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Abstract. We address the problem of occlusion in tracking multiple 3D
objects in a known environment. For that purpose we employ a contour
tracker based on intensity and motion boundaries. The motion of a con-
tour enclosing the image of a vehicle is assumed to be well describable
by an affine motion model with a translation and a change in scale. Con-
tours are represented by closed cubic splines the position and motion of
which are estimated along the image sequence. In order to employ linear
Kalman Filters we decompose the estimation process in two filters: one
for estimating the affine motion parameters and one for estimating the
shape of the contours of the vehicles. Occlusion detection is performed
by intersecting the depth ordered regions associated to the objects. The
intersection part is then excluded in the motion and shape estimation.
Occlusion reasoning also improves the shape estimation in case of adja-
cent objects where shape estimates can be corrupted by image data of
other objects. In this way we obtain robust motion estimates and tra-
jectories for vehicles even in the case of occlusions, as we show in some
experiments with real world traffic scenes.

1 Introduction and Related Work

Research in machine vision based traffic surveillance systems is of increasing in-
terest for communities who suffer from high traffic density on highways. The task
of a machine vision based traffic surveillance systems is to extract descriptions
of moving vehicles from video data which enables further symbolic reasoning
about the motion of the vehicles (i.e. [Koller et al. 91; Huang et al. 93}). In traf-
fic scenes we have to cope with several moving objects which can interact with
each other. Multitarget tracking requires not only an estimation algorithm that
generates an estimate of the state of the object (target) to be tracked but also
a data association component that decides which measurement to use for up-
dating the state of which object. We assume our measurements to be corrupted
by white Gaussian measurement noise (as in a single object tracking case) and
by occlusions (measurements are missing or wrong due to overlayed data from
other objects). We exploit a priori knowledge of the scene geometry in order to
compute a depth order of the image regions associated to the moving objects and
solve the data association problem by performing an explicit occlusion reasoning
step.
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Our tracker employs two linear Kalman Filters for estimating the control
points of closed contours enclosing a moving region and the motion param-
eters according to an affine motion model. This tracker has been influenced
by [Blake et al. 93], who successfully extended their real-time contour tracking
system ([Curwen & Blake 92]) by exploiting affine motion models. They use
so-called Snakes (active contour models) as descriptions of projected objects.
Snakes have been introduced as deformable contours by [Kass et al. 88]. The
Kalman-Filter theory ([Gelb 74]) is incorporated in the snake technique to form
so-called Kalman-Snakes ([Terzopoulos & Szeliski 92]).

The common approach for updating a snake contour is to formulate an elastic-
model approach, where forces are introduced based on image gradients normal to
the contour. These approaches do not exploit the motion information contained
in the images. Our approach deviates from this common snake technique in
the sense that we do not use a force model, but we explicitly exploit motion
information in the image if the object is moving.

There is little work on multi-object tracking applications using vision sensor
data. [Meyer & Bouthemy 93] solve the problem of total occlusion by linking
partial spatiotemporal trajectories using motion coherence, but they do not ad-
dress the problem of data association and shifts in the estimated positions due
to partial occlusions. Partial occlusions usually occur prior to a total occlusion
and a missing occlusion reasoning step may already affect the shape and mo-
tion estimation which causes the motion coherence to be ineffective. [Létang et
al. 93] realized that in the case of a partial occlusion the center of gravity of a
blob mask is not a reliable feature to track. They handle the (partial) occlusion
problem by tuning the measurement noise according to the change in blob size.

2 Motion Segmentation

An important component in tracking systems is track formation or initialization,
for which we use a motion segmentation step. We use a modified version of
the moving object segmentation method suggested by [Karmann & von Brandt
90] and implemented by [Kilger 92]. This method uses an adaptive background
model, which is updated in a Kalman filter formalism, thus allowing for dynamics
in the model as lighting conditions change. The background is updated each
frame via the update equation

Biy1 = By + (a1 (1 — My) + azMy) D, 1

Where B; represents the background model at time ¢, D; is the difference between
the present frame and the background model, and M, is the binary moving
objects hypothesis mask. The gains o and a> are based on an estimate of the
rate of change of the background. The hypothesis mask, M;, attempts to identify
moving objects in the current frame. Our implementation differs from the one
used in [Karmann & von Brandt 90; Kilger 92] in that we employ linear filters to
increase the accuracy of the decision process. Thus in the notation above, B; and
D; represent a vector of filtered responses instead of single images. We choose
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choose as filter kernels the Gaussian and its derivative along the horizontal and
along the vertical directions. An example of an identified moving object is shown
in Figure 3b. For a complete description we refer the reader to [Koller et al. 93].

3 Contour Extraction and Shape Estimation

The contour extraction is based on motion and greyvalue boundaries. To extract
candidate contour and motion points we simply threshold the spatial image gra-
dient and the time derivative of the image function. A convex polygon enclosing
all these sample points is then used as an initial object description. Figure 3
shows an image section with a moving car (a), the detected image patch cover-
ing the image of the car (b), and the image locations with well defined spatial
gradient and time derivative constituting the sample points. The convex polygon
enclosing all these sample points of ¢) is shown in d).

A convex polygon is not suitable for a time recursive shape estimation, since
the number of vertices may and will change along the image sequence with
new measurements. A solution is provided by snakes, spline approximation to
contours [Kass et al. 88; Curwen & Blake 92]. We use closed cubic splines with 12
control points to approximate the extracted convex polygon. The locations of the
control points are obtained by least squares between equidistant sample points
along the contour of the polygon and the (uniform) spline segments ([Bartels et
al. 87]). The details can be found in [Koller et al. 93]. The spline approximation
of the contour for the previous example is given in Figure 3 e).

The state vector for the contour estimation along the image sequence com-
prises the estimates of the 12 pairs of  and y coordinates of the control points.
As a measurement vector we use the the z and y coordinates of the control
points obtained from the spline approximation of the extracted contour. This
is the simplest case for the Kalman Filter where the measurement function is
identical to the state vector itself ([Gelb 74]).

The support for the contour extraction is based on a binary image mask
associated to a moving object. During the initialization this mask is identical
to the moving image patch detected in the motion segmentation process. The
predictions of the control vertices of the spline contour are then used to define
the support in the tracking stage.

4 Motion Estimation

For a sufficiently small field of view and independently moving objects, the im-
age velocity field u(z) at location # inside a moving image patch can be well
approximated by a linear (affine) transformation. The degrees of freedom can
be further reduced since the motion is constraint on a road plane and possible
rotational components along the normal of the plane are small. We end up with
a simple translation uo and a change in scale s as the motion parameters and
obtain:

u(z) = s(x— z,,) + uo, (2)
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Fig. 1. a) An image section with a moving car. b) the moving object mask pro-
vided by the motion segmentation step. ¢) the image location with well defined
spatial gradient and temporal derivative, used as sample points to define d), the
convex polygon enclosing these points of ¢). e) the final contour description by
cubic spline segments approximating the polygon of d).

s = 0 stands for no change in scale, while s < 0 and s > 0 stands for a motion
component along the optical axes away and towards the camera, respectively.

The state vector for motion estimation comprises the affine motion param-
eters £ = (u,5). As a measurement we use also the coordinates of the control
points of the spline contour extracted in a new acquired image. The measure-
ment function can be expressed in a linear (matrix) equation and enables the
use of a second linear Kalman Filter. Details can be found in [Koller et al. 93].
The initial value of ug for an object is set to be the discrete time derivative of
the objects center locations, measured in the first two frames. As an initial value
for the scale parameter s we set s = 0.

5 Occlusion Reasoning

Any contour distortion due to partial occlusion will generate an artificial shift in
the trajectory. In order to avoid these erroneous shifts and get reasonable tracks
from the contours, we explicitly reason about occlusion. This is facilitated by
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the special viewing geometry in our domain-the cars move on a ground plane.
Nearer objects will appear lower in the image plane, and occlude farther away
objects. This means that if we process the object contours starting from the
bottom of the image plane, we can explicitly allow for the partial occlusion of
the bounding contours of more distant objects [Koller et al. 93]).

The occlusion reasoning step also improves robustness in cases which we call
near occlusion, where objects move very close next to each other so that the
contours of the object will interfere and the estimation process can be confused
by the presence of other object. Knowledge about the other contour provides
the means to avoid image data from another object to be considered in the
contour estimation of the object under investigation. For that purpose we per-
form the intersection analysis with about 5% enlarged contours in order to sense
those cases. An example of tracking a car corrupted be an artificial occlusion is
llustrated in Figure 2.

Fig. 2. An artificial occlusion (grey square) is stamped into images of an image
sequence. The left image shows the occluding contour in thick lines, while the
contour estimate of the object to be tracked is shown by thin lines. The vectors
represent the trajectory of the object. The right image shows the lines overlayed
to the original image without occlusion in order to compare the result.

6 Results with Real World Traffic Scenes

In order to validate our approach we conducted several experiments. We present
here the result of tracking cars in an image sequence of 96 frames of a divided
4 lane freeway of the Los Angeles area. The left column of Figure 3 shows some
intermediate images of the sequence with the overlayed contour estimates, while
the right column shows the contour estimates with the tracks. In this sequence
we have to cope with a partial occlusions and some near occlusions.
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Fig. 3. The left column shows frame #0, #40, and #80 of the image sequence with the
overlayed overlayed contour estimates of the cars. The right column shows the contour
estimates with their tracks, starting from frame #0.
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7 Conclusion

We designed a system for robust detection and tracking of multiple vehicles in
road traffic scenes. The system provides tracks and shape description of vehicles
which are suitable for further evaluation with symbolic reasoning in a traffic
surveillance system. As typical for a surveillance system, the recording camera
is assumed to be stationary, mounted, i.e., on a bridge or a pole beside the road,
in order to cover a large field of view and to reduce occlusions of vehicles.

The objects are assumed to be well describable by convex contours and the
motion is expected to be predominantly translational on a plane. We describe
a contour by a closed cubic spline (known as snakes) and use an affine motion
model for the innovation of the contour. The tracker is based on two simple
Kalman Filters, estimating the affine motion parameters and the control points
of the closed spline contour of the vehicles. As measurements we take the control
points of spline contours approximating convex polygons, enclosing candidate
motion and contour points.

The initialization of the tracker is performed by a kind of image differencing
between a continuously updated background image and a newly acquired image.
Update of the background image is based on the motion estimate. Trajectories
of the moving vehicles are derived from the motion of the center of the control
points of the closed spline contour.

In order to obtain reliable trajectories of vehicles in a highly cluttered envi-
ronment — such as in highway scenes with heavy traffic — we have to solve the
problem of data association for a multitarget tracking application. In the case of
a partial occlusion, the center of the control points does not provide a reliable
feature for the trajectory of an object, since the contour will be corrupted by
wrong contour measurements. We solve this problem by an explicit occlusion
reasoning step. Occlusion detection is performed by a depth ordered detection
of overlapping contours associated to moving vehicles.
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