
Dimension Types

Andrew Kennedy

University of Cambridge
Computer Laboratory

Pembroke Street
Cambridge CB2 3QG

United Kingdom
Andrew. Kennedy~cl. cam. ac. uk

A b s t r a c t . Scientists and engineers must ensure that physical equations
axe dimensionally consistent, but existing programming languages treat
all numeric values as dimensionless. This paper extends a strongly-typed
programming language with a notion of dimension type. Our approach
improves on previous proposals in that dimension types may be poly-
morphic. Furthermore, any expression which is typable in the system
has a most general type, and we describe an algorithm which infers this
type automatically. The algorithm exploits equational unification over
Abelian groups in addition to ordinary term unification. An implemen-
tation of the type system is described, extending the ML Kit compiler.
Finally, we discuss the problem of obtaining a canonical form for princi-
pal types and sketch some more powerful systems which use dependent
and higher-order polymorphic types.

1 I n t r o d u c t i o n

One aim behind strongly-typed languages is the detection of common program-
ming errors before run-time. Types act as a constraint on the range of allowable
expressions and stop 'impossibilities' happening when a program is run, such as
the addition of an integer and a string.

In a similar way, scientists and engineers know tha t an equation cannot be
correct if constraints on dimensions are broken. One can never add or subtract
two values of differing dimension, and the multiplication or division of two values
results in values whose dimensions are also multiplied or divided. Thus the sum
of values with dimensions speed and t ime is a dimension error, whereas their
product has dimension distance.

The addition of dimensions to a programming language has been suggested
many times [KL78, Hou83, Geh85, M~n86, DMM86, Ba187]. Some of this work is
seriously flawed and most systems severely restrict the kind of programs tha t can
be written. House's extension to Pascal is much bet ter [Hou83]. In a monomor-
phic language it allows functions to be polymorphic over the dimension of argu-
ments. Since the submission of this paper an anonymous referee has pointed out
work by Wand and O'Keefe on dimensional inference in the style of ML type
inference [WO91]. In some ways this is similar to the approach taken here and
a comparison with their system is presented later in this paper.

349

2 Some issues

2.1 Dimension, Unit and Representation

There is often confusion between the concepts of dimension and unit [Man87].
Two quantities with the same dimension describe the same kind of property, be it
length, mass, force, or whatever. Two quantities with different units but the same
dimension differ only by a scaling factor. A value measured in inches is 12 times
the same value measured in fee t - -but both have the dimension length. We say
that the two units are commensurate [KL78, DMM86]. These units have simple
scaling conversions. More complicated are units such as temperature measured
in degrees Celsius or Fahrenheit, and even worse, amplitude level in decibels.

Base dimensions are those which cannot be defined in terms of other dimen-
sions. The International System of Units (SI) defines seven of these--length,
mass, time, electric current, thermodynamic temperature, amount of substance
and luminous intensity. Derived dimensions are defined in terms of existing di-
mensions, for example, acceleration is distance r by time squared. Di-
mensions are conventionally written in an algebraic form inside square brackets
[Lan51], so for example the dimensions of force are written [MLT-2].

Similarly there are base uni t s - - the SI base dimensions just listed have re-
spective units metres, kilograms, seconds, Amperes, Kelvin, moles and Candela.
Examples of derived units include inches (0.0254 metres) and newtons (kgms-2).

There is also the issue of representation: which numeric type is used to store
the numeric value of the quantity in question. Electrical quantities are often rep-
resented using complex numbers, whereas for distance reals are more common,
and for either of these many languages provide more than one level of precision.

Dimensionless quantities are common in science. Examples include refractive
index, coefficient of restitution, angle and solid angle. The last two should prop-
erly be considered dimensionless though it is tempting to think otherwise. An
angle is the ratio of two lengths (distance along an arc divided by the radius)
and a solid angle is the ratio of two areas (surface area on a sphere divided by
the square of the radius).

2.2 Types and Polymorphism

How do these concepts of dimension, unit, and representation fit with the con-
ventional programming language notion of type?

Expressions in a strongly typed language must be well-typed to be acceptable
to a compiler. In functional languages, for example, the rule for function appli-
cation insists that an expression el e2 has type ~-2 if el has an arrow type of the
form ~'1 --+ T2 and the argument e2 has type ~-1.

In a similar way, mathematical expressions must be dimensionally consistent.
Expressions of the form el + e2 or el - e2 must have sub-expressions el and e2
of identical dimension. But in ele~ (product) the sub-expressions may have any
dimension, say 51 and 52 giving a resultant dimension for the whole expression
of 5152.

350

So it appears that dimensions can be treated as special kind of type in a
programming context. But there is the question of what to do about repre-
sentation. Do we associate particular dimensions with fixed numeric types (so
current is always represented by a complex number, distance by a real), or do
we parameterise numeric types on dimension and give the programmer the flexi-
bility of choosing different representations for different quantities with the same
dimension?

A monomorphic dimension type system is of limited value. For non-trivial
programs we would like to write general-purpose functions which work over a
range of dimensions. Even something as simple as a squaring function cannot be
expressed in a monomorphic system. A modern polymorphic language would use
quantified variables to express the idea that this function squares the dimension
of its argument, for any dimension.

2.3 Type inference

Type systems such as tha t of Standard ML are designed so tha t the compiler can
infer types if the programmer leaves them out. It turns out tha t this is possible
for a dimension type system too.

A desirable proper ty of inferred types is that they are the most general type,
sometimes called principal. Any other valid typing can be obtained from this
most general type by simple substitution for type variables. Our system does
have this feature, and an algorithm is described which finds the principal type

if one exists.

3 T h e i d e a

The system described here is in the spirit of ML [MTH89, Pau91]. I t is poly-
morphic, so functions such as mean and variance can be coded to work over
values of any dimension. The polymorphism is implicit--dimension variables are
implicitly quantified in the same way as ML type variables. It is possible for the
system to infer dimension types automatically, as well as check types which the
p rogrammer specifies.

Although it is described as an extension to ML, any language with an ML-like
type system would suffice; indeed, it could even be added as an extension to a
monomorphical ly- typed language as House did with Pascal. It is a conservative
extension to ML in the sense tha t ML-typable programs remain typable, though
functions may be given a more refined type than before.

We s tar t with a set of base dimensions such as mass, length, and time, perhaps
represented by the identifiers M, L and T as is conventional. Dimensions are
written inside square brackets, for example [MLT-2]. This notation cannot be
confused with the ML list value shorthand, although some languages such as

Haskell use [w] to denote the list type.
For polymorphic dimensions we need dimension variables. We use dl, d2,...

to distinguish them from ordinary type variables c~, ~,.... The unit dimension
(for dimensionless quantities) is indicated by [I].

351

We assume some kind of construct for declaring base dimensions. This could
be extended to provide derived dimensions; we do not discuss this possibility
here. The provision of multiple units for a single dimension is also an easy ex-
tension to the system.

3.1 D i m e n s i o n types

We introduce new numeric types parameterised on dimension. The most obvious
candidates are r e a l and complex, with speeds having type [LT -1] r e a l and
electric current [Current] complex. The parameter is writ ten to the left of the
type constructor in the style of Standard ML.

For the remainder of this paper we will only consider a single type construc-
tor. In a type of the form [5]real , 5 is a dimension expression which is completely
separate from other type-forming expressions and which may only appear as a
pa ramete r to numeric types.

3.2 A r i t h m e t i c

We give the following type schemes to the s tandard ari thmetic operations:

-F,- : Yd. [~ real • [~ real -+ [4 real

* : Vdld2. [dl] r e a l • [d2] r e a l -+ [did2] r e a l
/ : Vdld2. [dl] r e a l x [d2] r e a l --+ [dld~ 1] r e a l
s q r t : Vd. [d 2] r e a l --+ [4 r e a l
exp, ln , s i n , cos , t an: [1] r e a l [1] r e a l

I t is often useful to coerce an integer into a dimensionless real, for which we
provide a suitable function:

r e a l : i n t --+ [1] r e a l

Finally, it turns out tha t we need a polymorphic zero:

zero :Vd. [~ real

3.3 S o m e e x a m p l e s

U s e o f ze ro . Without a polymorphic zero value we would not even be able to
test the sign of a number, for example, in an absolute value function:

fun abs x = i f x < ze ro t h e n z e r o - x e l s e x

with type Vd. [d] r e a l ~ [d] r e a l . I t is also essential as an identity for addition
in functions such as the following:

fun sum [] = zero

I sum (x::xs) = x + sum xs;

This has the type scheme Vd. [4 real list -+ [~ real list.

352

S t a t i s t i c a l f u n c t i o n s . Statistics provides a nice set of example functions be-
cause we would want to apply them over a large variety of differently dimensioned
quantities. We list the code for mean and variance functions:

fun mean xs = sum xs / real (length xs);

fun variance xs =

let val n = real (length xs)

val m = mean xs

in sum (map (fn x => sqr (x - m)) xs) / (n - real 1) end;

Their principal types, with those of some other statistical functions, are:

mean : Vd. [~ real list --~ [~ real
variance : Yd. [d] real list -+ [d 2] real
sdeviation : Vd. [4 real list -+ [4 real
skewness : Vd. [d] real list -+ [I] real
correlation: Vdld2. [dl] real list -~ [d2] real list --> [1] real

D i f f e r e n t i a t i o n . We can write a function which differentiates another function
numerically. I t accepts a function f as argument and returns a new function
which is the differential of f . We must also provide an increment h.

f un d i f f h f = fn x => (f (x+h) - f (x - h)) / (r e a l 2 * h)

This has type scheme

Vdld2. [dJ r e a l --+ ([dl] r e a l -+ [d2] r e a l) -+ ([dJ r e a l --+ [d2dl 1] r e a l)

Unlike the statistical examples, the type of the result is related to the type of
more than one argument.

R o o t f ind ing . Here is a tiny implementat ion of the Newton-Raphson method
for finding roots of equations:

fun newton (f , f ' , x , eps) =
let val dx = f x / f~ x

val x' = x - dx

in if abe dx < eps then x' else newton (f, f', x', eps) end;

It accepts a function f, its derivative f '7 an initial guess x and an accuracy eps.

Its type is

~dld2. ([dl] real --} [d2] real) • ([dl] real -+ [dlld2] real)•
[dl] real x [dl] real -~ [dl] real

P o w e r s . To illustrate a more unusual type, here is a function of three argu-

ments.

f un f (x , y , z) = x*x + y*y*y + z*z*z*z*z

This has the inferred type scheme

Vd. [d 15] real x [d 1~ real • [d 6] r e a l -+ [d 3~ real

353

4 A dimension type system

We formalise the system by considering a very small ML-like language. Dimen-
sion expressions are defined by:

5 ::= d I B I 5 . 5 I 5-1 I 1

where B is any base dimension and d is any dimension variable. The shor thand
d n (n C N) will be used to stand for the n-fold product of d with itself, and
occasionally we will write did2 instead of dl �9 d2.

Now we define monomorph ic type expressions by:

where a is any type variable. Polymorphic type expressions, also called type
schemes are defined by

a ::= T I Va.cr } V d . a

We have extended the usual ML-style type schemes with quantification over
dimension variables, which must be distinct from type variables in order to
distinguish the two kinds of quantification. The flavour of polymorphism used
for dimension types is the same as ordinary ML-like polymorphism. This leads
to the usual problems but does mean tha t inference is straightforward. We shall
have more to say on this subject later.

Finally, expressions are defined by

e : : = x I n l e e I Ax.e I l e t x = e i n e

where x is a variable and n is a real-valued constant such as 3.14. The full set
of inference rules is now given, based on Cardelli [Car87]. Only two new rules
are required--general isat ion and specialisation for dimension quantification. A~
denotes the type assignment obtained from A by removing any typing s ta tement
for x.

VAR A F x : a A (x) = a REAL

A i - e : a
GEN a not free in A SPEC

A F e : Va.a

A F e : a
DGEN d not free in A DSPEC

A t- e : Vd.a

ABS Ax U {x : T} F e : T ~ A ~- e : T ~ T'
APP

A }- ,kx.e : T --+ T ~

A F n : [1] r e a l

A F e : Va .a

A ~- e : ,~[~-/o~]

A }- e : Vd.a

A ~- e : a[5/d]

A ~ - e l : T

A F e e' : ~-~

LET
A ~- e : a A~ U {x : a} F e' : T

A I- l e t x = e i n e ~ : ~-

354

In addition to these rules we have equations relating dimensions:

5152 : D 6 2 5 1 (commutativity)
(6162)63 =D 61 (62d3) (associativity)

] �9 5 ~---D 5 (identity)
65-1 = D 1 (inverses)

and an inference rule relating equivalent types:

A F e : T1 t- 71=D 72
DEQ

A F e : T 2

where =D is lifted to types by the obvious congruence.
It will be observed that none of the rules explicitly introduces types involving

base dimensions. We assume that there is a means of declaring constants which
represent a base unit for a particular base dimension. For the length dimension,
for example, we might have have a constant me t re of type [L] r e a l .

5 D i m e n s i o n a l T y p e I n f e r e n c e

5.1 U n i f i c a t i o n - - a l g o r i t h m Unify

At the heart of most type inference algorithms is the process of unification. Given
an equation of the form

TI ~- T2

we wish to find the most general unifier, a substitution S such that

1. S(TI) = S(T2)
2. For any other unifier S ~ there is a substitution S" such that S" o S --- S t.

If equality is purely syntactic, there is a straightforward algorithm first devised
by Robinson. It accepts a pair of types ~'1 and 72 and returns their most general
unifier or fails if there is none.

unify (~, a) = the identity substitution

Unify(a, 7) = Unify(7, a) -- if a is in 7 then fail (no unifier exists)
else return the substitution {c~ ~-~ ~-}

unify(71 -~ r2, r3 -~ 74) = & o Sl
where $1 = Unify(r1,73)
and $2 = Unify(S1 (72), $1 (~-4))

To extend this to deal with types of the form [6] r e a l , we unify dimensions
using another algorithm Dim Unify. The additional clause is simply

Unify(f51] r e a l , [52] r e a l) ~- DimUnify(61,62)

355

5.2 Dimensional Unification--algorithm DimUnify

We require an algorithm DimUnify which accepts two dimension expressions 51
and 52 and returns a substi tution S over the dimension variables in the expres-
sions such tha t

1. Z(51) =D S(52)
2. For any other unifier S ~ there is a substitution S" such tha t S" o S ----v S ~.

This kind of unification is sometimes called equational, in contrast to ordinary
Robinson unification which is syntactic or free. In our dimension type system, we
want to unify with respect to the four laws listed earlier: associativity, commuta-
tivity, identity and inverses. It turns out tha t this particular brand of unification
is decidable and unitary [Baa89, Nut90]: there is a single most general unifier if
one exists at all. This has the consequence that , as for ML polymorphic types,
if an expression is typable then it has a most general type from which any other
type may be derived by simple substitution for dimension variables.

We will use Lankford's algorithm for Abelian group unification [LBB84]. I t
relies on the solution of linear equations in integers, for which there exist several
algorithms including one by Knuth [Knu69]. Our t rea tment is slightly different
in tha t we consider only a single equation.

First we t ransform the equation to the normalised form

d l. . . . d m. B I. . . . 1

where di and Bj are distinct dimension variables and base dimensions.
Start by setting S to the empty substitution. If m = 0 and n = 0 then we

are finished already. If m = 0 and n ~ 0 then fail: there is no unifier. Otherwise,
find the dimension variable with exponent xk of smallest absolute value in the
equation. If Xk is negative, first take reciprocals of both sides by negating all
exponents. Without loss of generality, we can assume that k = 1.

1. If Vi. xi mod xl = 0 and Vj. yj mod xl = 0, then the unifier is the following,
composed with S.

dl ~ d-2 x2/x~ . . . d ~ ~'~/x~ �9 B 1 y~/x~ . . . B ~ y'~/x~

2. Otherwise introduce a new variable d and compose with S the substi tut ion

dl ~ d . d-~ L~2/~IJ . . . d m [X ' ~ / x l J �9 B~ -Ly~/~J .- . B~LY~/X~J

to t ransform the equation to

d X l " ~ 2 A x 2 m ~ " " " -mn~Xm m ~ " ~ll=lYl m ~ ' " " --nRY'~m~ --?D 1

If at this stage there are no variables in the equation other than d then there
is no solut ion--no unifier exists.
Otherwise find the smallest exponent again and repeat the procedure.

This method must terminate because on each iteration we reduce the size of the
smallest nonzero coefficient in the equation.

356

5.3 I n f e r e n c e - - a l g o r i t h m Infer

The type inference algorithm for ML is well-known and has been presented in
many places. Our version differs in two respects--quantified dimension variables
are instantiated at the same time as quantified type variables (when e is a vari-
able), and generalization over free dimension variables is added to the usual
generalization over free type variables (when e is a let-expression).

Given a type assignment A and an expression e, the algorithm Infer deter-
mines a pair (S, T) where T is the most general type of e and S is a substitution
over the type and dimension variables in A under which this is true.

In fer(A, x) = (I, T[dll /dl , . . ., d~m/dm, a ~ / a l , . .. , a~n/an])
where

A(x) is Vd] . . . d m . V a l . . , an.T
d~ , . . . , d~ are fresh dimension variables

! a ~ , . . . , a n are fresh type variables

Infer(A, ele2) = ($3 o $2 o S1, S3(a))
where

(Sl, ~) = Infer(A, el)
($2, T2) --= Infer(S1 (A), e2)

a is a fresh type variable

Infer(A, Ax.e) = (S, S (a) + T)
where

(S, T) = Infer(Ax U {x: a}, e)
a is a fresh type variable

Infer(A, Jet x = e in e') = ($2 o S1,72)
where

($1, ~1) = Infer(A, e)
($2, T~) = Infer(S1 (Ax) U {x: V d l , . . . , d ~ . V a ~ , . . . , a~.T~ }, e')
a l l , . . . , dm are free dimension variables in ~-1 not in SI(A)
a l , . . . , an are free type variables in T1 not in S1 (A)

The algorithm's correctness is shown by two theorems [Lei83, Dam85].

T h e o r e m i (S o u n d n e s s o f Infer). / f Infer(A, e) succeeds with result (S, T)
then there is a derivation of S (A) H e : ~'.

T h e o r e m 2 (S y n t a c t i c C o m p l e t e n e s s o f Infer). I f there is a derivation of
S (A) F e : T then In fer (A ,e) is a principal typing for e, i.e. it succeeds with
result (So,v0) and S =D S t o So, T =D S'(TO) for some substi tution S ' .

To prove these theorems we first devise a syntax-oriented version of the infer-
ence rules and prove that they are equivalent to the rules given here. Then the
proofs follow more straightforwardly by induction on the structure of e; these
will appear in a fuller version of this paper.

357

6 Implementat ion

The dimension type system described in this article has been implemented as
an extension to the ML Kit compiler [Rot92], which is a full implementation of
Standard ML as defined in [MTH89].

In order to fit naturally with the rest of Standard ML, the concrete syntax
of dimension types is necessarily messy. Dimension variables are distinguished
from ordinary type variables and identifiers by an initial underline character, as
in _a. Base dimensions are ordinary identifiers declared by a special construct.
This might also be used to introduce constants representing the base units for
the dimension specified, as mentioned in section 4:

dimension M unit kg;

dimension L unit metre;

dimension T unit sec;

It would be easy to extend this to permit derived dimensions, in a fashion similar
to ML type definition.

Dimension expressions are enclosed in square brackets, as is conventional.
This happens to fit nicely with the notation for parameterised types. The unit
dimension is simply []. Exponents are written after a colon (e.g. area is [L: 2])
and product is indicated by simple concatenation (e.g. density is [M L:-3]).

Any new type or datatype may be parameterised by dimension, by type, or
by a mixture of both. Assuming a built-in r e a l type we could define complex
by

d a t a t y p e [_a] complex = make_complex of [_a] r e a l * [_a] r e a l

Built-in functions as defined in the prelude are given new types, for example:

v a l s q r t : [a :2] r e a l -> [a] r e a l
v a l s i n : [] r e a l - > [] r e a l
val + : [_a] real * [_a] real-> [a] real

val * : [_a] real * [_b] real-> [_a _b] real

The one major problem is ML's overloading of such functions. The Definition of

Standard ML gives types such as num*num -> num to arithmetic and compar-
ison functions. A type-checker must use the surrounding context to determine
whether num is replaced by r e a l or i n t . We want to give dimensionally polymor-
phic types to these functions. This makes the Definition's scheme unworkable,
especially in the case of multiplication. The current implementation has alter-
native names for dimensioned versions of these operations.

7 Some Problems

7.1 E q u i v a l e n t t y p e s

ML type inference determines a most general type, if there is one, up to renaming
of type variables. For example, the type scheme V ~ . ~ • fl is equivalent to
V~/~. f l x ~. This equivalence is easy for the programmer to understand.

358

For dimension types, we have principal types with respect to the equivalence
relation =D, but there is no obvious way of choosing a canonical representa-
tive for a given equivalence class--there is no "principal syntax". Type scheme
Vdl. . . d~.T1 is equivalent to Vdl. . . dn.T2 if there are substitutions $1 and $2
over the bound variables dl to dn such that

and
S2(~2) =D ~ ,

This is not just =D plus renaming of type and dimension variables. For example,
the current implementation of the system described in this article assigns the
following type scheme to the c o r r e l a t i o n example of section 3.3.

Vdld2. [dl] r e a l l i s t -~ [d2d? 1] r e a l l i s t --+ [1] r e a l

which is equivalent to

Vdld2. [dl] r e a l l i s t -~ [42] r e a l l i s t --+ [1] r e a l

by the substitutions d2 ~-~ d2dl (forwards) and d2 ~-~ d24~ 1 (backwards). The
second of these types is obviously more "natural" but I do not know how to
formalise this notion and modify the inference algorithm accordingly.

In some cases there does not even appear to be a most natural form for the
type. The following expressions are different representations of the principal type
scheme for the differentiation function of section 3.3.

Vdld2. [dl] r e a l -+ ([41] r e a l -+ [d2] r ea l) --+ ([dl] r e a l --+ [d2d~ -1] r e a l)
and

Vdld2. [dl] r e a l -+ ([dl] r e a l --+ [dld2] r e a l) -+ ([dl] r e a l -+ [d2] r ea l)

7.2 D e p e n d e n t t y p e s

Consider a function for raising real numbers to integral powers:

fun power 0 x = 1.0

i power n x = x,power (n-l) x

Because the dimension of the result depends on an integer value, our system
cannot give any better type than the dimensionless

int -~ [1] real --~ [I] real

This seems rather limited, but variable exponents are in fact rarely seen in
scientific programs except in dimensionless expressions such as power series. A
dependent type system would give a more informative type to this function:

Yd . / / n C i n t . [d] real -+ [d n] real

There are also functions which intuitively should have a static type expressible

in this system, but which cannot be inferred. Geometric mean is one example.

359

It seems as though its type should be Vd.[a~ r e a l l i s t -+ [~ r e a l , like the
arithmetic mean mentioned earlier. Unfortunately its definition makes use of
rpower and prod both of which have dimensionless type:

fun rpower (x,y) = exp(y*in x);
fun prod [] = 1.0

L prod (x::xs) = x.prod xs;
fun gmean xs = rpower(prod xs, 1.0 / real (length xs))

7.3 P o l y m o r p h i s m

Recursive definitions in ML are not polymorphic: occurrences of a recursively
defined function inside the body of its definition can only be used monomor-
phically. For the typical ML programmer this problem rarely manifests itself.
Unfortunately it is a more serious irritation in our dimension type system.

fun prodlists ([], []) = []
prodlists (x::xs, y::ys) = (x.y) :: prodlists (ys,xs)

The function prodlists calculates products of corresponding elements in a pair
of lists, but bizarrely switches the arguments on the recursive call. Naturally this
makes no dif[erence to the result, given the commutativity of multiplication, but
whilst a version without the exchange is given a type scheme

Vdld2. [dl] real list • [d2] real list --~ [dld2] real list

the version above has the less general

kfd. [a~ real list • [~ real list -+ [d 2] real list

An analagous example in Standard ML is the (useless) function shown here:

fun funny c x y = if c=0 then 0 else funny (c-l) y x

This has inferred type Vs. int -+ a -+ ~ --~ int but might be expected to have

the more general type Vail. int -+ a -+ fl -+ int. Extensions to the ML type
system to permit polymorphic recursion have been proposed. It has been shown
that the inference problem for such a system is undecidable [Hen93, KTU93].

The lack of polymorphic lambda-abstraction also reduces the generality of
inferred types:

fun twice f x = f (f x);

fun sqr x = x,x;
fun fourth x = (twice sqr) x;

The following type schemes are assigned:

twice : Vs. (~ ~ a) ~ (~ ~ a)
sqr : Vd. [a~ real -+ [a m] real
fourth: [I] real --~ [I] real

360

We would like f o u r t h to have type Yd. [d] r e a l ~ [d 4] r e a l but cannot have
it because this would require sqr to be used at two different instances inside
twice , namely Yd. [d] r e a l -+ [d 2] r e a l and Yd. [d ~] r e a l -+ [d 4] r e a l .

This is a serious problem but not unpredictable so long as the programmer
fully understands the nature of ML-style polymorphism. The same situation
occurs in ordinary ML if we change the definition of sqr to be (x, x). This time
we expect f o u r t h to have the type Vs. a --+ (~ • c~) • (a • ~) but the expression
is untypable because sqr must be used at the two instances Va. a -+ a x a and
Vs. a • a -+ (c~ x a) • (c~ x c~). In fact, we cannot even write such a term in
the second-order lambda calculus. It requires either a higher-order type system
such as Fw, or a system with intersection types, in which we could give t w i c e
the type

and pass in sqr at two instances.

8 R e l a t e d w o r k

8.1 H o u s e ' s e x t e n s i o n to P a s c a l

Before Wand and O'Keefe's recent work, the only a t tempt at a polymorphic
dimension type system was the extension to Pascal proposed by House [Hou83].
In tha t system, types in procedure declarations may include a kind of dimension
variable, as in the following example:

function ratio(a : real newdim u; b : real newdim v)

: real dim u/v;

begin
ratio := a/b

end;

Compared with modern notions of polymorphism, this is rather strange; the
newdim construct introduces a new variable standing for some dimension, and
dim makes use of already-introduced variables. It is as though newdim contains
an implicit quantifier.

8.2 W a n d and O~Keefe's sy s t em

Wand and O'Keefe define an ML-like type system extended with a single numeric
type paramaterised on dimension [W091]. This takes the form Q(nl,...,nN)
where ni are number expressions formed from number variables, rational con-
stants, addition and subtraction operations, and multiplication by rational con-
stants. It differs from the [5] r e a l type of this paper in two ways:

1. A fixed number of base dimensions N is assumed. Dimension types are ex-
pressed as a N-tuple of number expressions, so if we have three base dimen-
sions M, L and T, then Q(nl, n2, n3) represents the dimension [M '~1L'~2T'~8].

361

2. Dimensions have rational exponents. This means, for instance, tha t the type
of the square root function can be expressed as

Vi , j ,k .Q(i , j , k) ~ Q(O.5.i,O.5* j,O.5* k)

in contrast to
Yd. [d 2] r e a l --+ [a~ r e a l

in our system, and this function may be applied to a value of type Q(1, 0, 0),
whereas our system disallows its application to [M] r e a l .

Their inference algorithm, like ours, generates equations between dimensions.
But in their system there are no "dimension constants" (our base dimensions)
and equations are not necessarily integral, so Gaussian elimination is used to
solve them.

Wand and O'Keefe's types are unnecessarily expressive and can be nonsen-
sical dimensionally. Consider the type Vi,j, k. Q(i,j, k) --~ Q(i, 2 * j, k) which
squares the length dimension but leaves the others alone, or Vi, j, k. Q(i,j, k)
Q (j, i, k) which swaps the mass and length dimensions. Fortunately no expression
in the language will be assigned such types. Also, non-integer exponents should
not be necessary--polymorphic types can be expressed without them and values
with fractional dimension exponents do not seem to occur in science.

They propose a construct newdim which introduces a local dimension. In our
system the d imension declaration could perhaps be used in a local context, in
the same way that the d a t a t y p e construct of ML is used already.

The problem of finding canonical expressions for types presumably occurs in
their system too, as well as the limitations of implicit polymorphism described
here.

9 Conclusion and F u t u r e W o r k

The system described in this paper provides a natural way of adding dimensions
to a polymorphically-typed programming language. It has been implemented
successfully, and it would be straightforward to add features such as derived
dimensions, local dimensions, and multiple units of measure within a single di-
mension.

To overcome the problems discussed in section 7 it might be possible to
make the system more polymorphic, but only over dimensions in order to retain
decidability. An alternative which is being studied is the use of intersection types.

So far no formal semantics has been devised for the system. This would be
used to prove a result analagous to the familiar "well-typed programs cannot go
wrong" theorem for ML.

Acknowledgements

This work was supported financially by a SERC Studentship. I would like to
thank Alan Mycroft, Francis Davey, Nick Benton and Ian Stark for discussions
on the subject of this paper, and the anonymous referees for their comments.

362

References

[Baa89]

[Sa187]

[cars7]

[Dam85]

[DMM86]

[Geh85]

[Hen93]

[Hou83]

[KL78]

[Knu69]

[KTU93]

[Lan51]

[LBB84]

[Lei83]

[M~n86]

[Man87]
[MTH89]

[Nut90]

[Pau91]

[Rot92]

[W091]

F. Baader. Unification in commutative theories. Journal of Symbolic Com-
putation, 8:479-497, 1989.
G. Baldwin. Implementation of physical units. SIGPLAN Notices, 22(8):45-
50, August 1987.
L. Cardelli. Basic polymorphic typechecking. Science of Computer Program-
ming, 8(2):147-172, 1987.
L. Damas. Type Assignment in Programming Languages. PhD thesis, De-
partment of Computer Science, University of Edinburgh, 1985.
A. Dreiheller, M. Moerschbacher, and B. Mohr. PHYSCAL--programming

Pascal with physical units. SIGPLAN Notices, 21(12):114-123, December
1986.
N. H. Gehani. Ada's derived types and units of measure. Software--Practice
and Experience, 15(6):555-569, June 1985.
F. Henglein. Type inference with polymorphic recursion. ACM Transactions
on Programming Languages and Systems, April 1993.
R. T. House. A proposal for an extended form of type checking of expres-
sions. The Computer Journal, 26(4):366-374, 1983.
M. Karr and D. B. Loveman III. Incorporation of units into programming
languages. Communications of the ACM, 21(5):385-391, May 1978.
D. Knuth. The Art of Computer Programming, Vol. 2, pages 303-304.
Addison-Wesley, 1969.
A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the pres-
ence of polymorphic recursion. A CM Transactions on Programming Lan-
guages and Systems, April 1993.
H. L. Langhaar. Dimensional Analysis and Theory of Models. John Wiley
and Sons, 1951.
D. Lankford, G. Butler, and B. Brady. Abelian group unification algorithms
for elementary terms. Contemporary Mathematics, 29:193-199, 1984.
D. Leivant. Polymorphic type inference. In ACM Symposium on Principles
of Programming Languages, 1983.
R. Ms Strong typing and physical units. SIGPLAN Notices, 21(3):11-
20, March 1986.
R. Mankin. letter. SIGPLAN Notices, 22(3):13, March 1987.
R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, Cambridge, Mass., 1989.
W. Nutt. Unification in monoidal theories. In lOth International Conference
on Automated Deduction, volume 449 of Lecture Notes in Computer Science,
pages 618-632. Springer-Verlag, July 1990.
L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.
N. Rothwell. Miscellaneous design issues in the ML Kit. Technical Report
ECS-LFCS-92-237, Laboratory for Foundations of Computer Science, Uni-
versity of Edinburgh, 1992.
M. Wand and P. M. O'Keefe. Automatic dimensional inference. In J.-L.
Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of
Alan Robinson. MIT Press, 1991.

