
Adding Semantic and Syntactic Predicates To
LL(k): pred-LL(k)

Terence J. Parr 1 * and Russell W. Quong 2

1 University of Minnesota
Army High Performance Computing Research Center

par r t @acm. org
2 Purdue University

School of Electrical Engineering
quong@e cn. purdue, edu

Abs t rac t . Most language translation problems can be solved with ex-
isting LALR(1) or LL(k) language tools; e.g., YACC [Joh78] or ANTLR
[PDC92]. However, there are language constructs that defy almost all
parsing strategy commonly in use. Some of these constructs cannot be
parsed without semantics, such as symbol table information, and some
cannot be properly recognized without first examining the entire con-
struct, that is we need "infinite lookahead."
In this paper, we introduce a new LL(k) parser strategy, pred-LL(k),
that uses semantic or syntactic predicates to recognize language con-
structs when normal deterministic LL(k) parsing breaks down. Semantic
predicates indicate the semantic validity of applying a production; syn-
tactic predicates are grammar fragments that describe a syntactic con-
text that must be satisfied before application of an associated production
is authorized. Throughout, we discuss the implementation of predicates
in ANTLR--the parser generator of The Purdue Compiler-Construction
Tool Set.

1 Introduct ion

Although in theory, parsing is widely held to be a sufficiently solved problem,
in practice, writing a grammar with embedded translation actions remains a
non-trivial task. Ignoring arguments concerning the use of LL(k) versus LR(k)
parsing strategies, it is often the case that semantic information (such as symbol
table information) is required to parse a particular language correctly and nat-
urally. While L/~(k)-based parsers can be augmented with run time tests that
alter the parse, bot tom-up strategies have convenient access to much less se-
mantic and context information than a top-down LL(k) parser; hence, we have
chosen to augment LL(k) with predicates.

* Partial support for this work has come from the Army Research Office contract
number DAAL03-89-C-0038 with the Army High Performance Computing Research
Center at the U of MN.

264

In this paper, we present pred-LL(k), the class of languages recognized by
conventional LL(k) parsers augmented with semantic and syntactic predicates,
which can specify the semantic and syntactic applicability of any given grammar
production. Semantic predicates are run time tests that can resolve finite looka-
head conflicts and syntactic ambiguities with semantic information. Syntactic
predicates resolve finite lookahead conflicts by specifying a possibly infinite, pos-
sibly nonregular, lookahead language. Syntactic predicates are a form of selective
backtracking that allow the recognition of constructs beyond the capabilities of
conventional parsing; this capability is becoming necessary, e.g., [ES90] indicates
that unbounded lookahead is required to correctly parse C++. We have imple-
mented pred-LL(k) using an existing LL(k) parser generator called ANTLR (the
parser generator used in PCCTS-- the Purdue Compiler-Construction Tool Set)
[PCD93]. ANTLR is widely used tool; there are over 1000 registered users in
over 37 countries and numerous universities are using it in compiler classes.

Our paper is organized as follows. Section 2 describes the previous work in
this area and Section 3 provides numerous examples illustrating the utility of
semantic and syntactic predicates. Section 4 describes the behavior of semantic
and syntactic predicates more formally and how their introduction affects normal
LL(k) grammar analysis and parsing.

2 Prev ious Work

Attribute grammars have received attention in the literature since their introduc-
tion [Knu68] because they allow the specification of the grammar and the trans-
lation semantics in one description. Unfortunately translations implemented in
this manner can be slow and many translations are difficult to express purely as
functions of attributes; according to [Wai90], pure attribute grammars have had
little impact on compiler construction.

[LRS74] considered the practical application of attribute grammars to com-
pilers by characterizing the types of attribute grammars that could be efficiently
handled via LR(k) "bottom-up" and LL(k) "top-down" parsing methods. They
showed that LL(k) has an advantage over LR(k) in semantic flexibility (e.g.,
LL(k) parsers may inherit attributes from invoking productions); despite this
advantage of LL(k), some researchers have argued that augmenting LR(k) with
predicates is more suitable than augmenting LL(k) due to concerns over recog-
nition strength (see LADE 3, YACC++ 4, and [CanS9], [McK90]). However, with
the addition of syntactic and semantic predicates, pred-LL(k) parsers can poten-
tially recognize all context-free 5 and many context-sensitive languages beyond
the ability of existing LR(k) systems.

3 LADE is a registered trademark of Xorian Technologies
4 YACC++ is a registered trademark of Compiler Resources, Inc.
5 ANTLR-generated parsers can be coerced into backtracking at all lookahead deci-

sions to accomplish this, however, general backtracking is well known to be expo-
nentially slow.

265

Other researchers have developed similar notions of predicated LL(k) pars-
ing. For example, [MF79] introduced the class of ALL(k) grammars that could
specify two types of semantic predicates, disambiguating and contextual, that
were used to handle the context-sensitive portions of programming languages;
the authors implemented an ALL(l) parser generator [MKR79] based upon their
ALL(k) definition. Our approach differs from [MF79] in a number of ways.
Whereas they allow exactly one disambiguating predicate per production, we
allow multiple predicates and do not distinguish between disambiguating and
contextual predicates, as this differentiation can be automatically determined
(the grammar analysis phase knows when a lookahead decision is nondetermin-
istic and can search for semantic predicates that potentially resolve the conflict).
Our predicate definition permits the placement of predicates anywhere within
a production and, more importantly, specifies the desired evaluation time by
the location of the predicate. Further, the disambiguating predicates of [MF79]
require that the user specify the set of lookahead k-tuples over which the pred-
icate is valid. Our predicates are automatically evaluated only when the looka-
head buffer is consistent with the context surrounding the predicate's position
(ANTLR grammar analysis can compute the k-tuples). Although in theory, the
predicates of [MF79] and the predicates described herein are equivalent in recog-
nition strength, in practice our predicates allow for more concise and more nat-
ural language descriptions; additionally, our predicate scheme has been imple-
mented in an LL(k) parser generator rather than in an LL(1) parser generator,
which dramatically increases the recognition strength of the underlying parsers.

Another top-down parser generator and language, S/SL [HCW82], allows
parsing to be a function of semantics. This method was accomplished by allowing
rule return values to predict future productions. Unfortunately, their system had
a number of weaknesses that rendered it impractical for large applications; e.g.
it appears that parsers could only see one token of lookahead and the user had
to compute prediction lookahead sets by hand.

3 Examples of Using Predicates

Programmers routinely handle many context-sensitive language constructs with
context-free grammars through a variety of ah hoc "tricks" taught in most com-
pilers courses. For example, when a syntactic structure is ambiguous, semantic
information is often used by the lexical analyzer to return different token types
for the same input symbol. In addition, grammars are often twisted (into an un-
readable condition) in an effort to remove parser nondeterminisms and syntactic
ambiguities. In this section, we provide two examples that illustrate the benefits
of using semantic information in the parser rather than the lexical analyzer and
we provide an example that illustrates how syntactic predicates can be used to
resolve finite LL(k) lookahead problems. In this paper, we use the terminology
shown in the following table.

266

What Example Description
nonterminal
terminal
raw input
action
predicate
semantic pred
syntactic pred
i *h lookahead symbol
text of i *h lookahead symbol

a~ varName

ID, FOR

"int" "for"

i<< ir >>
!<< i==O >>7

<< i==O >>7

(declaration)?

LA(3)

LATEXT(1)

starts with lower case
starts with upper case
regular expr in a string
enclosed in << .. .>>
construct followed by a 7
enclosed in << ...>>7
enclosed in (. . .) ?
L h (i) , l < i < k
LATEXT(i), 1 < i < k

We now present some examples motivating the need for predicates during
parsing. Consider FORTRAN array references and function calls, which are syn-
tactically identical, but semantically very different:

expr ID "\(" exprlist "\)" <<arrayref_action>>
ID "\(" exprl is t "\)" <<fncall_action>>

There are two common approachs to resolving this ambiguity. First, one may
merge the two alternatives and then examine the symbol table entry for the ID
to determine which action to execute:

expr : ID "\(" exprl is t "\)"
<<if (i svar ($1)) arrayref_action else fncall_action; >>

where the $1 is the attribute (of type character string here) of ID.
In the second approach, the lexical analyzer modifies the token type according

to whether the input ID is a variable or a function by examining the symbol table.
The grammar then becomes context-free:

expr VAR "\(" exprl is t "\)" <<arrayref_action>>
FUNC "\(" exprlist "\)" <<fncall_action>>

while these methods are adequate, they quickly become unmanageable as the
complexity of the grammar increases. The lexical analyzer would be required to
know more and more about the grammatical context in order to make decisions;
in essence, the user has to hand code a significant part of the parser in the lexical
analyzer. A more elegant solution is possible via semantic predicates, in which all
code fragments pertaining to context-sensitivity are constrained to the grammar
specification. The same expression that would normally be used to differentiate
the two actions or to return different token types may be used to alter the nor-
mal LL(k) parsing strategy by annotating the grammar, thereby, allowing array

267

references and function calls to be treated as grammatically different constructs,
which was the original, fundamental goal:

expr : <<isvar(LATEXT(1))>>? ID " \ (" e x p r l i s t " \) " <<arrayref_action>>
I <<isfunc(LATEXT(1))>>? ID " \ (" e x p r l i s t " \) " <<fncall_action>>

where LATEXT(1) is the text of the first symbol of lookahead and the "?" suffix
operator indicates that the preceding grammar element is a predicate. In this
case, the predicates are semantic predicates that are to be used in the production
prediction mechanism to differentiate the alternative productions.

As a more complicated example, consider the definition of classes in C++.
Identifiers (IDs) are used as the class name, member function names and the
constructor name. (In C++, a constructor is a special member function that has
the same name as the class itself and does not have a return type.) For example,

c l a s s Box {
Box() { /* constructor for class Box */ }
draw() { /* member function */ }
some_user_type val; /* member variable */

};

A simplified grammar ~agmentfor C++ class definitions such as:

class_clef
: " c l a s s " ID " \{" (member)§ "\} ;"

member

i
l

ID "\(" args "\)" func_body
ID "\(" args "\)" func_body
ID declarator

/* constructor */
/* normal member function */
/* member variable */

is syntactically ambiguous (like the previous FORTRAN example), but the con-
structor requires special handling. The conventional method would be to have
the lexical analyzer return different token types for the various ID references.
There are numerous problems with this solution, but we will give only two here.
First, because C++ class definitions can be nested, the lexical analyzer would
need access to a stack of terminals that represent the enclosing class names. Only
in this way can it decide between a normal function name and the class con-
structor. But, what is the purpose of the parser if the lexical analyzer is tracking
the grammatical structure? Second, if the parser has lookahead depth greater
than one, having the lexer return tokens based on semantic context would be
problematic as symbols may not have been added to the symbol table before the
lexical analyzer had to tokenize its input. E.g., when the lexer tokenizes ID, the
symbol table must be up to date otherwise the lexer might incorrectly categorize
ID. In the previous example, if k, the lookahead depth, equals 3, immediately

268

after seeing " c l a s s " , the lexer would have to tokenize "Box", "{", and "Box".
The second "Box" would not be recognized as the current class name, as we have
not yet entered the class definition.

Semantic predicates, in contrast, would not be evaluated until the correct
context--after the parser had passed the class header and had entered the class
name into the symbol table--and could easily be added to member to resolve the
ambiguity.

member [char *curclass]
: <<strcmp (curclass, LATEXT (I))--=0>>7

ID "\(" args "\)" func_body /* constructor */
] <<!istypename(LATEXT(1) ~& strcmp(curclass,LATEXT(1))!=0>>?

ID "\(" args "\)" flunc_body /* normal member function */
I <<istypename (LATEXT (I)) >>?

ID declarator /* member variable */

where istypenarae(LATEXT(1)) returns true if the text of the first symbol of
lookahead is listed in the symbol table as a type name else it returns false; looka-
head of k = 2 is used to differentiate between alternatives 1 and 3. Note that
the current class can be passed into member because of the nature of top-down
LL(k) parsing and is used to determine whether a member function is the con-
structor. The predicates would be incorporated into the production prediction
expressions and, hence, would resolve the syntactic ambiguity.

Occasionally a grammar developer is faced with a situation that is not syn-
tactically ambiguous, but cannot be parsed with a normal LL(k) parser. For
the most part, these situations are finite lookahead nondeterminisms; i.e., with
a finite lookahead buffer, the parser is unable to determine which of a set of
alternative productions to predict. We again turn to C + + for a nasty parsing
example. Quoting from Ellis and Stroustrup [ES90],

"There is an ambiguity in the grammar involving expression-statements
and declarations... The general cases cannot be resolved without back-
tracking... In particular, the lookahead needed to disambiguate this case
is not limited."

The authors use the following examples to make their point, where T represents
a type:

T (* a) - > m = 7 ;
T(*a) (int) ;

/ / expression-statement with type cast to T
/ / pointer to function declaration

Clearly, the two types of statements are not distinguishable from the left as an
arbitrary number of symbols may be seen before a decision can be made; here,
the "->" symbol is the first indication that the first example is a statement.
Quoting Ellis and Stroustrup further,

"In a parser with backtracking the disambiguating rule can be stated
very simply:

269

1. If it looks like a declaration, it is; otherwise
2. if it looks like an expression, it is; otherwise
3. it is a syntax error."

The solution in ANTLR using syntactic predicates is simply to do exactly what
Ellis and Stroustrup indicate:

s t a t : (dec la ra t ion)? dec la ra t ion
l expression

The meaning of rule s t a r is exactly that of the last quote. Rule s t a r indicates
that a d e c l a r a t i o n is the syntactic context that must be present for the rest
of that production to succeed. As a shorthand, ANTLR allows the following
alternative:

s t a r : (dec lara t ion) ?
I expression

which may be interpreted in a slightly different manne r - - " I am not sure if
d e c l a r a t i o n will match; simply try it out and if it does not match try the next
alternative." In either notation, d e c l a r a t i o n will be recognized twice upon a
valid declaration, once as syntactic context and once during the actual parse. If
an expression is found instead, the declaration rule will be at tempted only once.

At this point, some readers may argue that syntactic predicates can render
the parser non-linear in efficiency. While true, the speed reduction is small in
most cases as the parser is mostly deterministic and, hence, near-linear in com-
plexity. Naturally, care must be taken to avoid excess use of syntactic predicates.
Further, it is better to have a capability that is slightly inefficient than not to
have the capability at all. I.e., just because the use of syntactic predicates can be
abused does not mean they should be omitted. In the following section, we for-
malize and generalize the notion of a predicate and discuss their implementation
in ANTLR.

4 P r e d i c a t e d LL(k) P a r s i n g

We denote LL(k) grammars that have been augmented with information con-
cerning the semantic and syntactic context oflookahead decisions as pred-LL(k).
The semantic context of a parsing decision is the run time state consisting of
attributes or other user-defined objects computed up until that moment; the
syntactic context of a decision is a run time state referring to the string of sym-
bols remaining on the input stream. As demonstrated in the previous section,
pred-LL(k) parsers can easily resolve many syntactic ambiguities and finite-
lookahead insufficiencies. In this section, we discuss the behavior of semantic
and syntactic predicates and describe the necessary modifications to the usual
LL(k) parsing.

270

4.1 S e m a n t i c P r e d i c a t e s

A semantic predicate is a user-defined action that evaluates to either true (suc-
cess) or false (failure) and, broadly speaking, indicates the semantic validity of
continuing with the parse beyond the predicate. Semantic predicates are speci-
fied via "<<predicate>>?" and may be interspersed among the grammar elements
on the right hand side of productions like normal actions. For example,

typename

: <<istype(LATEXT(1))>>? I D

defines a rule that recognizes an identifier (ID) in a specific semantic context,
namely ID must be a type name. We have assumed that i s t y p e () is a function
defined by the user tha t returns t r u e / f l i t s argument is a type name determined
by examining the symbol table. If rule typename were at tempted with input ID,
but that ID was not listed as a type name in the symbol table, a run-time parsing
error would be reported; the user may specify an error action if the default
error reporting is unsatisfactory. The predicate in this role performs semantic
validation, but the very same predicate can take on a different role depending on
the how typenarae is referenced. Consider the following CA-+ fragment, in which
we need to distinguish between a variable declaration and a function prototype:

typedef in t T;
const in t i=3;
int f(i); // same as int f = i; initialize]with i
in t g(T); / / funct ion prototype; s a m e a s "' in t g (i n t) ; "

The third declaration defines f to be an integer variable initialized to 3 whereas
the last declaration indicates g is a function taking an argument of type T and
returning an integer. The unpleasant fact is that there is no syntactic difference
between the declarations of f and g; there is only a semantic difference, which
is the type of the object enclosed in parentheses. Fortunately, a pred-LL(k)
grammar for this small piece of C + + (i.e. for the last two declarations) can be
written easily as follows,

def : " in t " ID (var <<var_decl_action>>
I typename <<fn_proto_action>>
)

t l I f l

var : <<isvar(LATEXT(i))>>? ID

P

typename

: <<istype (LATEXT (i))>>? I D

271

As before with typename, we define the rule var to describe the syntax and
semantics of a variable. While var and typenarae are completed specified, the
subrule in def appears syntactically ambiguous because in both cases the token
stream (for the whole rule) would be "• ID, "(", ID, ")", " ;" , because ID
would match both alternatives var and typename of the subrule. However, the
subrule in def has referenced rules containing predicates that indicate their se-
mantic validity. This information is available to resolve the subrule's ambiguous
decision. Thus, the same predicates that validate var and typenarae can be used
as disambiguating predicates in rule def. The action of copying a predicate up-
ward to a pending production to disambiguate a decision is called hoisting. E.g.,
we must hoist the <<• predicate from the rule var upwards into rule
def. Essentially, disambiguating predieates"filter" alternative productions in
and out depending on their semantic "applicability." Productions without pred-
icates have an implied predicate of <<TRUE>>?; i.e., they are always assumed to
be valid semantically. Predicates are all considered validation predicates as they
must always evaluate to true for parsing of the enclosing production to continue,
but occasionally they are hoisted to aid in the parsing process. When ANTLR's
grammar analysis phase detects a syntactic ambiguity (actually, any non-LL(k)
construct), it searches for visible semantic predicates that could be hoisted to
resolve the ambiguous decision; the exact definition of visible is provided in a
future section. In this way, ANTLR automatically determines which role each
predicate should assume.

An important feature is that the hoisting of semantic predicates cannot re-
sult in nonlinear parsing complexity--the parser is only charged for the time to
initiate execution of a predicate. There are a finite number of hoisted semantic
predicates known at analysis time; the user actions within do not count just
as normal actions executed from within the parser are not considered to effect
fundamental parser complexity. In the following subsections, we describe more
precisely the notions of pred-LL(k) grammar analysis, predicate hoisting, and
predicate context.

pred.LL(k) Pars ing Strategy. Semantic predicates, both validation and dis-
ambiguating, are easily added to the normal LL(k) parsing strategy. Validation
predicates are used as simple tests to determine whether the input is semantically
correct and do not alter the bL(k) parse. The predicate <<7r>>? is functionally
equivalent to the following normal action embedded in a grammar:

<<if (!Tr) { call standard predicate failure routine}>>

Disambiguating predicates, namely those which are hoisted to resolve a syntactic
ambiguity, are incorporated into the normal production prediction expression.
For example, in the previous case regarding the C++ variable versus function
prototype, ANTLR would generate the following C code for the the syntactically
ambiguous subrule contained in rule def:

272

if (LA(1)==ID && isvar(LATEXT(1))) {
var() ;

} else if (LA(1)==ID && istype(LATEXT(1))) {
typename () ;

} else
parse error;

Note that ANTLR-generated parsers at tempt productions in the order specified.
Parsing in this new environment can be conveniently viewed in the following
manner:

1. Disable invalid productions. An invalid production is a production whose
disambiguating predicate(s) evaluates to false.

2. Parse as normal subrule. Once a list of valid productions has been found,
parse them according to normal LL(k) rules.

In general, predicates must follow the following three rules for parsing to behave
as we have described:

1. A predicate referenced in rule a can be a function only of its left context and
tokens of its right context that will be within the lookahead buffer available
at the left edge of a. When syntactic predicates are used, this lookahead
buffer may be arbitrarily large.

2. Predicates may not have side-effects.
3. Disambiguating predicates may not be a function of semantic actions situ-

ated between themselves and the syntactically ambiguous decision. E.g., a
predicate cannot depend on an action over which it will be hoisted; an action
provides an easy way to prevent a predicate from being hoisted.

pved-LL(k) G r a m m a r Ana ly s i s a n d Ho i s t i ng . Semantic predicates are in-
corporated into the parsing process (hoisted) when grammar analysis indicates
that normal LL(k) is insufficient to differentiate alternative productions. This
section provides a glimpse into how LL(k) analysis is augmented to automati-
cally determine predicate roles.

LL(k) grammars can be reduced to a set of parsing decisions of the form

a -" o~

It is well known that a is non-LL(k) iff c~ and)3 generate phrases with at
least one common k-symbol prefix; i.e., for s ~Tm waS, T = FIRSTk(aS) f3
FIRSTk (flS) 5s ~ where T represents the set of k-tuples that predict both pro-
ductions, w is a terminal string, 6 is a terminal and nonterminal string, s is the
start symbol, and ==>~m is the closure of the usual leftmost derivation operator. In
order to define pred-LL(k), the set of predicates that are candidates for hoisting

273

into a prediction expression must be described. Consider the following grammar
fragment.

a : b / ~ I ~, ;

b : <<~>>?

A predicate is visible from a decision, such as that in a, if it can be evaluated
without consuming a symbol of lookahead 6 and without executing a user action;
i.e., all visible predicates appear on the left edge of productions derivable from
b and 7, but predicates at the left edge of f~ would not be visible if (~ derives at
least one token.

Rule a is pred-LL(k) iffit is LL(k) (T is empty) or the set of visible pred-
icates for each production covers T. A predicate, ~r, covers a tuple, t, iff t E
context(~') where context(~-) is the set of lookahead k-tuples that predict the
production from which ~r was hoisted; e.g., context0r) above is FIRSTk(c~5)
where s =~m wa~ and s is the start symbol. Only those predicates that cover
a tuple in T are used for disambiguation and if T is incompletely covered for a
production (there exists a k-tuple t with no covering predicate), the enclosing
decision is non-pred-LL(k) and an ambiguity warning is given to the grammar
developer. Further, to yield a deterministic pred-LL(k) parser, exactly one syn-
tactically viable production must be semantically valid (its visible predicates
all evaluate to true); the predicates for any other syntactically viable produc-
tions must not succeed. Turning again to our ambiguous subrule in clef, T is
{ID}, both predicates are visible, their context is {ID}, and we note that, in
that simplified grammar, we assume an ID can never be both a variable and a
typename.

Hoisting a predicate, ~-, into a prediction expression in another rule is not as
simple as copying the predicate. The predicate should only be evaluated under
the syntactic context in which it was found-- the current lookahead buffer must
be a member of the context computed for ~r; for an example illustrating why
predicate context is necessary see the ANTLR 1.10 release notes [PCD93].

Using our complete terminology, we can now summarize our pred-LL(k) anal-
ysis approach: When a non-LL(k) decision is encountered, all visible, covering
predicates are hoisted, along with their context, into the prediction expressions
for that decision; such predicates assume the role of disambiguating semantic
predicate.

4.2 S y n t a c t i c P r e d i c a t e s

We saw in previous sections how disambiguating semantic predicates can be
used to resolve many syntactic ambiguities. However, there are a number of non-
LL(k), unambiguous, grammatical constructs that semantic information cannot

6 A generalization of this simple definition, allows hoisting of predicates up to k sym-
bols ahead. We define the hoisting distance to be how many terminal symbols exist
between the ambiguous decision and the predicate; in this terminology, our discussion
in this paper is limited to hoisting distances of 0.

274

resolve. The most obvious example would be left-recursion, but left-recursion
can be removed by well-known algorithms. The nastiest grammar construct is
one in which two alternative productions cannot be distinguished without ex-
amining all or most of the production�9 While left-factoring can handle many
of these cases, some cannot be handled due to action placement, non-identical
left-factors, or alternatives productions that cannot be reorganized into the same
rule. The pred-LL(k) solution to the problem of arbitrarily-large common left-
factors is simply to use arbitrary lookahead; i.e., as much lookahead as necessary
to uniquely determine which production to apply. In this section we introduce
syntactic predicates that, like disambiguating semantic predicates, indicate when
a production is a candidate for recognition; the difference lies in the type of in-
formation used to predict alternative productions--syntactic predicates employ
structural information rather than information about the "meaning" of the in-
put.

Syntactic predicates are specified via "(a)?" and may appear on the left
edge of any production of a rule or subrule. The required syntactic condition, c~,
may be any valid context-free grammar fragment except that new rules may not
be defined. Consider how one might write a grammar to differentiate between
multiple-assignment statements and simple lists such as:

(a,b) = (3,4);
(apple, orange) ;

One obvious grammar is the following:

stat: list "=" list ";"

i list ";"

where l i s t is a rule, defined elsewhere, that recognizes an arbitrarily long list
of expressions. The grammar is not LL(k) for any finite k, unfortunately, due
to the common left-factor. E.g., upon seeing " (r e d , g reen , b lue " an
LL(k) parser does not know which alternative to choose. Left-factoring would
resolve this problem, but would result in a less readable grammar. We have
found that having to constantly manually left factor rules leads to confusing and
non-natural grammars�9 Furthermore, if we assume that the grammar cannot be
factored because actions are needed on the left edge of the productions, nothing
can be done to resolve the lookahead decision with normal LL(k). In contrast, the
nondeterministic decision is easily resolved through the use of a single syntactic
predicate:

star: (list "=")? <<action1>> list "=" list ";"

I <<act{on2>> list ";"

The predicate specifies that the first production is only valid if " l i s t "= is
consistent with (matches) an arbitrarily large portion of the infinite lookahead

275

buffer. ANTLR assumes that the production prediction expressions are evaluated
in the order specified and, hence, the second production is the default case to
attempt if the syntactic predicate (l i s t "=")? fails. A short form of the
syntactic predicate exists t~at would allow a functionally equivalent, but less
efficient, formalization of s ta r :

stat: (list "=" list ";")?

i list "; "

This can be interpreted in a slightly different manner--that the first production
may not match the input, but rather than reporting a parsing error, try the next
viable production (here, the second production is also predicted by the next k
symbols of lookahead and is, therefore, considered viable).

While syntactic predicates are an elegant means of extending the recogni-
tion strength of conventional LL(k) through selective backtracking, one might
argue that a LALR(k) parser automatically left-factors alternative productions
obviating the need for the previous syntactic predicates. However, recall that we
assumed actions were inserted on the left edge of the two productions to inhibit
left-factoring. After only a few moments thought, rule s t a t (with actions) is
seen to be non-LALR(1) because rule "cracking" forces actions to production
right edges--producing a reduce-reduce conflict.

Because syntactic predicates are, by definition, not guaranteed to match the
current input, they have an effect on user actions, semantic predicate evaluation,
and normal LL(k) grammar analysis. The following subsections briefly describe
the issues in these areas.

Syn tac t i c P r e d i c a t e s effect u p o n Actions and Semant ic P red ica te s .
While evaluating a syntactic predicate, user actions, such as adding symbol ta-
ble entries, are not executed because in general, they cannot be "undone;" this
conservative approach avoids affecting the parser state in an irreversible man-
ner. Upon successful evaluation of a syntactic predicate, actions are once again
enabled--unless the parser was in the process of evaluating another syntactic
predicate (syntactic predicates may invoke rules that themselves evaluate syn-
tactic predicates).

Because semantic predicates are restricted to side-effect-free expressions, they
are always evaluated when encountered. However, during syntactic predicate
evaluation, the semantic predicates that are evaluated must be functions of values
computed when actions were enabled. For example, if your grammar has semantic
predicates that examine the symbol table, all symbols needed to direct the parse
during syntactic predicate evaluation must be entered into the table before this
backtracking phase has begun.

Syntactic P r e d i c a t e s effect upon Grammar Analysis. ANTLR constructs
normal LL(k) decisions throughout predicated parsers, only resorting to arbi-

276

trary lookahead predictors when necessary. Calculating the lookahead sets for a
full LL(k) parsers can be quite expensive, so that, by default, ANTLR uses a
linear approximation to the lookahead, called LLI(k) and only uses full LL(k)
analysis when required 7. When ANTLI~ encounters a syntactic predicate, it gen-
erates the instructions for selective backtracking as you would expect, but also
generates an LL l(k) decision. Although no finite lookahead decision is actually
required (the arbitrary lookahead mechanism will accurately predict the pro-
duction without it) the LL l(k) portion of the decision reduces the number of
times backtracking is attempted without hope of a successful match. For ex-
ample, referring to the C + + declaration versus expression grammar example in
Section 3, if the current input token were "42", rule s t a r would immediately
attempt the second production--expression. On the other hand, if the current
input token were "abc", then the d e c l a r a t i o n rule would be attempted before
attempting express ion. If neither productions successfully matched the input,
a syntax error would occur.

An unexpected, but important benefit of syntactic predicates is that they
provide a convenient method for preventing ANTLR from attempting full LL(k)
analysis when doing so would cause unacceptable analysis delays.

5 Implementation

We have implemented a pred-LL(k) parser generator in the latest version of
ANTLI~, which is part of the Purdue Compiler Construction Tool Set (PC-
CTS). Due to space constrains, we will discuss the ANTLR implementation of
pred-LL(k) in a future paper.

ANTLR is not just a research tool; many industrial and academic sites
are currently using ANTLR for everyday use. Readers interested in obtaining
ANTLR and other the other tools in PCCTS may contact the email server at
pcct sOecn, purdue, edu.

6 Conclusion

In this paper, we have introduced a new predicated LL(k) parser strategy,
pred-LL(k), that uses semantic and syntactic predicates to resolve syntactic
ambiguities and parsing conflicts due to the limitations of finite lookahead. In
theory, pred-LL(k) can recognize all context-free languages (albeit, expensively)
as well as many context-sensitive languages. Moreover, these methods have been
cleanly integrated into ANTLR--a widely used public-domain LL(k) parser gen-
erator. We believe that pred-LL(k) represents a significant advance toward the
development of natural, easy to read, grammars for difficult languages like C++.

Polynomial approximation of higher degree, LLm(k), are also possible [Par93], but
LL 1 (k) is sufficient in practice.

277

7 Acknowledgements

We would like to thank Ariel Tamches, Dana Hoggatt, Ed Harfmann, and Hank
Dietz, who all helped shape the definition of semantic predicates.

References

[ES90]

[Gan89]

[HCW82]

[Joh78]

[Knu68]

[LRS74]

[McK90]

[MF791

[MKRr9]

[Par93]

[PCD93]

[PDC92]

[Wai90]

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison Wesley Publishing Company, Reading, Massachusetts,
1990.
Mahadevan Ganapathi. Semantic Predicates in Parser Generators. Com-
puter Language, 14(1):25-33, 1989.
R. C. Holt, J. R. Cordy, and D. B. Wortman. An Introduction to S/SL:

Syntax/Semantic Language. ACM TOPLAS, 4(2):149-178, April 1982.
S. C. Johnson. Yaec: Yet Another Compiler-Compiler. Bell Laboratories;
Murray Hill, N J, 1978.
Donald E. Knuth. Semantics of Context-Free Languages. Mathematical Sys-
tems Theory, 2(2):127-145, 1968.
P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed Translations.
Journal of Computer and System Sciences, 9:279-307, 1974.
B. J. McKenzie. LR parsing of CFGs with restrictions. Software-Practice
Experience, 20(8):823-832, 1990.
D.R. Milton and C.N. Fischer. LL(k) Parsing for Attributed Grammars. In
Proceedings of Automata, Languages and Programming, Sixth Colloquium,
pages 422-430, 1979.
D.R. Milton, L.W. Kirchhoff, and B.R. Rowland. An ALL(l) Compiler
Generator. In Conference Record of SIGPLAN Symposium on Compiler Con-
struction, 1979.
Terence John Parr. Obtaining Practical Variants of LL(k) and LR(k) for
k > 1 by Splitting the Atomic k-Tuple. PhD thesis, Purdue University, West
Lafayette, Indiana, August 1993.
Terence Parr, Will Cohen, and Hank Dietz. The Purdue Compiler Construc-
tion Tool Set: Version 1.10 Release Notes. Technical Report Preprint No.
93-088, Army High Performance Computing Research Center, August 1993.
T.J. Parr, H.G. Dietz, and W.E. Cohen. PCCTS 1.00: The Purdue Compiler
Construction Tool Set. SIGPLAN Notices, 1992.
W. M. WaRe. Use of Attribute Grammars in Compiler Construction. In
Attribute Grammars and their Applications; Lecture Notes in Computer Sci-
ence, volume 461, pages 254-265. Springer-Verlag, 1990.

