
A Semantics for Higher-order Functors

David B. MacQueen 1 and Mads Tofte 2

1 AT&T Bell Labs, New Jersey, USA
2 Dept. of Computer Science, Copenhagen University, Denmark

Abs t rac t . Standard ML has a module system that allows one to define para-
metric modules, called functors. Functors are "first-order," meaning that func-
tors themselves cannot be passed as parameters or returned as results of functor
applications. This paper presents a semantics for a higher-order module system
which generalizes the module system of Standard ML. The higher-order functors
described here are implemented in the current version of Standard ML of New
Jersey and have proved useful in programming practice.

1 I n t r o d u c t i o n

One of the notable characteristics of the Standard ML module system has been its sup-
port of parameterization in the form of functors, which are mappings from ordinary
modules, called structures, to ordinary modules. In the original Standard ML module
system ([7, 10]), functors were first-order, because their parameters and results could
only be structures, and functors could not be components of structures. But the type
theoretic analysis of the module system carried out in [8, 11, 5] made it clear that it
was natural to extend the notion of functors to higher orders by allowing functors as
parameters and results (or, equivalently, allowing structures to contain functor compo-
nents). Doing so makes the language more symmetrical and supports useful new modes
of parameteriv.ation.

A practical implementation of higher-order functors has recently been provided in the
Standard ML of New Jersey compiler [3]. The first step toward defining a semantics of
higher-order functors was taken in [14], where a semantics for functor signatures is de-
scribed and a principal signature theorem is proved. Here we go most of the way toward
completing the semantics of higher-order functors by defining how functors are repre-
sented, how higher-order signature matching is performed, and how functor application
works.

The technical challenge in defining a semantics of higher-order functors arises from
the way static identity information is propagated in Standard ML. Signature matching is
"transparent" by default, meaning that the identities of type and structure components
are not hidden when a structure is matched against a signature. Also, identities are
propagated through functor calls. This is a controversial feature of the design, but it is
justified because (1) it allows a single semantics of signature matching to work both for
parameter constraints and result constraints, and (2) it increases the expressiveness and
flexibility of parameterization in useful ways.

Alternative module system designs that do not use transparent signature matching
have been proposed. For instance, the Extended ML specification language [13], which is
based on Standard ML, assumes that signature matching is opaque, and recently Leroy [6]
and Harper and Lillibridge [4] have described module systems that use opaque signature

410

matching but allow one to override it in the case of types by using type definitions in
signatures. However, in the higher-order system these proposals produce an asymmetry
between first-order and higher-order functors: types in a functor result can depend on
structure parameters, but not on functor parameters (see the example below).

We want to avoid this asymmetry between structures and functors, so in our semantics
functor parameters as well as structure parameters can carry type information that is
propagated to the result.

As an illustration of how application of a first-order functor propagates static identi-
ties, consider the following example:

signature POINT =

sig

type point
val leq: point*point->bool

end;

signature INTERVAL =

sig

type interval and point

val mk: point*point -> interval

val left: interval -> point

val right: interval -> point

end ;

functor Interval(P: POINT) : INTERVAL =

struct

type interval = P.point * P.point

type point = P.point

fun mk(x,y) = if P.leq(x,y) then (x,y) else (y,x)

fun left(x,_) = x

fun right(_,y) = y

end;

structure IntPoint =

struct

type point = int; (.1.)

fun leq(x:int,y) = x<=y

end ;

structure T = Interval(IntPoint);

val test = T.right(T.mk(3,4))+5;

This program is legal Standard ML. The declaration of test is type-correct because the
application I n t e r . v a l (I n t P o i n t) propagates the information p o i n t = i n t (declared at
llne (' 1 ")) through to T, so that T . i n t e r v a l is i n t * i n t and T.mk and T . r i g h t have
types i n t * i n t - > i n t * i n t and i n t * i n t - > i n t , respectively. (Notice that if types were not

propagated through the functor application, the declaration of t e s t would be illegal.)
Now let us add a higher-order functor:

functor S(functor Interv(P: POINT) : INTERVAL) =

struct
structure NatNumInt = Interv(IntPoint)

end

411

Since the actual functor I n t e r v a l matches the specification in the parameter signature
for G, it should be possible to apply G to I n t e r v a l :

s t r u c t u r e R e s u l t = G (f u n c t o r I n t e r v = I n t e r v a l)
s t r u c t u r e T' = Resu l t .Na tNumInt ;
v a l t e s t ' = T ' . r i g h t (T ' . m k (3 , 4)) + 5

But will the expression T ' . r i g h t (T' .ink (3 ,4))+5 be type-correct? The point is that the
parameter signature of G did not specify sharing between the argument and the result
signature of I n t erv. Thus when the declaration of G was elaborated, there was no assump-
tion of sharing between the point type P . p o i n t and the point type NatNumInt .po in t .

The actual functor, I n t e r v a l , propagates more sharing than is specified for I n t e r v .
Were we to elaborate the body of G again, this time using the actual I n t e r v a l in place of
I n t e r v , the declaration of t e s t ' would be legal; if we ignore the extra sharing, however,
the declaration of test' becomes untypable.

One could argue that this problem is easily solved by making the specification of
I n t e r v more specific so that it expresses the sharing required:

f u n c t o r G(X:
s i g

f u n c t o r I n t e r v (P : POINT):
s i g

t y p e i n t e r v a l
val mk: P.point * P.point -> interval

val left: interval -> P.point

val right: interval -> P.point

end

end)=
struct

structure NatNumlnt = Interv(IntPoint)

end

But after this change we can only apply G to arguments that satisfy this extra sharing,
which was not needed inside the body of the functor G, so G is less general than it could
be.

More generally, consider the declaration of some functor, F . Is it sufficient to specify
the parameter signature of F with sharing constraints that are needed to elaborate the
body of F , or is it necessary to specify any sharing that must be propagated at some
application of F ? From a programmer's point of view, the former is clearly preferable
and it is the policy followed in Standard ML. To preserve this desirable property of
Standard ML in the presence of higher-order functors, our static semantics of modules
must be able to propagate addit ional type information at functor application time, even
when the addit ional information comes from functor components of the actual argu-
ment. So to properly treat a functor application embedded in a functor body, such as
I n t e r v (I n t P o i n t) in the body of G, we must elaborate it in two phases: first formally,
when G is defined, and then again when G is applied and additional sharing information
about the actual parameter is available.

In the remainder of this paper we first present the semantic objects (Section 2).
Then we give a grammar for a skeletal programming language and elaboration rules

412

in terms of the semantic objects (Section 3). The key ideas for achieving the desired
propagation of type information are (1) using terms in a simple higher-order language to
represent functors, and {2) using two environments to simulate the two phase elaboration
of embedded functor applications.

The skeletal language we present has neither types nor values, but we foresee no
serious problems in extending the semantics to cope with these because the interaction
between module systems and the core ML language is well understood. We also do not
deal with elaboration of signature expressions in this paper; this was studied in detail in
[14].

In addition to the work on Extended ML and the work of Leroy and Harper and
Lillibridge already cited, the work of Aponte [1] should also be noted. It provides an-
other approach to semantic representations for ML modules, based on Rfimy's work on
polymorphic records [12]. So far, this approach deals with first-order functors only.

2 S e m a n t i c o b j e c t s

Our semantic objects are defined informally using a mixture of simple mathematical
constructions (e.g. sets of sequences of identifiers) and term structures (e.g. lambda
abstractions) over these constructions. The representations are finite, and in principle
they could all be defined uniformly by an abstract syntax of terms.

In the skeletal language, a structure S can have two kinds of named components:
structures and functors. The substructures of S are S and the substructures of the struc-
ture components of S. We say that a functor is (embedded) in a structure S, if it is a
component of S or of one of the substructures of S. Our representation of structures is
based on separating the "shape" of a structure, which defines what is accessible, from the
static information that identifies the elements of the structure. The former is represented
by a tree s (Section 2.1) of access paths for substructures and embedded functors, and
the latter by a realization ~ (Section 2.3), which represents a mapping from these paths
to identifying information. A structure is then defined to be a pair (s, ~).

2.1 I d e n t i f i e r s , p a t h s , a n d t r e e s

We assume two disjoint sets of identifiers:

funid E FunId (functor identifier)
�9 strid E StrId (structure identifier)

Substructures and embedded functors are accessed via paths of identifiers. Formally, a
structure path, sp, is a finite string over the alphabet StrId. We also use the notation
stridl.....stridk, (k > 0) for structure paths. A s path, fp, is a finite string over the
alphabet StrId U Funld of the form stridl.....stridk.funid, (k > 0), i.e., a structure path
followed by a functor identifier. A path, p, is either a structure path or a functor path.
The empty path is denoted e.

A tree, s, is a finite, prefix-closed set of paths. Let s be a tree and assume p E s.
Then the subtree os at p, written s/p, is the tree {p'] pp' E s}. When s is a tree, SP(s)
denotes the set of structure paths in s and FP(s) denotes the set of functor paths in s.

413

2.2 S t a m p s

Stamps are used to statically identify structures, and are the basis for determining shar-
ing: two structures share if and only if they are labeled by the same stamp. Only struc-
tures have stamps - - functors do not have a static identity, though they do have stat ic
descriptions.

We assume a denumerably infinite set Stamp of stamps. We use rn to range over
stamps. A s tamp set is a finite set of stamps. We use M and N to range over s tamp sets.

2.3 Rea l i~ .a t lons

Intuitively, the realization part of a structure is a mapping over the structure 's path tree
that takes structure paths to stamps and functor paths to static functor representations.
However, it turns out to be useful to talk about realization expressions, rather than the
maps they denote; realization expressions are defined in Figure 1. Signatures (/7) will be
defined in Section 2.4.

Realization environments and views are concrete representations of finite maps. The
domain of a realization environment/3, written Dom(/3), is defined by: Dom({}) = 0 and
Dom(/3', p=~) = {p} U Dom(/3') and similarly for views. We allow repeated binding of the
same domain element, with the convention that bindings to the right supersede bindings
to the left. We write, for example,/3(p) to denote the realization to which/3 binds p,
when p 6 Dom(/3). We often write realization environments out in full, with the notat ion
pi=~oi , . . . , pn=T, (dropping the initial {}). Realization environments/3i and/32 can be
appended, writ ten/3i +/32.

Realization Expressions (W)

(~u, r/) stamping
p realization variable
~/strid substructure selection
app(6, %o) functor application
~o $.U signature constraint
ne~ N.~o generative stamps
let /3 in ~ local binding

Realization Environments (/3)

/3 ::= {} empty environment
I 13, p=~o extension

Fig. I . Basic semantic representations

Views (n)

~7 ::= {} empty
I r h strid=~o extension
I ~, funid=O extension

Stat ic Funetors (0)

0 ::= AO : 27.(s, ~o) functor
] getF(~,fp) application

S t a m p Expressions (p)

/~ ::= m stamp
] gets(~a , sp) application

To get an idea of the meaning of the constructs of Figure 1, consider the following
functor declaration:

414

functor G(X: sig
functor Interv(P: POINT):
structure I: POINT

end)=
struct

structure NatNum = X.Interv(X.I)
end;

INTERVAL

This declaration gives rise to the view 7/0 - G=Ap : ~X.(Sbody, (~body), where 8body is the
tree {e, NatNum} and

r ---- n e w (m) . l e t p' = app(getF(P, I n t e r v) , (p / I))
in (rn, NatNum=p')

and Zx represents the parameter signature of G. Here app(getF(P, Interv), p/I) stands
for a functor application. The operator, getF(P, I n t e r v) , is the functor component named
I n t e r v of the (unknown) realization p; the operand, p/I, is the realization of the sub-
structure named I.

Functor applications can generate fresh structures. For example, every application of
the functor G gives rise to one fresh structure, i.e.. to one structure with a fresh stamp,
corresponding to the expression s t r u c t .-. end forming the body of the functor. The
realization expression new N . ~ is used for expressing generativity. The stamps in N are
bound in 9, and the semantic rules will force alpha-conversion to insure that these are
replaced by "fresh" stamps when the functor is applied.

2.4 Signatures

Module interfaces are called signatures in Standard ML. A key feature is the abil i ty to
specify sharing in signatures. This is particularly important in connection with functors,
as a means of st ipulating sharing within the formal parameter structure. There are two
forms of sharing in Standard ML: structure sharing and type sharing. The present seman-
tics deals with structure sharing (but not with type sharing, as this requires integration
with the Core language semantics.) Since functors do not have static identities, there is
no notion of functor sharing specifications. As in Standard ML, a specification that two
structures share is implicitly a specification that all substructures visible in both struc-
tures share as well. However, this does not imply that common functor components have
the same functor signature. No at tempt is made to "unify" functor signatures; indeed,
there are valid signatures which cannot be matched by any real structure, because the
signature imposes conflicting signatures on a specified functor. In this respect, functor
specifications resemble the value specifications of Standard ML.

A functor specification can contain sharing specifications that impose sharing be-
tween the argument structure and the result structure, or between either of these and
some structure declared or specified elsewhere. In that sense, sharing specifications can
constrain a functor. A more detailed study of sharing, including functor sharing, is given
in [14].

Formally, we represent sharing specifications by relations on structure paths, as fol-
lows, Let s be a tree. A sharing relation (on s) is a relation R satisfying:

415

1. R is an equivalence relation on SP(s);
2. R is closed under structure path extension: for all sp, sp', strid, if sp R sp t and

sp.strid E s and sp'.strid E s then sp.strid R sp'.s~rid;
3. there are no cycles' in the graph obtained by collapsing R-equivalent paths into a

single node.

The equivalence class containing sp is written [sp]R, or just [sp], when R is clear from the
context. The set of equivalence classes is denoted s /R. Given any relation R on structure
paths, Ol(R) is the equivalence "closure" of this relation, i.e. the smallest equivalence
relation on SP(s) containing R.

A signature ~ is a tuple (s, R t or, Sp.ff). Here s is a tree, R is a sharing relation on s,
is an (external) sharing map with Dom(~) C_ SP(s) mapping structure paths to stamp

expressions, and O is a functor signature environment with Dora(O) = FP(s) mapping
functor paths to functor signatures. The 5 is a binding operator binding p with scope
d f, and the idea is that P represents the realization of a hypothetical structure matching
the entire signature. It is used to express sharing between an embedded functor whose
signature, S, is given by ~ and a substructure specified elsewhere in the signature. This
sharing is represented by a free occurrence of the stamp expression p(sp) within S .
Accordingly, we require that the only free occurrences of p in �9 are in stamp expressions
of the form p(sp), where sp E s.

The following example illustrates the roles of R and cr in representing internal and
external sharing in signatures.

structure S = struct end;

signature SIG =

sig

structure A: sig end

structure B: sig end

structure C: sig end

sharing A = S
sharing B = C

end;

The representation of this signature is 12 = (s, R, ~, 6p.{}), where s -- {e,/t, B, C}, R -=
ct({(s, c) }) and ~ = {A ~ ,~} , where ,~ is the s tamp of s .

We require that cr be consistent with R, so that it can be regarded as a partial map
from s / R to stamp expressions, i.e. that if sp R sp' then ~(sp) = tr(sp'). Furthermore,
we require that the domain of cr is closed under path extension: if sp 6 Dom(tr) and
sp.strid E s then sp.strid 6 Dom(tr).

2.5 F u n c t o r s igna tu res

A functor signature F. takes the form Ap : 27.27~. Here ,U is the argument signature
and ,Ur is the result signature. Write I2, in the form (sr ,Rr,g, ,~p, .~r) . Sharing be-
tween argument and result is expressed by occurrences of stamp expressions of the form
gets(p, sp) in cry and @,, for some 8p. We require that the only free occurrences of 9 in
tr, and ~, are in stamp expressions of the form gets(p, sp), where sp has to be a member
of the tree component of Z. This is to ensure proper propagation of sharing at functor
application time.

416

Here is a functor specification illustrating propagation of information from the pa-
rameter of a functor to the result via the),-bound realization variable in the functor
signature.

functor F(X: sig structure A: sig end end):

sit
structure B: sit end
sharing B = X.A

end

The corresponding functor signature is S =)`p: ITx.ITR, where ,Ux ----- ({e, A}, I , {}, 6pl.{})
and ,~R = ({e, B}, I , {B ~ gets(p, A)}, 6p".{}) and I is the identity relation.

The next example illustrates the use of the 6-bound realization variable in expressing
sharing between part of a functor and a structure specified in the same signature:

sig
structure A: sig end
functor F(X: sig structure B : sig end

sharing B = A
end): sig end

end

for which the representation is ,U -- (s, I, o, 6p.{F ~+ ~}), where s -- {e, A, F}, cr is the
empty map, and ,~ --)`p': ITx.,UR, with k2x -- ({e, B}, I , {[B] ~ gets(P, A)}, 6pz.{}) and
~R = ({~}, I, {}, ~p2.O>.

The requirement that a 6-bound p only be "applied" to valid paths of the containing
signature is significant for getting a well-defined notion of structure matching. Unfor-
tunately, it also means that there is not a perfect correspondence between the present
signatures and the so-called principal signatures inferred in [14]. In the latter case, one
is allowed to write for example

sig
structure A: sit end
functor F(S: sig end):

sig
structure A': sig structure B: sit end end

sharing A' = A
end

end

in which A' is specified to share with l , although there is no specification of a B com-
ponent of A outside the specification of F. Because of the requirement we are discussing,
the principal signature for the above signature expression cannot be represented as a
signature in the present semantics. Principal signatures that do not have such dangling
components can be represented, however. Since these dangling components are easy to
detect in principal signatures and could be banned without any dramatic loss in pro-
gramming convenience, the two forms of signatures are not in serious conflict.

417

2.6 E v a l u a t i o n o f s t a m p e x p r e s s i o n s

Since we verify sharing specifications by comparing stamps, it is necessary to "evaluate"
arbitrary s tamp expressions to reduce them to concrete stamps. Since s tamp expressions
may contain realization variables, this evaluation must be performed in the context of a
realization environment that binds these variables. Here are the rules defining evaluation
of s tamp expressions:

S t a m p e x p r e s s i o n s I
(1)

~ = (s , l ~ , C r , gp.~) spes ~ l - g e l ; s (T , sp) : :Frn

/~ [- (gets(T $ ~), Sp) ::r m
(2)

/~ F gets(T, str id.sp) ::~ rn

F g e t s (T / s t r i d , sp) ~ rn
(3)

/3(p) = T fl I- g e t s (p , sp) ==~ m

/~ ~- ge ts (p , sp) ::~ rn
(4)

T = (g,-) # ~ g ~ - ~
l- g e t s (T , e) ~ m

(5)

(6)
f l b ge t s (T , strid.sp) ~ rn

We define a function Eval : RealizationEnv -+ (StampExp ---, Stamp) by

m if fl F- i~ ~ m
Ev~Z(#)(~) = undefined i f f l I-/~ 7~

The inference system made up of the inference rules (1)-(6) is monogenic; thus the
definition of Eval makes sense.

Similarly, one can define rules that allow one to infer conclusions of the form/~ I-
0 ~ Ap : lT.(s, T), meaning that in the realization environment #, the value of 0 is
$p : lT.(s, T). These rules are also monogenic and so give rise to a function Eval :
RealizationEnv --r Functor ---, Functor.

418

2.7 Elaborat|on of realization e x p r e s s l o n s

To evaluate s tamp expressions of the form g e t s (~ , sp) that involve realization expres-
sions, it may first be necessary to reduce the realization expression ~ to a simpler form
such that the rules for evaluating the s tamp expression apply. The rules in this section
show how to perform this reduction.

The two most interesting forms of realization expressions are app(0, ~), for functor
application, and new N . ~ for generativity. To handle generativity, the inference rules
extend a store of currently used structure stamps each time a new stamp is picked. Thus
the conclusions of the elaboration rules take the form N,/3 ~- ~ ::~ ~', N ' , and we shall
always have N ' D N.

Elaboration of functor applications involves substitution. A substitution is a finite
map from realization variables to realization expressions. It can be represented by a
realization environment/3; conversely, every realization environment/3 represents a sub-
stitution. Application of a substi tut ion/3 to a term t is written riB].

Realizations N~/3 [- ~o ==~ %o', N'] S t r u c t u r e

(7)
N,/3 ~- app(e, ~=) ~ ~', N'

M N N = O N U M, /31-" ~ :=C, ~', N ' (s)
N,/3 F new M . ~ ~ ~ ' , N '

Comment: The side-condition M f't N = 0 forces the stamps in M to be new. By a-
conversion, M can always be chosen to satisfy the side-condition.

y,/3~ /31~ #'~,g~ N1,/3e ~[Z;] ~ ~',g~ (~)
N,/3~- let /31 in (o=~o',N~

N, /3 ~- ~o :~ ~o', N '

N,/3 ~ (~, ~ E) ~ (r ~ ~), N'
(lO)

Reallzat|on environment s

N,/3~ {} ~ 0 , g

N,/3~/31 ~/3~,N1 N1, /3~2[~] ~ , N '
N,/3 ~ (/31, p=~2) ~ (/3~', p=~), N'

IN,# F- # =~ 3 , N

(11)

(12)

Rule (7) deserves some explanation. The functor Ap: ~ . (s , ~o> may contain free re-
alization variables. These can be looked up in fl during the elaboration of the second
premise. This may seem odd in a statically scoped language, as it looks like the rule uses
"dynamic binding" (/3 is the "call-site" environment). However, the semantics is orga-
nized in such a way that the semantic objects found for the free variables of the functor
in the realization environment/3 at the call site are identical to the objects which were
in the realization environment when the functor was declared. This is achieved, in part,
by using explicit substi tutions in rules (9) and (12).

419

3 A s k e l e t a l p r o g r a m m i n g l a n g u a g e

In this section we present a grammar and a static semantics for the skeletal language.

3.1 Grammar for programs

The grammar defining structure expressions (strezp) and structure-level declarations
(strdec) is given below. (A grammar of signature expressions (sigezp) and specifications
(spec) may be found in [14]).

strezp ::--- s t r u c t strdec end generative
I strezp/strid structure selection
[strid structure identifier
[strezp : sigezp signature constraint
I fp (s$re~p) functor application

s$rdec : : - s t r u c t u r e strid = stre~p structure declaration
[f u n c t o r funid(strid:sigezp) = strezp functor declaration
[empty
] strdec ; s~rdec sequential

3.2 S t r u c t u r e s a n d e n v i r o n m e n t s

An environment, E, is a pair (FE, SE), where FE is a functor environment, i.e. a finite
map from FunId to terms 8 representing static functors, while SE is a s~ructure environ-
ment, i.e., a finite map from StrId to structures. Concatenation of environments, written
E1 + E2 is defined in the usual way.

3.3 S t r u c t u r e m a t c h i n g

Informally speaking, a structure matches a signature if it has at least the functors and
structures specified in the signature and satisfies the sharing prescribed by the signature.

Formally, let N be a s tamp set, fl a realization environment, and S -- (s, W) a structure
and let ~ = (s', R, a, 5p.~) be a signature. We say that S matches ~ in N and fl, written
N, ;3 ~- S matches ~ , if

1. s' C_ s;
2. For all spl , sp~ E s', if spl R sP2 then Eval(fl)(gets(~O , spl)) = Eval(fl)(gets(~, sp2)) ,

i.e., they both exist and are equal stamps;
3. For all sp C s', if [sp] �9 Dom(~) then Zval(fl)(~(sp)) = ~val (~)(gets(V, sp)), i.e.,

they both exist and are equal stamps;
4. For all fp �9 s i, if we let 0 = EvalO3)(getF(~,fp)) and S = ~(fp), we have

N, fl ~- 6 matches S[p=~];

The matching operation in item 4 is defined in Section 3.4. One of the requirements on
signatures is that the only free occurrences of p in ~" are of the form ge t s (p , sp), where
sp 6 s'. Therefore, only the stamps of substructures of S (not functor components of S)
are relevant to the substitution in i tem 4.

Assuming that structure S satisfies the conditions for matching the signature ,U, the
structure that results from matching S with ,U is the restriction of S to ~, written
restrict(S, E) and defined as (s', ~ $ ~>.

420

3.4 F u n c t o r m a t c h i n g

LFrom a signature ,U it is possible to derive a so-called free structure, which can be
thought of as a generic representative for all the structures that match ,U. This derivation
can be formalized as a relation N , ~ ~- ~ree(~) ==~ S, N' . This relation involves a stamp
set because making a free structure involves picking fresh stamps for structures which
are specified in ~Y. One always has N ' 2 N. We omit the precise definition, for lack of
space, but the process is fairly straightforward, and is justified by the Principal Signatures
theorem [14].

l I I I I I Let ~ =),Pl : Zl.(S 1 , W'~') be a funetor and let S = :kp2 : Z 2.Z 2 be a functor signature.
Write ,~'~ in the form ' ' ' ' ' (s2, R2, a2, 6p2.~2). We say that 8 matches ~ in N and ~, written
N, fl ~- 0 matches S, if there exist s~, ~ , N ' , ~, and N" such that

2. N ' , f l F- (s~,Ta) matches ,U~
3. N' ,~ e ~[p~=~o J, Eli ~ ~,, N"
4. N " , ~ t- (s~', W,) matches R'2'[p2=W~]

That is, we create a free structure from ,U~, apply 6 to it, and check that the result
matches/2~' after it has been instantiated with information from the free structure.

3,5 E l a b o r a t i o n of s t r u c t u r e exp re s s ions

Elaboration of structure expressions is formalized in terms of a relation

N, ~d, E ~- strezp ~ N1, fl~, S, fl~

that consumes one realization environment, fla and produces a structure S and two
realization environments, fl~ and fl~. The reason is that in general we must assume that
the structure expression strezp occurs in the body of a functor and we must achieve the
effect of elaborating it formally when the functor is defined and again when the functor is
applied. We introduce new realization variables to stand for all embedded functor calls,
and fl~ maps these variables to the formal realization at "definition-time" and 8[maps
them to the unevaluated functor call expressions. The realization environment fla can be
regarded as "code" which is used in the functor body, which typically takes the form

,kp:~. (s , new N . l e t fla in Tbody)

where N is the set of generative stamps of the functor and ~body is the realization of the
functor result. Details are found in rule 19.

N o t a t i o n Rule 13 uses the following definitions, which relate to converting environ-
ments into structures. Let N be a stamp set, E be an environment and ~ a realization
environment. Then functions cornbPaths(E) and combReas(E) are defined as follows.
Write E in the form (FE, SE), where FE = {funid 1 ~ 01, . . . , funid ,= ~ 0,~} and
SE = {stridl ~-~ (Sl, ~z) , . . . , stridn ~-~ (sn, ~o=)}, for some m and n (rn, n > 0). Then
eombPaths(E) = {e) U {funid 1 funid,~} U U~=l stridi.si (where stridi.si denotes the
set of paths obtained by prepending s$ri& to each path in s~). Moreover, combReas(E)
is the view

strid l =~l , . . . , strid= =T,, , funid=S1, . . . , funidm=Om

421

S t r u c t u r e Expre s s ions

N, fla, E F- strdec ~ N~,fl~,E~,re rn ~ N~
s = <eo.~P:t~s(E~), (.~, eom~Re:s(E~))>

N, fl ~, E P struct strdec end ==> N~ U {m}, fl~, S, r~

N, r ~, Z F ,tramp ~ g~, r l , (~, 9), re stria e
N,/3 ~, E F- strezp/strid ~ N~, fl d, (slstrid, 91strid), re

E(strid) = S
N,/3 ~, E P strid ~ N, {}, S, {}

(13)

(14)

(15)

N, r ~, E ~- ~tre~p ~ g~ , r~ , s, re g~, r ~, Z ~ sige~p ~
N1,/3 d + r l d F" S matches ,U S' = restrict(S, ~)

(16)
N, fl d, E ~ stremp : sigemp ~ Nl,rdl, S ' ,~ e

N, r ~, E ~- sSremp ~ NI, r~, S:, re N~, fl ~ --F fla~ P S~ matches ~U

~' r Dom(r ~ + #~) r# = {~':9~} r~ = {~': app(0, 9~)}
(17)

N, r d, Z F- fp(strexp) ~ N2, r~ + fig, (sb, p'), r [+ r~
Comment: The elaboration of 9[po=9: $ ~] redoes functor applications in 9 and gener-
ates fresh structures corresponding to new-bindings in 9.

S t ruc tu r e - l eve l D e c l a r a t i o n s [N, fl~, E 1- strdec =2;. N ~ , ~ a, E~,#~]:

N, r d, E P stremp ~ N1, rl,d S, fll:
N, r d, E F- s t r u c t u r e strid = stremp ==~ g l , ill, {strid ~ S}, r~ (18)

N , r ~, E P sige~p ~
g , r d ~- ~ e e (~) ~ s~,g~ S~ = (~,9~>

P ~ Dom(r d)
NI, (rid , P=gp), E -F { strid ~-+ (sp, p) } F stremp ~ N~, fir, (sb, 9b), r~

N ' = N ~ . \ N 1 ~=~p: .~ . (sb ,new N ' . l e t fl~ in 9b}
N , r ':~, .E F functor /~, '~ ia (str id : sige=,p)=,tre~p ==> N, { } , {Iu,id ,-', e}, { } (19)

Comment: The stamp set resulting from the elaboration of the declaration is N itself,
i.e., seen from outside the functor declaration, no new structures are generated. The
side-condition " p ~ Dom(rd) '' serves to distinguish the realization variable of strid from
the realization variables of other structures, so that any free occurrence of p in 9b refers
to the realization of strid.

N, #d E ~ ::> N, {}, {}, {} (2O)

N: #d E ~ ,trdecl ~ N1, #~, El, #e NI, #" + #~, E + Z~ ~ st~Uec: ~ N2, ##, E:, #~
N, #d E F- strdecl ; strdec2 ~ N2, #~ + ##, E1 H- E2, #~ H- r~

(21)

422

Long f u n c t o r i d e n t i f i e r s

E(funid) = 0

E ~- funid ~ 0
(22)

E(strid) -= <s, ~o)

E ~- strid.fp ~ ge tF(T , fp)
(23)

4 C o n c l u s i o n

The semantics we have presented here shows that higher-order functors do not increase
the complexity of the module semantics more than one would expect, and that the
policy of transparent signature matching can be generalized to the higher-order case. In
particular, signature matching is straightforward to check, following the definitions of
the semantics.

As noted in the introduction, higher order functors behaving in accordance with
this semantics have been implemented in the Standard ML of New Jersey compiler [2].
The implementation representations differ in detail from the semantic representations
presented above, because of various techniques used to optimize space requirements.
But taking an abstract view, there are close parallels between the semantics and the
implementation.

R e f e r e n c e s

1. Maria-Virginia Aponte. Extending' record typing to type parametric modules with sharing.
In Twentieth Annual ACM Syrup. on Principles of Prog. Languages, pages 465-478, New
York, Jan 1993. ACM Press.

2. Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Martin Wirs-
ing, editor, Third Int'l Syrup. on Prog. Lang. Implementation and Logic Programming, New
York, August 1991. Springer-Verlag. (in press).

3. Pierre Cr~gut. Extensions to the sml module system. Rapport de Stage d'Ingenieur Eleve
des Telecommunications, November 1992.

4. Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In Twenty First Annual A CM Syrup. on Principles of Prog. Languages, New
York, Jan 1994. ACM Press.

5. Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase
distinction. In Seventeenth Annual ACM Syrup. on Principles of Prog. Languages, pages
341-354, New York, Jan 1990. ACM Press.

6. Xavier Leroy. Manifest types, modules, and separate compilation. In Twenty First Annual
ACM Syrup. on Principles of Prog. Languages, New York, Jan 1994. ACM Press.

7. David MacQueen. Modules for Standard ML. In Peat. 198~ ACM Conf. on LISP and
Functional Programming, pages 198-207, New York, 1984. ACM Press.

8. David MacQueen. Using dependent types to express modular structure. In Thirteenth
Annual A CM Syrup. on Principles of Prog. Languages, pages 277-286, New York, Jan 1986.
ACM Press.

423

9. Robin Mihaer and Mads Torte. Commentary on Standard ML. MIT Press, Cambridge,
Massachusetts, 1991.

10. Robin Milner, Mads Tofte, and Robert Harper. The Definition o] Standard ML. MIT Press,
Cambridge, MA, 1990.

11. John C. Mitchell and Robert Harper. The essence of ML. In Fifteenth ACM Syrup. on
Principles of Programming Languages, pages 28-46, New York, 1988. ACM Press.

12. Didier R(~my. Typechecking records and variants in a natural extension of ml. In Sizteenth
Annual A CM Syrnp. on Principles of Prog. Languagea, pages 77-88, New York, Jan 1989.
ACM Press.

13. Donald Sazmella and Andrej Tarlecki. Extended ml: Past, present, and future. Technical
Report ECS-LFCS-91-138, Laboratory for Foundations of Computer Science, University of
Edinburgh, 1991.

14. Mads Torte. Principal signatures for higher-order program modules. In Nineteenth Annual
ACM Syrup. on Principle8 of Prog. Languages, pages 189-199 , New York, Jan 1992. ACM
Press. (Extended version to appear in Journal of ~mctional Programming)

