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Abs t rac t .  Most language translation problems can be solved with ex- 
isting LALR(1) or LL(k) language tools; e.g., YACC [Joh78] or ANTLR 
[PDC92]. However, there are language constructs that defy almost all 
parsing strategy commonly in use. Some of these constructs cannot be 
parsed without semantics, such as symbol table information, and some 
cannot be properly recognized without first examining the entire con- 
struct, that is we need "infinite lookahead." 
In this paper, we introduce a new LL(k) parser strategy, pred-LL(k), 
that uses semantic or syntactic predicates to recognize language con- 
structs when normal deterministic LL(k) parsing breaks down. Semantic 
predicates indicate the semantic validity of applying a production; syn- 
tactic predicates are grammar fragments that describe a syntactic con- 
text that must be satisfied before application of an associated production 
is authorized. Throughout, we discuss the implementation of predicates 
in ANTLR--the parser generator of The Purdue Compiler-Construction 
Tool Set. 

1 Introduct ion 

Although in theory, parsing is widely held to be a sufficiently solved problem, 
in practice, writing a grammar with embedded translation actions remains a 
non-trivial task. Ignoring arguments concerning the use of LL(k) versus LR(k) 
parsing strategies, it is often the case that semantic information (such as symbol 
table information) is required to parse a particular language correctly and nat- 
urally. While L/~(k)-based parsers can be augmented with run time tests that  
alter the parse, bot tom-up strategies have convenient access to much less se- 
mantic and context information than a top-down LL(k) parser; hence, we have 
chosen to augment LL(k) with predicates. 

* Partial support for this work has come from the Army Research Office contract 
number DAAL03-89-C-0038 with the Army High Performance Computing Research 
Center at the U of MN. 
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In this paper, we present pred-LL(k), the class of languages recognized by 
conventional LL(k) parsers augmented with semantic and syntactic predicates, 
which can specify the semantic and syntactic applicability of any given grammar 
production. Semantic predicates are run time tests that can resolve finite looka- 
head conflicts and syntactic ambiguities with semantic information. Syntactic 
predicates resolve finite lookahead conflicts by specifying a possibly infinite, pos- 
sibly nonregular, lookahead language. Syntactic predicates are a form of selective 
backtracking that allow the recognition of constructs beyond the capabilities of 
conventional parsing; this capability is becoming necessary, e.g., [ES90] indicates 
that unbounded lookahead is required to correctly parse C++.  We have imple- 
mented pred-LL(k) using an existing LL(k) parser generator called ANTLR (the 
parser generator used in PCCTS-- the  Purdue Compiler-Construction Tool Set) 
[PCD93]. ANTLR is widely used tool; there are over 1000 registered users in 
over 37 countries and numerous universities are using it in compiler classes. 

Our paper is organized as follows. Section 2 describes the previous work in 
this area and Section 3 provides numerous examples illustrating the utility of 
semantic and syntactic predicates. Section 4 describes the behavior of semantic 
and syntactic predicates more formally and how their introduction affects normal 
LL(k) grammar analysis and parsing. 

2 Prev ious  Work 

Attribute grammars have received attention in the literature since their introduc- 
tion [Knu68] because they allow the specification of the grammar and the trans- 
lation semantics in one description. Unfortunately translations implemented in 
this manner can be slow and many translations are difficult to express purely as 
functions of attributes; according to [Wai90], pure attribute grammars have had 
little impact on compiler construction. 

[LRS74] considered the practical application of attribute grammars to com- 
pilers by characterizing the types of attribute grammars that could be efficiently 
handled via LR(k) "bottom-up" and LL(k) "top-down" parsing methods. They 
showed that LL(k) has an advantage over LR(k) in semantic flexibility (e.g., 
LL(k) parsers may inherit attributes from invoking productions); despite this 
advantage of LL(k), some researchers have argued that augmenting LR(k) with 
predicates is more suitable than augmenting LL(k) due to concerns over recog- 
nition strength (see LADE 3, YACC++ 4, and [CanS9], [McK90]). However, with 
the addition of syntactic and semantic predicates, pred-LL(k) parsers can poten- 
tially recognize all context-free 5 and many context-sensitive languages beyond 
the ability of existing LR(k) systems. 

3 LADE is a registered trademark of Xorian Technologies 
4 YACC++ is a registered trademark of Compiler Resources, Inc. 
5 ANTLR-generated parsers can be coerced into backtracking at all lookahead deci- 

sions to accomplish this, however, general backtracking is well known to be expo- 
nentially slow. 
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Other researchers have developed similar notions of predicated LL(k) pars- 
ing. For example, [MF79] introduced the class of ALL(k) grammars that could 
specify two types of semantic predicates, disambiguating and contextual, that 
were used to handle the context-sensitive portions of programming languages; 
the authors implemented an ALL(l) parser generator [MKR79] based upon their 
ALL(k) definition. Our approach differs from [MF79] in a number of ways. 
Whereas they allow exactly one disambiguating predicate per production, we 
allow multiple predicates and do not distinguish between disambiguating and 
contextual predicates, as this differentiation can be automatically determined 
(the grammar analysis phase knows when a lookahead decision is nondetermin- 
istic and can search for semantic predicates that potentially resolve the conflict). 
Our predicate definition permits the placement of predicates anywhere within 
a production and, more importantly, specifies the desired evaluation time by 
the location of the predicate. Further, the disambiguating predicates of [MF79] 
require that the user specify the set of lookahead k-tuples over which the pred- 
icate is valid. Our predicates are automatically evaluated only when the looka- 
head buffer is consistent with the context surrounding the predicate's position 
(ANTLR grammar analysis can compute the k-tuples). Although in theory, the 
predicates of [MF79] and the predicates described herein are equivalent in recog- 
nition strength, in practice our predicates allow for more concise and more nat- 
ural language descriptions; additionally, our predicate scheme has been imple- 
mented in an LL(k) parser generator rather than in an LL(1) parser generator, 
which dramatically increases the recognition strength of the underlying parsers. 

Another top-down parser generator and language, S/SL [HCW82], allows 
parsing to be a function of semantics. This method was accomplished by allowing 
rule return values to predict future productions. Unfortunately, their system had 
a number of weaknesses that rendered it impractical for large applications; e.g. 
it appears that parsers could only see one token of lookahead and the user had 
to compute prediction lookahead sets by hand. 

3 Examples of Using Predicates 

Programmers routinely handle many context-sensitive language constructs with 
context-free grammars through a variety of ah hoc "tricks" taught in most com- 
pilers courses. For example, when a syntactic structure is ambiguous, semantic 
information is often used by the lexical analyzer to return different token types 
for the same input symbol. In addition, grammars are often twisted (into an un- 
readable condition) in an effort to remove parser nondeterminisms and syntactic 
ambiguities. In this section, we provide two examples that illustrate the benefits 
of using semantic information in the parser rather than the lexical analyzer and 
we provide an example that illustrates how syntactic predicates can be used to 
resolve finite LL(k) lookahead problems. In this paper, we use the terminology 
shown in the following table. 
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What Example Description 
nonterminal 
terminal 
raw input 
action 
predicate 
semantic pred 
syntactic pred 
i *h lookahead symbol 
text of i *h lookahead symbol 

a~ varName 

ID, FOR 

"int" "for" 

i<< ir >> 
!<< i==O >>7 

<< i==O >>7 

(declaration)? 

LA(3) 

LATEXT(1) 

starts with lower case 
starts with upper case 
regular expr in a string 
enclosed in << .. .>> 
construct followed by a 7 
enclosed in << ...>>7 
enclosed in ( . . . )  ? 
L h ( i ) , l < i < k  
LATEXT(i), 1 < i < k 

We now present some examples motivating the need for predicates during 
parsing. Consider FORTRAN array references and function calls, which are syn- 
tactically identical, but semantically very different: 

expr ID "\(" exprlist "\)" <<arrayref_action>> 
ID "\(" exprl is t  "\)" <<fncall_action>> 

There are two common approachs to resolving this ambiguity. First, one may 
merge the two alternatives and then examine the symbol table entry for the ID 
to determine which action to execute: 

expr : ID "\(" exprl is t  "\)" 
<<if ( i svar ($1)  ) arrayref_action else fncall_action; >> 

where the $1 is the attribute (of type character string here) of ID. 
In the second approach, the lexical analyzer modifies the token type according 

to whether the input ID is a variable or a function by examining the symbol table. 
The grammar then becomes context-free: 

expr VAR "\(" exprl is t  "\)"  <<arrayref_action>> 
FUNC "\(" exprlist "\)" <<fncall_action>> 

while these methods are adequate, they quickly become unmanageable as the 
complexity of the grammar increases. The lexical analyzer would be required to 
know more and more about the grammatical context in order to make decisions; 
in essence, the user has to hand code a significant part of the parser in the lexical 
analyzer. A more elegant solution is possible via semantic predicates, in which all 
code fragments pertaining to context-sensitivity are constrained to the grammar 
specification. The same expression that would normally be used to differentiate 
the two actions or to return different token types may be used to alter the nor- 
mal LL(k) parsing strategy by annotating the grammar, thereby, allowing array 



267 

references and function calls to be treated as grammatically different constructs, 
which was the original, fundamental goal: 

expr : <<isvar(LATEXT(1))>>? ID " \ ( "  e x p r l i s t  " \ ) "  <<arrayref_action>> 
I <<isfunc(LATEXT(1))>>? ID " \ ( "  e x p r l i s t  " \ ) "  <<fncall_action>> 

where LATEXT(1) is the text of the first symbol of lookahead and the "?" suffix 
operator indicates that the preceding grammar element is a predicate. In this 
case, the predicates are semantic predicates that are to be used in the production 
prediction mechanism to differentiate the alternative productions. 

As a more complicated example, consider the definition of classes in C++.  
Identifiers (IDs) are used as the class name, member function names and the 
constructor name. (In C++,  a constructor is a special member function that has 
the same name as the class itself and does not have a return type.) For example, 

c l a s s  Box { 
Box() { /* constructor for class Box */ } 
draw() { /* member function */ } 
some_user_type val; /* member variable */ 

}; 

A simplified grammar ~agmentfor C++ class definitions such as: 

class_clef 
: " c l a s s "  ID " \{"  ( member )§ "\} . . . .  ;" 

member 

i 
l 

ID "\(" args "\)" func_body 
ID "\(" args "\)" func_body 
ID declarator 

/* constructor */ 
/* normal member function */ 
/* member variable */ 

is syntactically ambiguous (like the previous FORTRAN example), but the con- 
structor requires special handling. The conventional method would be to have 
the lexical analyzer return different token types for the various ID references. 
There are numerous problems with this solution, but we will give only two here. 
First, because C++ class definitions can be nested, the lexical analyzer would 
need access to a stack of terminals that represent the enclosing class names. Only 
in this way can it decide between a normal function name and the class con- 
structor. But, what is the purpose of the parser if the lexical analyzer is tracking 
the grammatical structure? Second, if the parser has lookahead depth greater 
than one, having the lexer return tokens based on semantic context would be 
problematic as symbols may not have been added to the symbol table before the 
lexical analyzer had to tokenize its input. E.g., when the lexer tokenizes ID, the 
symbol table must be up to date otherwise the lexer might incorrectly categorize 
ID. In the previous example, if k, the lookahead depth, equals 3, immediately 
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after seeing " c l a s s " ,  the lexer would have to tokenize "Box", "{", and "Box". 
The second "Box" would not be recognized as the current class name, as we have 
not yet entered the class definition. 

Semantic predicates, in contrast, would not be evaluated until the correct 
context--after  the parser had passed the class header and had entered the class 
name into the symbol table--and could easily be added to member to resolve the 
ambiguity. 

member [char *curclass] 
: <<strcmp (curclass, LATEXT (I))--=0>>7 

ID "\(" args "\)" func_body /* constructor */ 
] <<!istypename(LATEXT(1) ~& strcmp(curclass,LATEXT(1))!=0>>? 

ID "\(" args "\)" flunc_body /* normal member function */ 
I <<istypename (LATEXT (I) ) >>? 

ID declarator /* member variable */ 

where istypenarae(LATEXT(1)) returns true if the text of the first symbol of 
lookahead is listed in the symbol table as a type name else it returns false; looka- 
head of k = 2 is used to differentiate between alternatives 1 and 3. Note that  
the current class can be passed into member because of the nature of top-down 
LL(k) parsing and is used to determine whether a member function is the con- 
structor. The predicates would be incorporated into the production prediction 
expressions and, hence, would resolve the syntactic ambiguity. 

Occasionally a grammar developer is faced with a situation that  is not syn- 
tactically ambiguous, but cannot be parsed with a normal LL(k) parser. For 
the most part, these situations are finite lookahead nondeterminisms; i.e., with 
a finite lookahead buffer, the parser is unable to determine which of a set of 
alternative productions to predict. We again turn to C + +  for a nasty parsing 
example. Quoting from Ellis and Stroustrup [ES90], 

"There is an ambiguity in the grammar involving expression-statements 
and declarations... The general cases cannot be resolved without back- 
tracking... In particular, the lookahead needed to disambiguate this case 
is not limited." 

The authors use the following examples to make their point, where T represents 
a type: 

T ( * a ) - > m = 7  ; 
T(*a) (int) ; 

/ /  expression-statement with type cast to T 
/ /  pointer to function declaration 

Clearly, the two types of statements are not distinguishable from the left as an 
arbitrary number of symbols may be seen before a decision can be made; here, 
the "->"  symbol is the first indication that  the first example is a statement. 
Quoting Ellis and Stroustrup further, 

"In a parser with backtracking the disambiguating rule can be stated 
very simply: 
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1. If it looks like a declaration, it is; otherwise 
2. if it looks like an expression, it is; otherwise 
3. it is a syntax error." 

The solution in ANTLR using syntactic predicates is simply to do exactly what 
Ellis and Stroustrup indicate: 

s t a t :  (dec la ra t ion)?  dec la ra t ion  
l expression 

The meaning of rule s t a r  is exactly that  of the last quote. Rule s t a r  indicates 
that a d e c l a r a t i o n  is the syntactic context that must be present for the rest 
of that production to succeed. As a shorthand, ANTLR allows the following 
alternative: 

s t a r  : (dec lara t ion)  ? 
I expression 

which may be interpreted in a slightly different manne r - - " I  am not sure if 
d e c l a r a t i o n  will match; simply try it out and if it does not match try the next 
alternative." In either notation, d e c l a r a t i o n  will be recognized twice upon a 
valid declaration, once as syntactic context and once during the actual parse. If 
an expression is found instead, the declaration rule will be at tempted only once. 

At this point, some readers may argue that syntactic predicates can render 
the parser non-linear in efficiency. While true, the speed reduction is small in 
most cases as the parser is mostly deterministic and, hence, near-linear in com- 
plexity. Naturally, care must be taken to avoid excess use of syntactic predicates. 
Further, it is better to have a capability that  is slightly inefficient than not to 
have the capability at all. I.e., just because the use of syntactic predicates can be 
abused does not mean they should be omitted. In the following section, we for- 
malize and generalize the notion of a predicate and discuss their implementation 
in ANTLR. 

4 P r e d i c a t e d  LL(k)  P a r s i n g  

We denote LL(k) grammars that have been augmented with information con- 
cerning the semantic and syntactic context oflookahead decisions as pred-LL(k). 
The semantic context of a parsing decision is the run time state consisting of 
attributes or other user-defined objects computed up until that  moment; the 
syntactic context of a decision is a run time state referring to the string of sym- 
bols remaining on the input stream. As demonstrated in the previous section, 
pred-LL(k) parsers can easily resolve many syntactic ambiguities and finite- 
lookahead insufficiencies. In this section, we discuss the behavior of semantic 
and syntactic predicates and describe the necessary modifications to the usual 
LL(k ) parsing. 
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4.1 S e m a n t i c  P r e d i c a t e s  

A semantic predicate is a user-defined action that  evaluates to either true (suc- 
cess) or false (failure) and, broadly speaking, indicates the semantic validity of 
continuing with the parse beyond the predicate. Semantic predicates are speci- 
fied via "<<predicate>>?" and may be interspersed among the grammar elements 
on the right hand side of productions like normal actions. For example, 

typename 

: <<istype(LATEXT(1))>>? I D  

defines a rule that  recognizes an identifier (ID) in a specific semantic context, 
namely ID must be a type name. We have assumed that  i s t y p e ( )  is a function 
defined by the user tha t  returns t r u e / f l i t s  argument is a type name determined 
by examining the symbol table. If rule typename were at tempted with input ID, 
but that  ID was not listed as a type name in the symbol table, a run-time parsing 
error would be reported; the user may specify an error action if the default 
error reporting is unsatisfactory. The predicate in this role performs semantic 
validation, but the very same predicate can take on a different role depending on 
the how typenarae is referenced. Consider the following CA-+ fragment, in which 
we need to distinguish between a variable declaration and a function prototype: 

typedef in t  T; 
const in t  i=3; 
int f(i); // same as int f = i; initialize]with i 
in t  g(T); / /  funct ion prototype; s a m e  a s  "' in t  g ( i n t ) ; "  

The third declaration defines f to be an integer variable initialized to 3 whereas 
the last declaration indicates g is a function taking an argument of type T and 
returning an integer. The unpleasant fact is that  there is no syntactic difference 
between the declarations of f and g; there is only a semantic difference, which 
is the type of the object enclosed in parentheses. Fortunately, a pred-LL(k) 
grammar for this small piece of C + +  (i.e. for the last two declarations) can be 
written easily as follows, 

def : " in t "  ID ( var <<var_decl_action>> 
I typename <<fn_proto_action>> 
) 

t l  I f l  

var : <<isvar(LATEXT(i))>>? ID 

P 

typename 

: <<istype (LATEXT (i))>>? I D  
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As before with typename, we define the rule var to describe the syntax and 
semantics of a variable. While var and typenarae are completed specified, the 
subrule in def appears syntactically ambiguous because in both cases the token 
stream (for the whole rule) would be "• ID, "(",  ID, ")",  " ;" ,  because ID 
would match both alternatives var and typename of the subrule. However, the 
subrule in def has referenced rules containing predicates that indicate their se- 
mantic validity. This information is available to resolve the subrule's ambiguous 
decision. Thus, the same predicates that validate var and typenarae can be used 
as disambiguating predicates in rule def. The action of copying a predicate up- 
ward to a pending production to disambiguate a decision is called hoisting. E.g., 
we must hoist the <<• predicate from the rule var upwards into rule 
def. Essentially, disambiguating predieates"filter" alternative productions in 
and out depending on their semantic "applicability." Productions without pred- 
icates have an implied predicate of <<TRUE>>?; i.e., they are always assumed to 
be valid semantically. Predicates are all considered validation predicates as they 
must always evaluate to true for parsing of the enclosing production to continue, 
but occasionally they are hoisted to aid in the parsing process. When ANTLR's 
grammar analysis phase detects a syntactic ambiguity (actually, any non-LL(k) 
construct), it searches for visible semantic predicates that could be hoisted to 
resolve the ambiguous decision; the exact definition of visible is provided in a 
future section. In this way, ANTLR automatically determines which role each 
predicate should assume. 

An important feature is that the hoisting of semantic predicates cannot re- 
sult in nonlinear parsing complexity--the parser is only charged for the time to 
initiate execution of a predicate. There are a finite number of hoisted semantic 
predicates known at analysis time; the user actions within do not count just 
as normal actions executed from within the parser are not considered to effect 
fundamental parser complexity. In the following subsections, we describe more 
precisely the notions of pred-LL(k) grammar analysis, predicate hoisting, and 
predicate context. 

pred.LL(k) Pars ing  Strategy.  Semantic predicates, both validation and dis- 
ambiguating, are easily added to the normal LL(k) parsing strategy. Validation 
predicates are used as simple tests to determine whether the input is semantically 
correct and do not alter the bL(k) parse. The predicate <<7r>>? is functionally 
equivalent to the following normal action embedded in a grammar: 

<<if ( !Tr ) { call standard predicate failure routine}>> 

Disambiguating predicates, namely those which are hoisted to resolve a syntactic 
ambiguity, are incorporated into the normal production prediction expression. 
For example, in the previous case regarding the C++ variable versus function 
prototype, ANTLR would generate the following C code for the the syntactically 
ambiguous subrule contained in rule def: 
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if ( LA(1)==ID && isvar(LATEXT(1)) ) { 
var() ; 

} else if ( LA(1)==ID && istype(LATEXT(1)) ) { 
typename ( ) ; 

} else 
parse error; 

Note that  ANTLR-generated parsers at tempt productions in the order specified. 
Parsing in this new environment can be conveniently viewed in the following 
manner: 

1. Disable invalid productions. An invalid production is a production whose 
disambiguating predicate(s) evaluates to false. 

2. Parse as normal subrule. Once a list of valid productions has been found, 
parse them according to normal LL(k) rules. 

In general, predicates must follow the following three rules for parsing to behave 
as we have described: 

1. A predicate referenced in rule a can be a function only of its left context and 
tokens of its right context that  will be within the lookahead buffer available 
at the left edge of a. When syntactic predicates are used, this lookahead 
buffer may be arbitrarily large. 

2. Predicates may not have side-effects. 
3. Disambiguating predicates may not be a function of semantic actions situ- 

ated between themselves and the syntactically ambiguous decision. E.g., a 
predicate cannot depend on an action over which it will be hoisted; an action 
provides an easy way to prevent a predicate from being hoisted. 

pved-LL(k)  G r a m m a r  Ana ly s i s  a n d  Ho i s t i ng .  Semantic predicates are in- 
corporated into the parsing process (hoisted) when grammar analysis indicates 
that  normal LL(k) is insufficient to differentiate alternative productions. This 
section provides a glimpse into how LL(k) analysis is augmented to automati- 
cally determine predicate roles. 

LL(k) grammars can be reduced to a set of parsing decisions of the form 

a -" o~ 

It is well known that  a is non-LL(k) iff c~ and )3 generate phrases with at 
least one common k-symbol prefix; i.e., for s ~Tm waS, T = FIRSTk(aS)  f3 
FIRSTk (flS) 5s ~ where T represents the set of k-tuples that  predict both pro- 
ductions, w is a terminal string, 6 is a terminal and nonterminal string, s is the 
start symbol, and ==>~m is the closure of the usual leftmost derivation operator. In 
order to define pred-LL(k), the set of predicates that  are candidates for hoisting 
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into a prediction expression must be described. Consider the following grammar 
fragment. 

a : b / ~  I ~, ; 

b : <<~>>? 

A predicate is visible from a decision, such as that  in a, if it can be evaluated 
without consuming a symbol of lookahead 6 and without executing a user action; 
i.e., all visible predicates appear on the left edge of productions derivable from 
b and 7, but predicates at the left edge of f~ would not be visible if (~ derives at 
least one token. 

Rule a is pred-LL(k) iffit is LL(k) (T is empty) or the set of visible pred- 
icates for each production covers T. A predicate, ~r, covers a tuple, t, iff t E 
context(~') where context(~-) is the set of lookahead k-tuples that  predict the 
production from which ~r was hoisted; e.g., context0r ) above is FIRSTk(c~5) 
where s =~m wa~ and s is the start symbol. Only those predicates that  cover 
a tuple in T are used for disambiguation and if T is incompletely covered for a 
production (there exists a k-tuple t with no covering predicate), the enclosing 
decision is non-pred-LL(k) and an ambiguity warning is given to the grammar 
developer. Further, to yield a deterministic pred-LL(k) parser, exactly one syn- 
tactically viable production must be semantically valid (its visible predicates 
all evaluate to true); the predicates for any other syntactically viable produc- 
tions must not succeed. Turning again to our ambiguous subrule in clef, T is 
{ID}, both predicates are visible, their context is {ID}, and we note that,  in 
that  simplified grammar, we assume an ID can never be both a variable and a 
typename. 

Hoisting a predicate, ~-, into a prediction expression in another rule is not as 
simple as copying the predicate. The predicate should only be evaluated under 
the syntactic context in which it was found-- the  current lookahead buffer must 
be a member of the context computed for ~r; for an example illustrating why 
predicate context is necessary see the ANTLR 1.10 release notes [PCD93]. 

Using our complete terminology, we can now summarize our pred-LL(k) anal- 
ysis approach: When a non-LL(k) decision is encountered, all visible, covering 
predicates are hoisted, along with their context, into the prediction expressions 
for that  decision; such predicates assume the role of disambiguating semantic 
predicate. 

4.2 S y n t a c t i c  P r e d i c a t e s  

We saw in previous sections how disambiguating semantic predicates can be 
used to resolve many syntactic ambiguities. However, there are a number of non- 
LL(k), unambiguous, grammatical constructs that semantic information cannot 

6 A generalization of this simple definition, allows hoisting of predicates up to k sym- 
bols ahead. We define the hoisting distance to be how many terminal symbols exist 
between the ambiguous decision and the predicate; in this terminology, our discussion 
in this paper is limited to hoisting distances of 0. 
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resolve. The most obvious example would be left-recursion, but left-recursion 
can be removed by well-known algorithms. The nastiest grammar construct is 
one in which two alternative productions cannot be distinguished without ex- 
amining all or most of the production�9 While left-factoring can handle many 
of these cases, some cannot be handled due to action placement, non-identical 
left-factors, or alternatives productions that  cannot be reorganized into the same 
rule. The pred-LL(k) solution to the problem of arbitrarily-large common left- 
factors is simply to use arbitrary lookahead; i.e., as much lookahead as necessary 
to uniquely determine which production to apply. In this section we introduce 
syntactic predicates that,  like disambiguating semantic predicates, indicate when 
a production is a candidate for recognition; the difference lies in the type of in- 
formation used to predict alternative productions--syntactic predicates employ 
structural information rather than information about the "meaning" of the in- 
put. 

Syntactic predicates are specified via "( a )?" and may appear on the left 
edge of any production of a rule or subrule. The required syntactic condition, c~, 
may be any valid context-free grammar fragment except that  new rules may not 
be defined. Consider how one might write a grammar to differentiate between 
multiple-assignment statements and simple lists such as: 

(a,b) = (3,4);  
(apple, orange) ; 

One obvious grammar is the following: 

stat: list "=" list ";" 

i list ";" 

where l i s t  is a rule, defined elsewhere, that  recognizes an arbitrarily long list 
of expressions. The grammar is not LL(k) for any finite k, unfortunately, due 
to the common left-factor. E.g., upon seeing " ( r e d ,  g reen ,  b lue  . . . . .  " an 
LL(k) parser does not know which alternative to choose. Left-factoring would 
resolve this problem, but would result in a less readable grammar. We have 
found that  having to constantly manually left factor rules leads to confusing and 
non-natural grammars�9 Furthermore, if we assume that  the grammar cannot be 
factored because actions are needed on the left edge of the productions, nothing 
can be done to resolve the lookahead decision with normal LL(k). In contrast, the 
nondeterministic decision is easily resolved through the use of a single syntactic 
predicate: 

star: ( list "=" )? <<action1>> list "=" list ";" 

I <<act{on2>> list ";" 

The predicate specifies that  the first production is only valid if " l i s t  "= .... is 
consistent with (matches) an arbitrarily large portion of the  infinite lookahead 
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buffer. ANTLR assumes that the production prediction expressions are evaluated 
in the order specified and, hence, the second production is the default case to 
attempt if the syntactic predicate ( l i s t  "=" )? fails. A short form of the 
syntactic predicate exists t~at would allow a functionally equivalent, but less 
efficient, formalization of s ta r :  

stat: ( list "=" list ";" )? 

i list "; " 

This can be interpreted in a slightly different manner--that the first production 
may not match the input, but rather than reporting a parsing error, try the next 
viable production (here, the second production is also predicted by the next k 
symbols of lookahead and is, therefore, considered viable). 

While syntactic predicates are an elegant means of extending the recogni- 
tion strength of conventional LL(k) through selective backtracking, one might 
argue that a LALR(k) parser automatically left-factors alternative productions 
obviating the need for the previous syntactic predicates. However, recall that we 
assumed actions were inserted on the left edge of the two productions to inhibit 
left-factoring. After only a few moments thought, rule s t a t  (with actions) is 
seen to be non-LALR(1) because rule "cracking" forces actions to production 
right edges--producing a reduce-reduce conflict. 

Because syntactic predicates are, by definition, not guaranteed to match the 
current input, they have an effect on user actions, semantic predicate evaluation, 
and normal LL(k) grammar analysis. The following subsections briefly describe 
the issues in these areas. 

Syn tac t i c  P r e d i c a t e s  effect u p o n  Actions and Semant ic  P red ica te s .  
While evaluating a syntactic predicate, user actions, such as adding symbol ta- 
ble entries, are not executed because in general, they cannot be "undone;" this 
conservative approach avoids affecting the parser state in an irreversible man- 
ner. Upon successful evaluation of a syntactic predicate, actions are once again 
enabled--unless the parser was in the  process of evaluating another syntactic 
predicate (syntactic predicates may invoke rules that themselves evaluate syn- 
tactic predicates). 

Because semantic predicates are restricted to side-effect-free expressions, they 
are always evaluated when encountered. However, during syntactic predicate 
evaluation, the semantic predicates that are evaluated must be functions of values 
computed when actions were enabled. For example, if your grammar has semantic 
predicates that examine the symbol table, all symbols needed to direct the parse 
during syntactic predicate evaluation must be entered into the table before this 
backtracking phase has begun. 

Syntactic P r e d i c a t e s  effect upon Grammar Analysis. ANTLR constructs 
normal LL(k) decisions throughout predicated parsers, only resorting to arbi- 
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trary lookahead predictors when necessary. Calculating the lookahead sets for a 
full LL(k) parsers can be quite expensive, so that, by default, ANTLR uses a 
linear approximation to the lookahead, called LLI(k) and only uses full LL(k) 
analysis when required 7. When ANTLI~ encounters a syntactic predicate, it gen- 
erates the instructions for selective backtracking as you would expect, but also 
generates an LL l(k) decision. Although no finite lookahead decision is actually 
required (the arbitrary lookahead mechanism will accurately predict the pro- 
duction without it) the LL l(k) portion of the decision reduces the number of 
times backtracking is attempted without hope of a successful match. For ex- 
ample, referring to the C + +  declaration versus expression grammar example in 
Section 3, if the current input token were "42", rule s t a r  would immediately 
attempt the second production--expression.  On the other hand, if the current 
input token were "abc", then the d e c l a r a t i o n  rule would be attempted before 
attempting express ion.  If neither productions successfully matched the input, 
a syntax error would occur. 

An unexpected, but important benefit of syntactic predicates is that they 
provide a convenient method for preventing ANTLR from attempting full LL(k) 
analysis when doing so would cause unacceptable analysis delays. 

5 Implementation 

We have implemented a pred-LL(k) parser generator in the latest version of 
ANTLI~, which is part of the Purdue Compiler Construction Tool Set (PC- 
CTS). Due to space constrains, we will discuss the ANTLR implementation of 
pred-LL(k) in a future paper. 

ANTLR is not just a research tool; many industrial and academic sites 
are currently using ANTLR for everyday use. Readers interested in obtaining 
ANTLR and other the other tools in PCCTS may contact the email server at 
pcct sOecn, purdue, edu. 

6 Conclusion 

In this paper, we have introduced a new predicated LL(k) parser strategy, 
pred-LL(k), that uses semantic and syntactic predicates to resolve syntactic 
ambiguities and parsing conflicts due to the limitations of finite lookahead. In 
theory, pred-LL(k) can recognize all context-free languages (albeit, expensively) 
as well as many context-sensitive languages. Moreover, these methods have been 
cleanly integrated into ANTLR--a  widely used public-domain LL(k) parser gen- 
erator. We believe that pred-LL(k) represents a significant advance toward the 
development of natural, easy to read, grammars for difficult languages like C++.  

Polynomial approximation of higher degree, LLm(k), are also possible [Par93], but 
LL 1 (k) is sufficient in practice. 
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