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Abs t rac t .  Shapely types separate data, represented by lists, from shape, 
or structure. This separation supports shape polymorphism, where oper- 
ations are defined for arbitrary shapes, and shapely operations, for which 
the shape of the result is determined by that of the input, permitting 
static shape checking. They include both arrays and the usual algebraic 
types (of trees, graphs, etc.), and are closed under the formation of initial 
algebras. 

1 Introduction 
Consider the operation map which applies a function to each element of a list. In 
existing functional languages, its type is 

(oL---+fl)---+a, list--+/3 list 

where ~ and/3  may range over any types. This da~a polymorphism allows the 
data  (c~ and/3) to vary, but  uses a fixed shape, l i s t .  Shape polymorphism fixes 
the data., but allows the shape to vary, so that,  for types A and B, instances of 
map include 

(A-+B)-+A tree-+B tree 
and 

(A-+B)-+A matrix-~B matrix 
In each case map(f) applies f to the data  (the leaves or entries), while leaving 
the shape fixed. Typically, both kinds of polymorphism co-exist, so that  map can 
vary both its data  and its shape. 

Shape polymorphism applies to the usual algebraic types, (and others, such 
as matrices) but, being restricted to covariant constructions, does not address 
contravariant types of, say, functions. 

The appropriate class of types are the shapely types, whose shape and data  
can be separated. With only one kind of data, this separation is represented by 
a pullback 

data 
F A  , A list 

Shapes ~ N 
arity 
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Values of a shapely type F A  are uniquely determined by a list of A's and a 
shape of type Shapes, such that  the arity of the shape equals the length of the 
list. Shape polymorphism arises when the operations on the data  and shape are 
completely independent of each other. 

It oftens happens, particularly in scientific computation and data-processing, 
that  the shape can influence the data, but not conversely. If computation is 
restricted to such shapely operations then the shape information can be treated 
as if it is part of the type system, with all shape computations, including shape 
checking, performed before executing the list operations. The latter can then be 
optimised, or run in parallel, without sacrificing (and indeed strengthening) the 
benefits of typing. 

These ideas can be understood within a semantics based on sets, or of bottom- 
less c.p.o's, but for generality (and flexibility) are presented in a locos [Coc90], 
which provides a minimal setting for working with both lists and pullbacks. In 
particular, no higher types are assumed (as is shown feasible in the language 
Charity[CF92]) since they contribute nothing to the theory of shape. A calculus 
of shapely functors and natural transformations is introduced, with the shapely 
type constructors being those functors which have a shapely transformation to 
the list functor (or a multi-parameter analogue of it). 

Most of this paper is devoted to the introduction of concepts. The main 
result of the paper is that  the shapely type constructors are closed under the 
construction of initial algebras. That  is, once we have lists then we have all the 
other "algebraic" types of trees, graphs, queues, etc. The additional presence 
of arrays, and other types defined by pullbacks, means that  the shapely types 
lie between these algebraic types, and the class of initial algebras for arbitrary 
functors. Full details of proofs can be found in [JC94]. 

2 L o c o s e s  

The types and operations are modelled by the objects and arrows of a category 
g. It must have lists (and the underlying products and coproducts required to 
define them) and enough pullbacks to work with shapes. Specifying such a class 
of pullbacks (as was done for the Boolean categories of [Man92]) at this stage 
would impose an unwelcome burden so, to simplify slightly, we will assume that  
we have all pullbacks, and work in a finitely complete, distributive category (or 
lextensive category [CLW93]) which has all list objects, i.e. a locos [Coc90]. Being 
extensive is equivalent to requiring that  all coproduct diagrams have disjoint 
(monomorphic) inclusions, and are stable under pulling back. Examples include 
the usual semantic categories, including those of sets, bottomless c.p.o.'s, or even 
topological spaces, any one of which will suffice to illustrate the ideas below. 

Let us fix some notation. If f : C---+A and g : C---+B are morphisms then 
(f, g) : C---~A • B is their pairing. The left and right projections from the product 
are 7rA~ B and ~r' (respectively) and the unique morphism to the terminal object A,B 
is !A : A--~I. The symmetry for the product is denoted CA,B : A•215 
Dually, the coproduct inclusions are given by t A,B : A - - + A + B  and t'A,B : B - + A +  
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B. I f  f : A--~C and g : B---*C then their  case analysis  is given by  [f, g] : A + 
B----~'.C. T h e  functors  H, ~ : Cn +C denote  chosen n-fold p roduc t s  and  coproducts ,  
respectively,  and  A : C--.C~ is the d iagonal  functor .  

T h e  d is t r ibu t ive  law is witnessed by a na tu ra l  i somorph i sm 

dd,B,C : A x ( B  + C)---~(AxB) + ( A x C )  

whose inverse is [ id  • g, i d •  L']. 
Subscr ip ts  on na tu r a l  t r an s fo rma t ions  will be  o m i t t e d  unless required to dis- 

a m b i g u a t e  an expression.  

A pullback is a c o m m u t i n g  square  

q 
P , B  

A , C  
I 

such tha t ,  for every pa i r  of  m o r p h i s m  x : X---+A and y : X---+B such t h a t  f o x = 
g o y there  is a unique m o r p h i s m  z : X - ~ P  such t h a t  p o z = x and  q o z = y. We 
denote  z by (x, y) ( the usual  pa i r ing  is a special  case). 

T h e  list cons t ruc tor  is a functor  L : C--+C. I ts  basic opera t ions  are denoted 

n i l :  I ~ L A  (1) 

c o n s  : A x L A - + L A  (2) 

f o l d r ( x ,  h ) :  LA--*C (3) 

where x : B----~C and h : A x C - + C  are morph i sms ,  n i l  and  cons  are the  usual  
const ructors ,  while f o l d r ( x ,  h) is the  unique m o r p h i s m  m a k i n g  the  following 
d i a g r a m  c o m m u t e  

(nil, id) cons x id 
B . LAxB . 

fildr(x, h) 

h 

AxLAxB 

id• h) 

A x C  

It  follows tha t  [ n i l ,  cons] : 1 + (A • LA)----,LA is an i somorph i sm,  which expresses 
LA as a coproduct .  
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From these primitives we can construct the usual family of list operations, 
whose notat ion is a mixture  of the list notat ion of [BW88] and categorical nota- 
tion for monads:  

L f  : LA---*LB is map(f)  for f : A---*B 
q : A- -~LA makes singleton lists 

@ : LA•  is append 
snoc : LA•  is cons on the tail of the list 

# : L2A- -~LA flattens a list of lists 
g* : L A - - * L B  is it o Lg for g : A - + L B .  

Many elementary results about  lists in locoses can be found in [Jay93b]. 
L1 is a natural  numbers object N with zero 0 and successor S given by n i l  

and cons respectively. Then 7/ -- one and @ = + is addition and it : L N - + N  
is summat ion .  Let Eq be the equality on N.  The length of a list object L A  is 
L! = ~r : LA---~N. 

Define shun t  : L A x L A - - + L A •  to be 

L A x L A  ~- L A  + ( L A x A x L A )  [(id, nil), snocxid! L A x L A  

where the isomorphism is given by the coproduct decomposit ion of L A  and the 
distributive law. Then 

s p l i t  : N •  

is given by f o l d r ( ( n i l ,  id),  shunt) .  It  divides a list into two segments, whose 
first, initial segment, has length given by the first projection (if the list is long 
enough). Define 

take = zr o split : N x L A - - - * L A  (4) 

drop = ~' o split : NxLA-~LA . (5) 

L e m m a  1. @ o s p l i t  = ~' .  Hence, we have a pullback 

L C •  ( # o ~ r , @ )  , N x L C  

1 . bool 
true 

(Tr, :/~ o take> 

Proof. Both sides of the equation equal foldr(id, id). 

Given x : X-+N• for which Eq o (~,take) o x = true then the induced 

morphism into the pullback is split o x. [] 

The powers C" of C are also locoses, and they have a right C-action. T h a t  is, 
a functor C ~ xC--~C ~ which maps  A = (A1, A 2 , . . . ,  A,,) and B to 

A x B  = ( A l  x B ,  A 2 x B , .  . . , A , , x B )  

and has the obvious action on morphisms.  
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3 S h a p e l y  F u n c t o r s  a n d  T r a n s f o r m a t i o n s  

The essential ideas of this section can be found in [Jay93a]. 
A strength for a functor F : C'~--+C is a natural  t ransformation 

rA,B : F A x B - + F ( A x B )  

which satisfies the usual associativity and unicity axioms. More generally, a 
strength for F : Cm--*C n is given by a strength for each of its projections onto 
C. See [CS92] for an account of the connections between strength and fibrations. 

(F, r )  is a shapely functor  if F is stable (preserves all pullbacks) and r is a 
strength for it. Then F1 is the object of F-shapes and # = F! : F A - + F 1  is 
the shape of F A  (generalising the length of a list). As F is stable, the following 
diagram is a pullback 

FTr ~ 
F ( A •  , . F B  

F A  . F1 # 
If F A x # F B  is a canonical choice of pullback (representing pairs tha t  have the 
same shape) then there is an isomorphism 

z i p  : F A x # F B - - - ~ F ( A x B )  

which is inverse to (F~r, F~r'} and generalises the usual z i p  of lists. 
The  shapely functors include the product,  coproduct and list functors, and 

are closed under composition and pairing. 
A natural  t ransformation a : F o G  is cartesian if, for every morphism f : 

A - * B ,  the following square is a pullback 

~ A  
F A  , G A  

F B  , G B  
O~ B 

A strong natural  transformation (F, Vl)O(G, v~) between strong funetors is 
a natural  transformation c~ : F O G  that  commutes with the strengths, i.e. 

C~A X id  
F A x B  , G A x B  

F ( A x B )  . G ( A x B )  
OIA• 
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If, further, F and G are shapely and a is cartesian, then a is a shapely transfor- 
mation and F is shapely over G by a. 

A consequence of being an extensive category is that  the coproduct inclusions 
are shapely; cartesian-ness is by definition, and the strength is given by the 
distributive law. 

Projections from the product x : C2---~C, though strong, are never shapely. 
(If it were so then all the transformations of interest would be shapely.) Instead, 
given f : A--+C and g : B---~D we have the pullback 

7r 
A x D  . A 

f x  • l - ]  I f  

C x D  �9 C 
7r 

which shows that  the transformation ~r : ( - ) x  D==~• : C---~C is cartesian. Hence, 
7rA, B is shapely in A. 

The shapely transformations are closed under vertical and horizontal com- 
position, so that  for each locos C we have a 2-category of shapely functors and 
natural transformations. They are also closed under pairing and case analysis. 
Here are two more general results. 

P r o p o s i t i o n 2 .  Let F : C2---~C be a shapely functor and let G, H : d--+C be any 
functors. Suppose that for each object B the transformation O~A, B : F(A,  B)---~GA 
is cartesian in A. Similarly, suppose that for each object A the transformation 
~A,B : F (A ,  B ) - ~ H B  is cartesian in B. Then 

(O~A,B, ~A,B) : F(A ,  B)----*GAxHB 

is a cartesian in both A and B. 

Pro@ Consider a commuting square 

X ( z , y ) ,  G A x H B  

F ( A ' , B ' )  ~ G A ' x H B '  

Then x and z induce a unique morphism x I : X---~F(A, B')  by the cartesian-ness 
of o.,. Similarly y and z induce a morphism y' : X---~F(A ~, B). As F is shapely, 
x ~ and y' induce the desired morphism X--*F(A,  B). [] 
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T h e o r e m 3 .  I f  a : F o G  and/3 : H •  are shapely transformat ions ,  then 

7A = f o l d r ( a A , / 3 A )  : L H A •  

is a shapely transformat ion.  

Proof. The result generalises [Jay93a, Theorem 2.6] without changing the proof. 
[] 

C o r o l l a r y 4 .  @ = f o l d r ( n i l ,  cons) and # = f o l d r ( n i l ,  @) are shapely. [] 

The following l e m m a  shows how strength and cartesian-ness interact. 

L e m m a 5 .  I f  o~ : F ~ G  is cartesian and (G, r2) is shapely then there is a unique 
strength 7"1 fo r  F such that (F, vl) and a are both shapely. 

Proof. If  F has a strength rl that  makes a strong then the following diagram 
must  commute .  

c~• 
F A •  , GAxB 

F A  . G A  
o~ 

Since the square is a pullback, this determines T1 uniquely. Conversely, this 
pullback can be used to define r l .  Its naturality,  associativity and unicity are all 
inherited f rom tha t  of r~. [] 

4 S h a p e l y  T y p e s  

A functor F : C---+C is a shapely type constructor if it is shapely over L. More 
generally, a functor F : Cm---~C n is a shapely type constructor  if it is shapely over 
A H L  'n. Equivalently, each of the projections of F onto C must  be shapely over 
I I L  "~. If 5 is the relevant shapely t ransformat ion then we have the pullback 

5 

F1 . N '~ 
51 
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F(A~) is a (tuple of) shapely types, and ~1 is also known as the arir of F1.  
The shapes can be thought of as having fixed numbers of holes or entries of 

each type, which are filled in by the data. 
Of course, lists are shapely by the identity transformation. Also, p : L 2 ~ L  

makes L 2 a shapely type constructor, with shapes given by lists of numbers. 
The shape of a matr ix  is given by its dimensions, which are of type N 2. The 

defining pullback is 
M A  , L A  

N 2 , N 

where M A  is the type of matrices with entries from A. (They can also be defined 
as vectors of vectors [Jay93a]. Matrix multiplication, and general operations of 
linear algebra can all be defined in this way. 

Binary trees with leaves labelled by A's have shapes given by (unlabelled) 
trees, whose arity is their number of leaves, and data  given by their list of leaves. 

leaves 
T A  �9 L A  

T1 , N 
leaves 

The pullback construction does not determine the order of elements in the list 
of leaves, which could be listed from left to right, right to left, or in some more 
arcane fashion. Let us stick with left-to-right order, unless specifically changed. 

map on trees is given by the induced morphism into the pullback 

TA 

"'.Tf 
"A 

TI 

A 

T I -  

T1 

�9 L A  

, L B  

, N  # 

, N 
leaves 

Note that  the shape has remained fixed while the data  changes. Of course, this 
construction generalises to define map for any shapely type constructor. 
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Other operations change the shape and leave the data  fixed. For example, 
the balancing of a binary tree is given by an operation balA : T A - - - * T A  which 
is independent of the labels 

T A  

"".balA 

T A  

b a l l ~  
T1 

, L A  

�9 L A  

�9 N # 

, N 
leaves 

Finally, both data  and shape may change together, as occurs with the node 
operation, which creates a tree from two subtrees. 

( T A )  2 , ( L A )  2 

�9 ,,< "'.nodeA 

TA 

(TI) - -  , N 

T 1  , N 
leaves 

. L A  

given by 

#x# 

T 1  , N x N  
(leaves, nodes) 

Most of the usual first-order data  types of functional languages can be con- 
structed in this way, and arrays are available within the same framework, too. 
Note that ,  since shapely type constructors are always covariant functors, con- 
travariant constructions, such as function types, cannot be shapely. 

The number of leaves in the result is the sum of those in the sub-trees, while the 
lists of leaves must be appended. Note that  if l e a v e s  represents the leaves from 
right to left then the order of the arguments must be swapped to define @. In 
some sense, the choice of @ here fines the representation of the leaves. 

Trees whose nodes are also labelled ar shapely, too. The defining pullback is 
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4.1 An Al t e rna t ive  Approach  

In defining shapely type constructors, the data is given by a tuple of lists, one for 
each kind of data whose type is L A I • 2 1 5  xL A~ .  What happens if these 
lists are interleaved to resemble input strings, of type L(At  + A2 + . . .  + Am)? In 
other words, one could consider the functors which are shapely over L ~  instead 
of HL.  In fact, the resulting class of functors is unchanged, as shown by the 
following 

P ropos i t i on6 .  H L  m and L ~  are each shapely over the other. 

Proof. Clearly, there is shapely natural transformation I IL  m ~ L Z  obtained by 
concatenation. Conversely, define the natural transformation checkA, B by 

d [cons, ~r'! L A 
(A + B)xLA , (AxLA) + (BxLA) 

It is shapely in A whence ~i : foldr(nil, check) is, too. This can be generalised 
to define ~i : L(AI + A2 + ... + A,~)-+LAi which strips from a list all entries 
which are not from Ai. It is shapely in Ai. The obvious n-fold generalisation of 
Proposition 2 shows that 

t~ : (t~i) : L Z ~ H L  m 

is a shapely transformation. [] 

5 S h a p e  P o l y m o r p h i s m  

Shape polymorphism arises when the operations on the shape and on the data 
are independent of each other. Currently, such operations must redefined for 
each new type, increasing the bulk of the code and reducing clarity. Aside from 
map, the shape polymorphic operations include 

z i p :  F A • 2 1 5  (6) 

r :  F A x B - - + F ( A •  (7) 

r ' :  A x F B - - + F ( A x B )  (8) 

r" = Fr' o r: F A x F B - - + F 2 ( A x B )  (9) 

copies : F1 xA-+FA (i0) 

(11) square ---- r o (•, id) : FA-+F2A . 

r' is dual to r and the operation copies instantiates all entries of the shape to 
the given value, while square replaces each entry with a copy of the whole. 

Closely related to map are the pointwise operators introduced by example in 
[Jong0] and defined in [Jay93a]. These iterate an endomorphism at each entry 
in a shape. The number of iterations at each entry is determined by a weight on 
the shape i.e. a morphism F I - ~ F N .  Particular shapes may have special weights 
(e.g. one can weight each leaf in a tree by its depth) but weights on lists yield 
shape polymorphic operations. Examples include weighting each entry by the 
length of the list, or by its position. Their use in defining the discrete Fourier 
transform op. cir. shows it to be shape polymorphic. 
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6 Shapely Operations 

In general computation, the shape of the result is influenced by that of the data. 
Examples include filtering of a list, or graph reduction. There is, however, a 
large body of computations where the shape of the result depends only on that 
of the input, without reference to the data. As well as the shape polymorphic 
operations, these include many operations where the shape affects the data, but 
not conversely. Examples include averaging of entries, pointwise operators, and 
many algorithms, such as the DFT. 

For such shapely operations it is profitable to separate the internal repre- 
sentations of shape and data. Then shape processing can be treated as part of 
compilation, in which shape errors are detected (e.g. attempting to z ip  two dif- 
ferent shapes), the shape of the result is computed, and any shape information 
required by the data is supplied. Data can then be stored and processed in ar- 
rays. In this way, the clarity of type (and shape!)-checking is combined with the 
efficiency of array-processing. 

The main points are illustrated by the decomposition of a tree into either a 
leaf or a pair of sub-trees. 

TA , LA 

T1 , N 

- , A+ISA )2  id&52, A§ [Y' @] 

[ 
, I + ( T 1 )  2 , I + N  2. 

--~ id + 5 2 [one, +] 

The shape of the result is determined by that of the input, but in order to 
know where to break the list of leaves, the number n of leaves in the left sub- 
tree is required. Shape processing would add the computed value of n to the 
environment prior to the array-processing. 

7 Initial Algebras 

7.1 Endofunc to r s  

Let F be shapely over L. The initial algebra F0 will be constructed as an object 
of well-formed expressions. The alphabet is given by /2 = F1. The well-formed 
expressions are described by a pullback 

r 
F0 , LS2 

l 
1 , L ~ 2 x N  

(nil, one) 
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F0 
:I 

hci 

C 
d 

where X1 attempts to recognise the well-formed expressions. More precisely, its 
second component counts the number of well-formed expressions created, while 
the first component yields that  part of the input string (if any) which could not 
be recognised. 

Observe that  ! : F1---*I makes t an F-Mgebra. The recogniser X1 is a special 
case of a more general "parser" 

Xc : Lf2--*LY2xLC 

to be defined for any F-algebra 7 : FC--~C. The terminology is motivated by 
the case when C represents the parse trees, as given by F0 below. 

Xc : foldr((nil, nil), 00) where Oc :f2•215215 performs one 
step of the parse, as will now be described. 

First, the middle component of the source is n i l  unless the parse has already 
failed. That  is, we can re-express the source (using the appropriate isomorphism) 
as (f2x LC)+(~2x 9xLf2xLC)  and then 0c = [(c, conso(idx cons) xid]  where 
(c  remains to be described, by cases. 

L e m m a  7. The test Eq o (Tr, take) o (6xid)  : ~xLC---*bool recognises the sub- 
object 

( idx@) o ( (# ,  5}xid) : FCxLC---+f2xLC. 

Proof. In brief, the test picks out those pairs where the arity of the K2 is no 
greater than the length of the list. In that  case, we have the resources to construct 
something of type FC with a list of C's left over. [] 

Let L' : QC--*K2xLC be the pullback of the above test along f a l s e .  Then (c  
is given by decomposing f2xLC into the specified coproduct followed by 

[(nil, cons o (TX id)), (~xid) o 5'] : (FCxLC) + QC-~Lf2xLC. 

L e m m a 8 .  If h: (C, 7)--~(C',7') is an F-algebra homomorphism then 

( i d x L h )  o )(.c : XD �9 

Proof. Clearly Q is a functor and t' is a natural transformation. Hence (, 0 and 
X are natural with respect to F-algebra homomorphisms. [] 

Hence, the construction of F0 can be given in stages by 

r 
, LY2 

l :~fc 

(n i l ,  ~c )  LY2xLC 

idx# 

Lf2xN 
'(nil, one) 
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Now we will show that  F0 is an initial F-algebra with hc the unique algebra 
homomorphism to C. 

L e m m a 9 .  Xc or  = ( n i l ,  Lhc} : LFo---+LK2xLC 

Proof. It suffices to show that  both sides of the equation are foldright of ( n i l ,  n i l  / 
and f o l d r ( i d ,  0c) o ( r  id).  The cons case for the right-hand-side is not trivial. 
See [JC94] for details. 

[] 

Consider the following cube, 

FFo 

Fhc  

(#:'5}. n• i d x r  

"%'... 
'..70 

'% 
* r 

Fe 
__J 

hc 

F C  <##' n i l ,  5) 

, f2 x L#2 

, LD 

i d x x c  

. f l x L f l x L C  Xc 

C . Lf?xLC (nil, ,> 
Lemma 9 implies the commutat ivi ty  of its rear face. The right and bo t tom faces 
commute by the definitions of X and 0. Hence, there is an induced F-act ion 70 
that  makes he a homorphism. (Of course, the definition of 70 and its action is 
not dependent on the particular choice of C, since we can always work over the 
algebra C = 1.) 

It remains to prove its uniqueness. Let h : Fo---*C be any F-algebra homo- 
morphism. Then the pullback defining he factorises it as h o h0 as in Fig. 1. (We 
abuse notation by denoting hro by h0 and XFo by X0 etc.) Hence it suffices to 
prove that  h0 = id.  

The following lemma shows that  parsing into Fo is reversible. 

L e m m a  10. @ o ( i d •162  o )to = idLD 

Hence 

r o h0 = Q o ( i a •  r o (niZ, v> o h0 

= ~ o ( i a • 1 6 2  o x 0  o r 

= r  

and so h0 = id  since r is a monomorphism. 

(12) 

(13) 

(14) 
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r 
F0 , L/? 

h0 Xo 

0 7! LnxLF0 

h[ -J  • 

C , LI?xLC 
(nil, ,> 

Fig. 1. Factorisation of hc 

7.2 T h e  G e n e r a l  Case  

A functor F : C m xC~--~C '~ can be used to represent a system of (parametrised) 
domain equations [SP82], whose solution is can be found by constructing, for 
each object A in g m  an initial algebra OL A : F(A,  FtA)--+FtA for the functor 
F(A,-). If such always exist, then F t extends to a functor whose action on 
f : A---~B is the F(A,  -)-algebra homomorphism induced by the action 

F(A,  F t B )  F ( f ,  id!  F(B,  F t B )  C~B , F t  B 

Further, if/3 : F ( id ,  G}=~G : gm___~gn is a natural transformation, then the 
unique algebra homorphisms induce a natural transformation ~t : Ft=~G. 

T h e o r e m  11. If  r : F ~ A H L  m+'~ : C mxgn---+C n is a shapely type constructor 
then F? exists and is one, 1oo. Further, if fl : F ( id ,  G>~G : cm---,C n is a shapely 
transformation, then so i s /3 t  

Proof. F is determined by its projections onto C which are all shapely over 
I lL  m+n. By the Bekic Lemma, we can treat these individually, or, equivalently, 
assume that  n = 1. Then for each object A in C m the initial algebra F t A  for 
F(A,-) is constructed as above. 

The cartesian-ness of fit follows from that  of Xc which, by Theorem 3, re- 
duces to that  of Oa. Examination of the cases reduces this to the cartesian-ness 
of cons, ~ and/3. 

The strength for F t  is defined using the defining pullback for F t ( A x  B) and 
the strength of f iF(A, 1)x LGA. It follows that  fit is shapely. 

Now, taking/3 to be 

F(A,  I ILmA)  r  I I L m A x I I L m A  ~- I I ( L A x L A )  HQ i iLm A 

(where -~ permutes the arguments) induces a shapely transformation F t ~ I I L  m 
which shows that F t is a shapely type constructor. [] 
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8 R e l a t e d  a n d  F u r t h e r  W o r k  

Banger and Skillicorn [BS93] give a categorical semantics for arrays, which are 
represented by their dimensions and some unbounded lists. They  do not use 
pullbacks to represent their types, nor is there a general theory of shape. 

Those shapely types, such as matrices, which are not part  of the usual func- 
tional programming approach, can be represented using dependent types, but  
their type checking must be performed dynamically, whereas most shape com- 
putat ion should be performed statically. The exact relationship to dependent 
types, and the internal logic of locoses, require further exploration. 

Further work will consider how to incorporate shape ideas into program- 
ming language design, and compiler construction, using classes in a functional 
or object-oriented setting. 
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