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Abst rac t .  A method of determining the motion of a camera from its im- 
age velocities is described that is insensitive to noise and intrinsic camera 
parameters. This algorithm is based on a novel extension of motion par- 
allax which does not require the instantaneous alignment of features, but 
uses sparse visual motion estimates to extract the direction of translation 
of the camera directly, after which determination of the camera rotation 
and the depths of the image features follows easily. A method for calcu- 
lating the expected uncertainty in the estimates is also described which 
allows optimal estimation and can also detect and reject independent 
motion and false correspondences. Experiments using small perturba- 
tion analysis show a favourable comparison with existing methods, and 
specifically the Fundamental Matrix method. 

1 I n t r o d u c t i o n  

The visual motion of a scene from a camera provides a cue for the determination 
of the scene structure and the viewer motion (egomotion), and many systems 
would benefit from using a freely moving camera with no other motion sensors. 
An important  criterion for the judging of algorithms is robustness: insensitivity 
to, and graceful failure from, image motion measurement noise, independent 
motion and erroneous measurements, sparse image motion data, narrow field of 
view and camera calibration. 

Motion parallax methods [10, 13, 5] try to find the epipole, the intersection 
of the direction of motion with the imaging surface, independent of intrinsic 
camera calibration (knowledge of the projection plane centre, the aspect ratio 
and the focal length, assuming no other distortions are significant) by using 
the fact that  the relative visual motions of points instantaneously coincident in 
the image can be used to cancel the rotational part of the visual motion, but 
unfortunately this requires dense velocity field measurements at sudden depth 
changes [5, 13]. 

The Fundamental Matrix method [3] also at tempts to find the epipole inde- 
pendent of intrinsic camera parameters by estimating a 3 • 3 singular homoge- 
neous matr ix  (7 independent variables), as does Heeger and Jeepson's Subspace 
method [4] using a two-dimensional search of a non-linear function. There are 
many other methods for estimating the camera motion from an image pair or 
sequence, but many are inexact, involve very high dimensional searches, or use 
higher derivatives of the image motion than just the velocities which makes them 
susceptible to measurement noise [12]. 

Lecture Notes in Computer Science, Vol. 800 
Jan-Olof Eklundh (Ed.) 
Computer Vision - ECCV '94 



206 

1 2 

Fig. 1, The  Afflne M o t i o n  Paral lax A l g o r i t h m  
In view one, there are four real feature points, the parallax point (the cross), and the 
three basis points (the squares). The circle is an imaginary virtual point that is defined 
to be coincident in the image with the parallax point, but on the plane in space defined 
by the basis points. In view two, the motion of the parallax point is observed, and that 
of the virtual point is deduced from the basis points, assuming the plane that they 
define is deforming affinely in the image. We have therefore recovered exact motion 
parallax, the relative motion of the virtual point and the parallax point, from four 
sparse points [1, 7]. The epipole must lie on the line given by the relative motion [10]. 

2 Theoret ical  Framework 

Using the affine (linear projection) assumption globally will result in parallel 
mot ion paral lax vectors [7], as it is only valid for small fields of view. However 
weak perspective assumptions can be used in a number of small regions of a 
wide, full perspective view. We propose using small regions of four points i to 
produce 1D constraints on the direction of motion (Figure 1). This is similar to 
mot ion paral lax [10] but does not require the alignment of features. Two or more 
of these constraints can then be combined to find the epipole. 2 

The  camera  rotat ion can be found by a least-squares est imate from the com- 
ponent of visual motion perpendicular to the direction of camera  translat ion 
[4]. This requires a min imum of three points. The feature depths can then be 
found. 3 Both are dependent on the intrinsic camera parameters,  but the scene 
structure canst i l l  be extracted to within a 3D projective t ransformation without  
calibration once the epipole is found [2]. 
U n c e r t a i n t y  a n d  E r r o r s :  For real, noisy da ta  the epipole constraints will 
not intersect. A method is needed that  will optimally integrate the constraints 
and reject the outliers due to independent mot ion and incorrect visual mot ion 
measurements.  The uncertainty in the motion measurements  and then constraint 

1 It can be shown that it is sufficient that all four are close in the image, and therefore 
weak perspective or affine assumptions are not necessary [9]. 

2 This entire calculation can be performed by geometric construction on the image 
plane, and is therefore independent of intrinsic camera parameters. 

3 Full details can be found in [9]. 
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estimates may be represented by covariance matrices [8]. Different methods have 
been investigated for optimally combining the constraints. Initially a closed form 
solution was used, weighting the sum of the epipole estimates given by every pair 
of constraints so as to give the smallest covariance trace. However, this was su- 
perseded by an iterative method that finds the epipole that is most perpendicular 
to the constraint plane normals. 4 'Renormalisation' [6] was not found useful, due 
to the uncertainties of the constraints not being known accurately. 

3 E x p e r i m e n t a l  C o m p a r i s o n s  

In this section, we test the algorithm described above and compare it with an 
existing technique, the Fundamental Matrix method. We shall assume that a 
number of 'corner' features can be tracked between frames. The features used are 
hand-picked corners with significant amounts of noise (including integer quan- 
tization) taken from low resolution video sequences from a hand-held camera 
(600 • 500 pixels). Some sample images from a sequence involving large arbi- 
trary camera rotations but consistent camera translation (towards the doors) 
are displayed in Figures 2 and 3. 
Afllne Mot ion  Para l lax  Method :  Each detected corner and its three nearest 

neighbours form a group that provides a parallax measurement (Fig. 2b). 
The calculations are formulated using the image hemisphere and velocities 
rather than discrete displacements. Constraints with excessive errors are 
rejected [9]. The rotational and then translational components of the image 
motion are then extracted (Figs. 2c and 2d). 

F u n d a m e n t a l  Ma t r ix  Method :  This implementation scheme uses a non-linear 
method (DIST-L [11]) which aims to minimise the distance from the points 
to their epipolar lines in both of the pair of images, given that the transfor- 
mation is singular, by varying eight homogeneous coefficients. 

First order perturbation analysis is used to determine the instability of the al- 
gorithms (Fig. 3). 
Compar ison:  The emphasis of our method is on robustness and graceful failure, 
and these results (Figs. 2 and 3) demonstrate its success. The constraint rejection 
scheme does occasionally fail, but this is probably inevitable, and hopefully using 
temporal filtering along a sequence of frames will provide sufficient information 
to correct this. The accuracy will also be improved by a wider field of view. 

The Fundamental Matrix method, as implemented, regularly fails to locate 
the correct minima (Figure 3): if a good estimate of the egomotion is used to 
derive an initial F matrix from which to start the minimization, then the method 
can improve the accuracy of the estimates (better than the Affine Motion Paral- 
lax method), but without a good initialization, a large number of false minima 
exist and minimisation becomes very difficult. Another obvious disadvantage of 
the Fundamental Matrix method is that it does not naturally produce an un- 
certainty measure, whereas the data from the Affine Motion Parallax algorithm 
does, and is therefore easily fused with independent information. 

4 in a least squares sense, weighted according to the covariances of the constraints in 
the direction of the current epipole estimate 
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Fig. 2. The  app roach  to Kings  College Chape l  N o r t h  Ga te ,  f r ames  (3-)4 
using Affine Mot ion  Para l lax .  (a) shows the image motion measurements used 
(with the lines indicating the inter~frame displacement). Despite the sparseness of the 
data, the algorithm extracts five parallax constraints (length indicating certainty), and 
makes an accurate estimate of the epipole (b), shown by the ellipse indicating predicted 
uncertainty (1 standard deviation, assuming ~/2 pixel standard deviation image mea- 
surement noise) plotted around the estimated epipole. (c) shows the projection of the 
axis of rotation and the rotational components of the image motion, found from a least 
squares estimate of the image velocities perpendicular to the epipolar line, assuming 
approximate intrinsic camera parameters. Though the rotational components are large, 
they can still be modelled to a sufficient accuracy by the velocity model. (d) shows the 
translational component of the image motion, calculated by subtracting the rotational 
components. With accurate intrinsic calibration, the translational components will all 
point at the epipole and have a magnitude approximately inversely proportional to 
their depth and proportional to their distance from the epipole, and qualitatively this 
can be seen here. 
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Fig.  3. T h e  approach to  Kings  Col lege  C h a p e l  N o r t h  G a t e  (F rames  1-4)  
using Afflne M o t i o n  Parallax (a) and the  Fundamenta l  matr ix  m e t h o d  (b),  
showing the epipole uncertainty ellipse found using small perturbation analysis (again 
assuming v ~  pixel standard deviation image measurement noise). (a) also shows the 
affine motion parallax constraints found (length indicating certainty), some of which are 
rejected as inconsistent. The people are indistinguishable from stationary objects that  
are twice as close, and are therefore not rejected as independent motion. As the sequence 
progresses, the number of features drops, but though the Fundamental Matrix method 
becomes very unstable (3b and 4b), our algorithm degrades gracefully. Normally only 
constraints with low uncertainties are used, and knowing only one constraint on the 
epipole can still be very useful [1]. Here the rejection threshold has been relaxed to 
ensure an epipole estimate can be displayed even when the translational motion is 
small. 
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4 Conc lus ion  

We have presented a method of extracting the epipole from a pair of frames. 
The camera rotation and feature depths can then be found. The method is ro- 
bust because it uses first derivatives (or displacements) of the image positions 
only, and because the first stage involves a direct solution for only two variables 
(the epipole direction) and is independent of camera rotation and intrinsic pa- 
rameters. A method for optimally combining the epipole constraints using the 
uncertainties of each estimate is also presented. There are a number of approx- 
imations clue to statistical dependence, but results show the 'optimal '  solution 
found to be good. Results from real scenes [9] show that  this method compares 
favourably with the Fundamental Matrix method, especially when the epipole is 
not in view or the point set is sparse. 
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