33 

Tab l e  3. Calibration results for five images of the Capitol with a 35mm camera. The 
results before and after iterative refinement are quite similar. The calibration seems 
very plausible, since the measured skew is small, magnification is almost the same in 
both directions and the principal point is near the centre of the image. The last column 
gives the difference in pixels between predicted image coordinates (given the calibration 
and reconstruction) and the measured values. A value of ku or kv of 960 corresponds 
to a focal length of approximately 35 • 960/776 = 43.3mm. 

F ig .  1. A composite image constructed from five different views of the Capitol. The 
composite image shows very clearly the projective distortion necessary for matching 
the images. Analysis of this projective distortion provides the basis for the calibration 
algorithm. 
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A second set of 29 images were taken covering a region of about  48 • 22 
degrees with a 105mm lens in a 35mm camera.  The images were of size 470 • 320 
pixels. The  lens has a fairly small field of view, which increases the  difficulty of 
calibration using the methods of this paper. Nevertheless, calibration results 
were satisfactory. 

8 Conclus ion 

The self-calibration algori thm given here represents a practical approach to cam- 
era calibration, giving good accuracy, and showing graceful degradation in the 
presence of noise. The non-iterative algori thm based on Choleski factorization 
does not show markedly inferior results than the opt imal  Levenberg-Marquardt  
method,  and should be preferred except where highest possible accuracy is 
needed. 

The  use of the iterative Levenberg-Marquardt  method to refine the results 
allows the calibration problem to be cast as a general parameter  fitting problem 
and allows the imposit ion of additional constraints, such as the known aspect 
rat io k J k v ,  zero skew, or even known rotat ion angles for the various images. 
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