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A b s t r a c t .  Rotationally symmetric operations in the image domain may 
give rise to shape distortions. This article describes a way of reducing 
this effect for a general class of methods for deriving 3-D shape cues from 
2-D image data,  which are based on the estimation of locally linearized 
distortion of brightness patterns. By extending the linear scale-space con- 
cept into an a]fine scale-space representation and performing ajfine shape 
adaption of the smoothing kernels, the accuracy of surface orientation 
estimates derived from texture and disparity cues can be improved by 
typically one order of magnitude. The reason for this is tha t  the image 
descriptors, on which the methods are based, will be relative invariant 
under affine transformations, and the error will thus be confined to the 
higher-order terms in the locally linearized perspective mapping. 

1 I n t r o d u c t i o n  

To derive any information from image data it is necessary to interact with it 
using operators. Some of the very fundamental questions in computer vision 
concern what operators to use, how large they should be, and where they should 
be applied. If these problems are not properly dealt with, the task of interpreting 
the operator response can be very hard. 

A systematic approach that has been developed to address the problem of 
what operators to use is scale-space theory. It focuses on the basic property of 
image data that image structures, in general, exist at different scales and one 
cannot expect to know in advance at what scales the relevant image structures 
manifest themselves. A fundamental assumption is that in cases when no a priori 

information is available, the only reasonable approach is to treat image structures 
at all scales simultaneously and as uniformly as possible. Analogously, all image 
points should be treated in a similar manner. 

Starting from these basic properties several axiomatic derivations have been 
given concerning what image operators to use (Witkin 1983; Koenderink 1984; 
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Babaud et al. 1986; Yuille and Poggio 1986; Lindeberg 1990, 1994; Koenderink 
and van Doorn 1990; Florack et al. 1992). The essence of these results is that if 
one assumes that the first stages of visual processing should be as uncommitted 
as possible and have no particular bias, then, within the class of linear transfor- 
mations, convoIution with Gaussian kernels and their derivatives is singled out 
as a canonical class of low-level operations. The output from these operators can 
in turn be used as a basis for a large number of early visual operations, such as 
feature detection, matching, and computation of shape cues. 

It is, however, well-known that shape distortions may arise due to the use 
of rotationally symmetric Gaussian kernels. In edge detection, smoothing across 
"object boundaries" can affect both the shape and the localization of edges. A 
corresponding problem arises when deriving three-dimensional shape cues from 
image data. In shape-from-texture, rotationally symmetric smoothing affects the 
anisotropy in the image (measured, for instance, in terms of the distribution 
of gradient directions), which means that surface orientation estimates may be 
biased. A common effect that occurs in practice is that the slant angle (the angle 
between the visual ray and the surface normal) is systematically underestimated. 

Non-uniform smoothing methods. To reduce the problems of shape distortion in 
edge detection, (Perona and Malik 1990) proposed the use of anisotropic diffusion 
as a generMization of the linear scale-space representation (which is generated 
by the (linear) diffusion equation 

1 V2L (1) O~L= 

with initial condition L(.; 0) = f ,  where f denotes the original signM). The 
basic idea is to modify the conductivity c(x; t) in a non-linear version of the 
diffusion equation OtL = 1 VT(c(x; t)VL) so as to favour intra-region smoothing 
to inter-region smoothing. This approach has then been furthered into different 
evolution schemes, e.g., (Nordstr6m 1990; Nitzberg and Shiota 1992; Alvarez et 
aI. 1993; Sapiro and Tannenbaum 1993; Florack et al. 1993). 

A]fine shape-adapted smoothing. Improvements relative to rotationally symmet- 
ric smoothing can also be obtained using linear methods. As has been argued 
by several authors, it can in certain situations be advantageous to use filters 
that correspond to different scale values in different directions; e.g., a large scale 
value along an edge, and a smMler scMe value in the perpendicular direction. 

The subject of this article is to develop how linear, or affine, shape adaption 
of the smoothing kernels can be used as an important mechanism for reducing 
the shape distortions when deriving three-dimensionM shape cues from image 
data. The basic approach we shall adopt for relating image data to local surface 
shape is to observe how surface patterns are distorted under projective trans- 
formations. This problem can be substantially simplified by approximating the 
projective transformation with its locally linearized component (the derivative). 
The application of this general idea to vision problems goes back to (at least) 
(Koenderink and van Doorn 1976), and has been explored in several shape-from- 
X problems, such as shape-from-texture (Gs 1992; Lindeberg and Gs 
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1993a; Malik and Rosenholtz 1993), shape-from-disparity (Wildes 1981; Jones 
and Malik 1992; Gs and Lindeberg 1993a), and motion estimation (Koen- 
derink and van Doom 1991; Weber and Malik 1993; Cipolla et al. 1993). 

The general advantage of shape-adaption in shape-from-texture has been 
pointed out by (Stone 1990). He proposed to adapt the smoothing kernels to 
be isotropic when backprojected to the surface, rather than in the image. He 
also suggested an iterative scheme, based on the principle of first estimating the 
surface orientation and then adapting the kernel shape accordingly. 

Here, we shall apply and generalize this idea, and demonstrate how the accu- 
racy of a general class of shape-from-X methods can be improved by extending 
the traditional linear scale-space representation to an affine scale-space represen- 
tation based on Gaussian kernels with arbitrary (positively definite) covariance 
matrices. We shall be mainly concerned with the monocular case, the shape-from- 
texture problem. The underlying idea is, however, of much wider generality, as 
will be illustrated on shape estimation from disparity gradients. 

Because of space constraints, the presentation is condensed and proofs omit- 
ted. For details and further background, see (Lindeberg and Gs 1993b). 

2 B a s i c  i d e a  f o r  s h a p e  a d a p t i o n  

To motivate the need for shape adaption and to illustrate the basic idea behind 
the presented approach, consider first a non-uniform Gaussian blob 

f (x ,y )  = g(x; (11 _> > 0), (2) 

as a simple linearized model of the projection of a rotationally symmetric Gaus- 
sian blob (where 11 and 12 are characteristic lengths in the x- and y-coordinate di- 
rections and g is the one-dimensional Gaussian, g(x; t) = (27rt)-U2 exp(-x2/2t)) .  
The foreshortening, e, and the slant angle, ~, are given by ~ = cos ~ = 12Ill, and 
the tilt direction (the direction of the projection of the surface normal onto the 
image plane) is 0 -- ~-/2. From the semi-group property of the Gaussian kernel 
g('; tl) * g(-; t2) = 9('; tl + t2), it follows that the scale-space representation 
of f at scale t is L(x, y; t) = g(x; l~ § t) g(y; l~ + t). Thus, under scale-space 
smoothing the estimate of foreshortening varies as 

~ ~ +t 
~(t) V ~  + t '  (3) 

i.e., it increases and tends to one, which means that after a sufficiently large 
amount of smoothing the image will eventually be interpreted as fiat. 

On the other ha.rid, if we have initial estimates of the slant angle and the tilt 
direction (~, 0), say computed using rotationally symmetric Gaussian smoothing, 
a straightforward compensation technique is to let the scale parameter in the (es- 
timated) tilt direction, denoted t{, and the scale parameter in the perpendicular 
direction, denoted tg, be related by 

t~ = t~ cos 2 ~. (4) 
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If this estimate is correct, then the slant estimate will be unaffected by the non- 
uniform smoothing operation. To illustrate this property, assume that the tilt 
estimate is correct (8 = ~ = 7r/2) and convolve the signal with a non-uniform 
Gaussian kernel g(x,y; tf, t$) = g(x; tf)g(y; t$), which gives L(x,y; t) = 
g(x; 121 + t~) g(y; l~ + Q). Then, the new foreshortening estimate is 

? = e ( ~ ; t ~ , t g ) = ~ + t  =lcosG l 1 + ~ \ ~  1 . (5) 

Clearly, ~ = ~ if (~ = o. In practice, however, we cannot assume that  true values of 
(0, 8) are known, since this requires knowledge about the solution to the problem 
we are to solve. A more realistic formulation is therefore to first compute initial 
surface orientation estimates using rotationally symmetric smoothing (based on 
the principle that  in situations when no a priori information is available, the 
first stages of visual processes should be as uncommitted as possible and have 
no particular bias). Then, when a hypothesis about a certain surface orientation 

(n0,00) has been established, the estimates can be improved iteratively 

5~+1 ---- arccos c(~-~; ts t$) = h(0~). (6) 

From the derivative of this mapping, 

t ~  < 1, (7) = l(0  c o s  % ?  = { l e t  = - + 

it is clear that  the true value of ~ is a convergent fixed point for (6). Hence, 
for the pat tern (2) the method is guaranteed to converge to the true solution, 
provided that the initial estimate is sufficiently close to the true value. 

Here, no assumptions have been made about what actual method should be 
used for computing surface orientation from image data. The example describes 
essential effects of the smoothing operation, which will arise in any shape-from-X 
method that  contains a smoothing module and interprets a non-uniform Gaus- 
sian blob as the projection of a rotationally symmetric one. 

3 Shape-from-texture and disparity-gradients: Review 

Computational  studies of shape-from-texture and shape-from-stereo-cues have 
been done by several researchers. For a literature survey, see the previously cited 
papers on the subjects. Here, we shall consider the approach by (Lindeberg and 
G&rding 1993a; Gs and Lindeberg 1993b), which will be briefly reviewed. 

Measuring local affine distortion. Let L : ]i{ 2 -+ ~ be the image brightness, VL = 
(Lz, Ly) T its gradient, and w : ]l{ 2 --+ 1~ a window function. An image descriptor 
that  allows for measurements of local linear distortions is the windowed second 
moment matrix. It: ~2 __~ SPSD(2).2 At any image point q ~ ]I{ 2 it is defined by 

J~x (VL)(x ' )  (VL)T(x ') g(q -- x') dx'. (8) 
~L(q) = 'eR~ 

2 Here, SPSD(2) stands for the cone of symmetric positive semidefinite 2 • 2 matrices. 
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Let R: I~ 2 ~ R be defined by L(~) = R(B~),  where B is an invertible 2 x 2 
matr ix representing a linear transformation. Then, #L(q) transforms as 

 L(q) = B  R(p) B, (9) 

where #R(p) is the second moment matrix of R at p = Bq computed using the 
"backprojected" normalized window function w' (~/ -  p) = (det B ) - l w ( ~ -  q). 

Shape-from-texture and disparity gradients. Given two measurements of ~L and 
#R, (9) can be used for recovering B (up to an arbitrary rotation). This gives a 
direct method for deriving surface orientation from monocular cues, by imposing 
specific assumptions on #R, e.g., that  PR is a constant times the unit matr ix ,  
#R = cI (weak isotropy), or that det#R is locally constant (constant area). 
Similarly, if two cameras fixate the same surface structure, a direct estimate of 
surface orientation can be obtained provided that the vergence angle is known. 

Scale selection. Computation of #L requires selection of two scale parameters,  
a local scale for computing derivatives, and an integration scale describing the 
size of the window function. The determination of these scales follows the scale 
selection method proposed by (Lindeberg 1993, 1994) based on extreme over 
scales of combinations of normalized derivatives, 0~ = v/t0x~. Integration scales 
are set to a constant "), (typically -y = 1, v~,  or 2) times the scales where 

det #L . . . . .  = t 2 det #L or trace ~-~ . . . .  L = t (Lxx + Lvy) (10) 

assume local maxima over scales. Then, local scales are selected from minima 
over scales of the normalized anisotropy, 

= v/trace 2 #n -- 4 det #L 
trace/2. L (11) 

4 A f f i n e  s c a l e - s p a c e  

When dealing with linear transformations of the spatial domain, a natural  gen- 
eralization of the linear scale-space representation (based on the rotationally 
symmetric Gaussian kernel) is the affine scale-space representation generated 
by convolution with non-uniform Gaussian kernels. Given a symmetric positive 
semi-definite (covariance) matrix, Et C SPSD(2), the non-uniform Gaussian ker- 
nel in the two-dimensional case can be defined by 

g(x; E t ) -  1 e_~Tz~-i /2 2 ~ ~  where x E R 2. (12) 

Then, given any f :  ~2 ~ ~, the alfine scale-space representation of f can be 
defined as the three-parameter family of functions L: ~2 • SPSD(2) --~ R 

L(.; Et) =- g(.; Et) * f( . ) .  (13) 
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Transformation property under linear transformations. The basic reason for in- 
troducing the anne scale-space is that it is closed under linear (and anne) 
transformations of the spatial coordinates. Let fL, fR : ]R 2 --* ]~ be two intensity 
patterns related by an invertible linear transformation ~ = B~, i.e., 

fL(~) = fa(B~), (14) 

and define the affine scMe-space representations by 

L(.; EL) = g(.; EL)* fL(') and R(.; ER) = g(.; ER)* fR('), (15) 

where EL, ER C SPSD(2). Then, L and R are related by 

L(~; EL) = R(~/; ER) where ER = BELB T. (16) 

Hence, for any EL there exists a ER such that the anne scale-space represen- 
tations of fL and fR are equal. This property does not hold for the traditional 
linear scale-space representation based on the rotationally symmetric Gaussian. 

Interpretation in terms of eigenvectors and eigenvaIues. Let tb > tt > 0 be the 
eigenvalues of E t  1, and let b and { be the corresponding eigenvalnes. Then, 
convolution with (12) corresponds to (separable) smoothing with scale value tg 
along the b-direction and scale value tt along the {-direction. 

Diffusion equation interpretation of a~fine scale-space. Rewrite Et as Et = tE0, 
where t E h and detE0 = 1. Then, with V = (O=,Oy) T, the non-uniform 
scale-space satisfies the transformed diffusion equation OtL= �89 VTEoVL. 

Fourier transform and semi-group property. From the Fourier transform of g, 
G(w; ~t) = e--wTEtw/2, it follows that the non-uniform Gaussian satisfies the 
semi-group property G(w; El) * G(w; E2) = G(w; E1 + E2). 

5 T e x t u r e  d e s c r i p t o r s  d e f i n e d  f r o m  a f f i n e  s c a l e - s p a c e  

Given an image f :  I~ 2 ~ ]~ with affine scale-space representation L: ]~2 • 
SPSD(2) ~ ~, let us now define the second moment matrix based on non- 
uniform smoothing ]~L : ]~2 X SPSD(2) 2 --+ SPSD(2) by 

/tL('; Et, Es) = g(.; E~) * ((VL)(.; Et) (VL)(.; Et) T) (17) 

where E~ represents the covariance matrix corresponding to the integration scale, 
and Et the covariance matrix corresponding to the local scale. 

Transformation property under linear transformations. Under a linear transfor- 
mation of the image coordinates ~ = B{, this descriptor transforms as 

ItL(q; Et, Es) = BT #R(Bq; BEtB T, BEsB T) B. (18) 
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Shape adaption: Invariance property of fixed points. Assume next that we can 
compute the second moment matrix using shape adaption such that the scale 
matrix is equal to the inverse of the second moment matrix. Then, this fixed point 
will be preserved under affine transformations, and the backprojected window 
function (see (9)) transforms in the same way as the affine transformation. 

To verify this property, consider a signal fL, and assume that #L has been 
computed with shape adaption at a certain point qL E •2 such that 

ttL(qL; Zt,L,Es,L) = ML, (19) 

where Et,L and E~,L are scalar multiples of ML 1, 

Et,L = t ML 1, Es,L -= 8 ML 1, (t, s G m )" (20) 

Moreover, define a transformed intensity pattern fR by fL(~) = fR(B~). Then, 
computation of the second moment matrix at a corresponding point in the trans- 
formed domain, qR = BqL, using the same type of shape adaption gives 

ttR(qR; Et,R, Es,R) = MR where Et,R = tMR 1, Es,R = sMR 1. (21) 

Similar properties hold for the scale-space maxima of det #L and det ~-/ . . . .  L as 
well, i.e., the entities used for selecting integration scales (and interest points). 

Interpretation in the case of weak isotropy. At first glance, this property may be 
regarded as somewhat arbitrary. However, it has a simple geometric interpreta- 
tion when the surface pattern is weakly isotropic. If the second moment matrix 
of the surface pattern is proportional to the unit matrix, then MR = cI, and 
at the fixed point the covariance matrices Et,R and Es,R are also proportional 
to the unit matrix. This corresponds to rotationally symmetric smoothing and 
rotationally symmetric window functions in the tangent plane to the surface. 

6 D e s i g n i n g  a n  i t e r a t i v e  p r o c e d u r e  

Although the entity used for shape adaption is directly measurable from the 
second moment matrix, there is a chicken-and-the-egg aspect in the problem. The 
goal is to estimate the second moment matrix, while the smoothing procedure 
requires this information to obey the invariance properties. Nevertheless, an 
iterative procedure can be formulated. The invariance properties are obtained 
provided that the procedure converges to the desired fixed point. 

Variation of scale matrices. A general variation of each scale matrix leads to a 
three-parameter variation. Hence, if no restrictions are imposed, there are six 
parameters to vary. The dimensionality of this search space can, however, be 
reduced by coupling the local and integration scale matrices such that 

E~= tE0 ,  E~ = s E 0 ,  (22) 

for some matrix E0 (assumed to be normalized in some way; see next). This 
reduces the search space to four free parameters (two parameters determining 
the shape of E0, and the other two determining the size of each scale matrix). 
Here, we shall consider the following methods for choosing these parameters: 
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Shape of the smoothing matrices. With reference to the fixed point condition, 
the shape of E0 will be selected proportional to ~t L at the given point. 

Size of the integration scale matrix. To preserve the invariance of the scale-space 
maximum under linear transformations, one may require the size of the inte- 
gration scMe matrix to be selected such that the normalized differential entity 
considered for scale selection (det #L . . . .  ,~ or det 7-lno~,~L) assumes a maximum 
over scales. In practice, it is often reasonable to keep s constant. 

Size of the local scale matrix. Further precautions must be taken when choosing 
the size of local scale matrix. Choosing the scale that maximizes the normalized 
anisotropy Q over scales is not appropriate in the non-isotropic case. To formu- 
late an alternative criterion, one may at first consider letting det Et be constant 
during the iterations. Such an approach would, however, lead to systematic over- 
estimates of the anisotropy and, hence, the slant angle. A simple explanation for 
this is that the amount of smoothing in the direction of the smallest eigenvalue 
of the local scale matrix would be smMler in the non-isotropic case than in the 
isotropic case. Hence, the contribution from the fine scale variations in the signal 
(noise) would be expected to be larger and the anisotropy would increase. 

Here, we propose to keep the smallest eigenvaIue of E0 constant during the 
iterations. By this approach the smallest amount of smoothing will be preserved, 
and the same (minimum) degree of noise suppression is guaranteed. 

Composed method for shape adaption. To summarize, a straightforward method 
can be expressed as follows (M~ ~) denotes the matrix for shape adaption in the 
kth iteration step, ~ o r m L  the normalized differential entity used for selecting 
the integration scale, and o(~) the selected integration scale in each step): ~ 

1. M (~ = I. 
2. M5 k) = M(k)/;~,~(M(k)). 

7 . (s: maxs>0 (D . . . .  L)(q; sMS~))),or 

a = w h e n  k > 1 

4. M (e+l) -- ttLl(q; t M~ k), ~Dn~,~ie(k) az (k)~j. Go to step 2 if not converged. 

A useful convergence criterion is to require the angle between two successive 
surface normals (computed, e.g., under the assumption of weak isotropy) to be 
less than some given threshold A~ < c (and to limit the number of iterations). 

7 E x p e r i m e n t s  

This shape adaption scheme has been integrated with the shape-from-texture 
and shape-from-disparity-gradient methods reviewed in section 3. Experiments 
have been performed on real and synthetic reference data with known orienta- 
tion. To test the stability of the method, Gaussian noise of different standard 
deviation has been added to the images. (Some test images are shown in figure 1.) 
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"periodic" (10.0) "periodic" (100.0) "gauss 10:5" "gauss 10:2.5" 

"curved" "wallpaper" "skewed-R (10.0)" "skewed-L (10.0)" 

Fig. 1. Grey-level images used in the experiments on shape-from-texture. The first 
image, called 'periodic', is shown with added Gaussian noise of standard deviation 10.0 
and 100.0, respectively. For the other test data only the original image is shown. 

Shape-from-texture. Table 1 shows the result of applying the scheme to the im- 
age labelled "periodic" and using different amounts of added noise. To compare 
the effect of shape adaption with the effect of increasing the integration scale in 
the isotropic scale-space representation, experimental results are also given using 
different values of the relative integration scale, 7. 3 Notice that  for high noise 
levels the shape adaption leads to improvements in est imated surface orienta- 
tion that  cannot be achieved by just increasing the integration scale. Moreover, 
substantial  improvements can be obtained after just one or two iterations. Cot- 
responding experimental  results for the other images are given in tables 2-3. 

Shape-from-disparity-gradients. The need for shape adaption can be further mo- 
t ivated when dealing with binocular data, since multiple measurements are made 
of the same surface structure, and the difference between these measurements  is 
the basis for inferring cues to the three-dimensional surface structure. 

Table 4 shows the results of including shape adaption as an essential step in 
the shape-from-dispari ty-gradient method indicated in section 3 and applying 
it to the stereo pair in figure 1. (The shape adaption has been performed on 
both images independently before the surface orientation estimates have been 
computed from (9).) Observe how the error decreases with the iterations. 

3 This parameter determines how large the integration scMe is relative to the scale at 
which the maximum in the scale-space signature is assumed (see section 3). BasicMly, 
a larger value of 7 can be expected to increase the accuracy up to the point where 
the modelling error increases due to violations of the local linear approximation. 
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periodic (1.0) (3' = 1.0) periodic (10.0) (7 = 1.0) periodic (100.0) (3' = 1.0) 
0 (56.94, 80.94) 8.29 0 (56.31, 81.13) 8.37 0 (47.11, 74.45) 17.90 
i (60.03, 86.52) 3.00 i (60.18, 86.32) 3.18 I (54.18, 81.32) 9.31 
2 (60.10, 87.55) 2.12 2 (60.42, 87.55) 2.16 2 (56.39, 84.21) 6.09 

periodic (1.0) (7 ---- 1.4) periodic (10.0) (7 -= 1.4) periodic (100.0) (7 = 1.4) 
0 (58.88, 89.22) 1.29 0 (57.88, 88.95) 2.29 0 (53.86, 89.61) 6.14 
i (60.08, 90.12) 0.13 i (60.51, 90.09) 0.52 1 (59.90, 90.76) 0.67 
2 (60.09, 90,11) 0.13 2 (60.75, 90.11) 0.76 2 (61.45, 90.90) 1.65 

periodic (1.0) (7 = 2.0) periodic (10.0) (V = 2.0) periodic (100.0) (V = 2.0) 
0 (60.29, 90.18) 0.33 0 (58.80, 90.04) 1.19 0 (49.95, 91.24) 10.10 
1 (60.59, 89.95) 0.59 1 (60.49, 89.90) 0.49 1 (56.72, 90.74) 3.34 
2 (60.59, 89.95) 0.60 2 (60.66, 89.90) 0.66 2 (58.38, 90.40) 1.65 

Tab le  1. Shape adapted smoothing applied to the image labelled "periodic" (using 
different values of the relative integration scale 7). The columns show from left to right, 
the iteration index, slant and tilt values computed under the weak isotropy assumption, 
and the angle between the estimated and the true surface normal (reference values 
(60.0, 90.0)). (The first value within parentheses is the standard deviation of the noise, 
to be related to the grey-level range [0, 255]. All angles are given in degrees.) 

gauss 10:5 (1.0) 
0 (66.71, 90.04) 6.71 
1 (58.83, 90.01) 1.16 
2 (60.10, 90.02) 0.10 

gauss 10:2.5 (3.1) 
0 (80.68, 89.93) 5.16 
1 (75.99, 90.00) 0.47 
2 (75.26, 90.00) 0.25 

gauss 10:5 (10.0) 
0 (6.5.55, 89.52) 5.56 
1 (58.66, 89.81) 1.34 
2 (59.54, 89.73) 0.50 

gauss 10:2.5 (10.0) 
0 (80.24, 89.90) 4.72 
1 (75.89, 89.95) 0.37 
2 (75.25, 89.95) 0.27 

gauss 10:5 (100.0) 
0 (66.71, 92.13) 6.98 
1 (62.13, 90.64) 2.20 
2 (61.72, 90.68) 1.82 

gauss 10:2..5 (31.6) 
0 (79.36, 90.28) 3.85 
1 (76.91, 90.17) 1.39 
2 (75.93, 90.03) 0.41 

Tab le  2. Shape adaption applied to two Gaussian blobs using different 
added white Gaussian noise. The reference orientation in the top row is 
and in the bottom row (75.5, 90.0). (Relative integration scale: 3' = 1.0.) 

amounts of 
(60.0, 90.0) 

skewed (10.0) (7 = i .4 )  curved (10.0) (7 = 1.4) wallpaper (10.0) (3' = 16) 
0 (28.81, 20.91) 1.26 0 (59.57, 92.07) 4.89 0 (46.09, 85.56) 4.71 
1 (29.71, 20.95) 0.55 1 (55.99, 90.61) 1.11 1 (51.86, 85.44) 1.06 
2 (29.75, 20.95) 0.53 2 (56.22, 90.73) 1.36 2 (53.74, 85.34) 2.94 

Tab le  3. Shape adaption applied to the images labelled "skewed", "curved", and "wall- 
paper". Reference orientations: (30.0, 20.0), (55.0, 90.0), and (50.8, 85.3) respectively. 
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skewed (10.0) (3' = 1.4) skewed (10.0) (V -- 2.0) skewed (10.0) (7 -- 2.8) 
0 (50.15, 65.23) 5.99 0 (47.69, 70.04) 10.33 0 (49.53, 68.77) 8.47 
1 (54.19, 62.71) 2.12 1 (50.24, 64.62) 5.61 1 (52.05, 63.53) 3.72 
2 (54.70, 61.31) 0.94 2 (51.72, 62.47) 3.42 2 (53.32, 61.87) 1.89 
5 (55.04, 60.99) 0.80 5 (53.19 ,60.58) 1.45 5 (54.33, 60.61) 0.46 

Table  4. Shape adaption applied to the stereo pair in figure 1. (Vergence angle: 
25 = 10.00. Reference orientation (in a cyclopean coordinate system): (54.60, 60.16).) 

8 Summary and discussion 

We have described a methodology for reducing shape distortions when comput- 
ing three-dimensional shape cues from image data  using operators (derivatives) 
defined from the linear scale-space representation. The suggested approach is to 
adapt the shape of the smoothing kernel to the local image structure by mea- 
suring an image descriptor called the second moment matrix. If shape adaption 
can be performed such that the second moment matrix computed at a certain 
point is equM to the matrix used for shape adaption at that  point, then this fixed 
point will be preserved under afflne transformations of the brightness pattern.  
In the specific case when the surface pattern is weakly isotropy, this corresponds 
to rotationally symmetric operators in the tangent plane to the surface. 

A straightforward algorithm has been presented for reaching the fixed point. 
Whereas it in the experiments has lead to substantial improvements after just 
a few iterations, no claims are made that  it constitutes any "optimal solution". 
(Compare with the vast number of iterative methods for solving non-linear equa- 
tions in numerical analysis and optimization theory.) We are currently studying 
convergence properties in more detail as well as the ability to reach appropri- 
ate fixed points. As a brief indication of the convergence properties, it can be 
mentioned that  for a periodic pattern f (x ,y )  = coswlx + cosw2y (wl < w2), 
the desired fixed point is convergent if the minimum amount of smoothing to 
satisfies w~to < (Wl/W2) 2. For many images, there are (at least) two more fixed 
points; one corresponding to the shape adaption matrix being singular, and one 
corresponding to an infinite amount of isotropic smoothing. 

The suggested scheme has an interesting relationship to non-linear diffusion 
schemes. If applied at edge points, it leads to more smoothing along the edge 
than in the perpendicular direction. In this respect, the work constitutes a link 
between processing modules based on sparse edge data and dense filter outputs. 
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