
Compiling Nested Loops for Limited Connectivity 
VLIWs 

Adrian Slowik, Georg Piepenbrock, Peter Pfahler 

Universits Paderborn, Fachbereich Mathematik/Informatik 
Warburger Str. 100, D-33098 Paderborn, Germany 

Emaih {adrian, gepi, peter}(~uni-paderborn.de 

Abs t rac t .  Instruction level parallelism (ILP) is a generally accepted means 
to speed up the execution of both scientific and non-scientific programs. Com- 
pilation techniques for ILP are in a sense "general-purpose" in that they do 
not depend on these source program characteristics. In this paper we investi- 
gate what can be gained by ILP techniques that are specialized for scientific 
code in the form of nested loop programs. This regular program form allows 
us to apply well-known techniques taken from the theory of loop transfor- 
mation. We present a compilation algorithm based on both standard and 
non-standard transformations to increase fine-grained parallelism for software 
pipelining, to reduce communication overhead by integrated functional unit 
assignment and to minianize memory traffic by maximizing data reusability 
between adjacent computations. We present first results which show impres- 
sive speedups compared to conventionally software-pipelined code. Our in- 
vestigations are based on the limited connectivity VLIW architectural model 
which is a realistic (= realizable) VLIW machine made up of multiple clusters 
with private register files. 

1 Introduct ion  

A VLIW (Very Long Instruction Word) architecture consists of several functional 
units which synchronously execute different operations in parallel. Application pro- 
grams take advantage of such an architecture by specific compilation techniques 
which exploit fine-grained parallelism and apply scheduling techniques on the in- 
struction level (Instruction Level Parallelism, ILP). 

Ideally, the functional units (FUs) of a VLIW processor are connected to a com- 
mon register memory that  can supply two data  operands and perform one write 
operation per functional unit in each cycle. Practically, there are technological re- 
strictions: To the best of our knowledge, there are no technologies for building register 
banks with a large number of ports (e.g. > 16) that  do not suffer a severe performance 
degradation compared to RAMs with a small number of ports. For this reason, all 
commercial VLIW-like machines (e.g. Multiflow TRACE,  Intel i860, IBM System 
6000) have been built using multiple register files with a limited number of ports. 
Each register file is connected only to a subset of the functional units. [CDN92] uses 
the term "Limited Connectivity VLIW (LC-VLIW)"  to characterize these architec- 
tures. In the Multiflow T R A C E  [CNO+87] these register/FU partitions are called 
"clusters". Communicat ion between the clusters is achieved by special communica- 
tion busses. Fig. 1 shows a L C-VL IW  consisting of 3 clusters that  are connected by 
a cyclic communicat ion bus (other topologies are possible). 



144 

. . . . . . . . . . . . .  t . . . . . . . . . . . .  
[ Fteliltet File 1 [ 

I l . . . . .  i . . . .   11o..31 

D a t a  
Memory 

. . . . . . . . . . . .  t . . . . . . . . . . . .  
Register File 2 ] 

. . . . . . .  .g_u .t.eL2_ . . . . . .  : 

. . . . . . . . . . . . .  t . . . . . . . . . . . .  
I Fil. 3 t 

Commualcatioa But 

Fig. 1. LC-VLIW with 3 Clusters 

In the past few years much work has been done in the field of compilat!on tech- 
niques for VLIW machines. The same is true for supersealar machines which from 
the compiler's point of view are very similar. Important research topics were lo- 
cal and global scheduling techniques, and the scheduling of cyclic control structures 
(software pipelining). Rau and Fisher give an excellent survey over this work [RF93]. 
Most publications put emphasis on the fact that the VLIW model does not require 
special source code characteristics. VLIW compilation can exploit instruction level 
parallelism for any source program whereas other parallel architecture models (e.g. 
vector machines) depend on certain source program forms (e.g. nested DO loops). In 
other words, VLIW architectures are suitable for the parallel execution of both sci- 
entific and non-scientific application programs. This fact lead to the development of 
compilation techniques for VLIW machines which are in a sense "general-purpose". 
Specific VLIW techniques for scientific code have received much less attention. 

In this paper we investigate how VLIW compilation can benefit from scientific 
source code. We present VLIW code generation techniques for nested loop pro- 
grams. This program form is frequently used in scientific code. Nested loop programs 
promise the following advantages for the VLIW compilation process: 

- Data dependences can (to a great extend) be analyzed during compilation time. 
Hence, there is no need for pessimistic assumptions limiting the scheduling free- 
dom. 

- There is a well-understood transformation theory for nested loop programs. 
These transformations have been developed e.g. in the area of vectorization, for 
systolic array compilation, for massively parallel systems, and for the optimiza- 
tion of data locality and cache memory access. We propose to use these standard 
loop transformations to increase the instruction level parallelism for VLIW ma- 
chines and to reduce the memory traffic (and code size) by replacing memory 
accesses (and address computations) by inter-cluster register communication. 
Regular data access patterns known at compile time offer new possibilities for 
functional unit assignment to minimize the costs of inter-cluster communication. 

The rest of this paper is organized as follows: Sect. 2 introduces nested loop programs 



145 

and the transformation theory developed for these programs. In Sect. 3 and 4 we 
propose a compilation technique for nested loop programs for VLIW machines. This 
technique will use a series of standard and non-standard loop transformation steps 
that convert the source program to a form that supports highly optimizing VLIW 
code generation: 

- Transformation to a loop nest with a dependence free innermost loop. 
- Cluster Assignment for whole iteration points. This avoids inter-cluster data 

communication in the code for the innermost loop body. If this assignment leads 
to an insufficient utilization of the cluster resources, a mapping from many iter- 
ation points to one cluster can be generated. 

- Moving data dependences to the loop directly enclosing the innermost loop. This 
enables reuse of data kept in registers, thus reducing the amount of expensive 
memory access. 

- Load balancing to compensate the different work load due to memory accesses 
in "outer" iteration points and register usage in "inner" points. 

Sect. 5 shows the first results of our investigations by comparing the code pro-, 
duced by our transformation technique for some standard example programs to 
conventionally software pipelined code. 

2 T r a n s f o r m a t i o n  T h e o r y  f o r  N e s t e d  L o o p  P r o g r a m s  

Much work has been done to exploit parallelism from nested loops [Ban93] [ZC90]. 
Loop transformations such as loop skewing, reversal, permutation (SRP) and loop 
tiling have been shown to be useful in extracting parallelism [WLglb] or in increasing 
data locality [WL91a]. The transformations can be used to construct modified loop 
nests where e.g. only outer loops carry dependences. These nests provide fine-grained 
parallelism which is useful for tightly coupled massively parallel systems. 

Loop quantization [Nic88] applies skewing and tiling techniques to increase in- 
struction level parallelism. Vectorizing compilers use skewing, reversal and loop 
permutation to enable an efficient utilization of vector units [AK87]. [Lam74] and 
[Dow90] apply similar techniques to extract hyperplanes in the iteration domain of 
nested loops which can be executed in parallel. [Kun88] and [MF86] derive efficient 
systolic arrays from transformed loop nests where data locality is utilized to pass 
computed values for subsequent use to neighboring processors. 

The SRP loop transformations will be introduced by applying them to an ideal 
and normalized example loop nest. Loop bounds are constant or linear functions 
of outer loop variables. This property ensures a convex loop iteration domain. 
Each instance of the inner loop body can be identified with the iteration vector 
iv = ( h , ' " , l . ) .  li denotes the specific value of the loop variable belonging to 
loop Li .  Dependences between statements in different iterations can be character- 
ized by distance vectors d = (all , . . . ,  dn) = iv2 - i v 1 .  In a loop nest all distance 
vectors d are lexicographically nonnegative and form the columns of the dependence 
matrix D. Dependent computations have to remain in the original sequential order. 
Therefore a transformation is legal only if all transformed distance vectors dt E Dt 
remain nonnegative. 



146 

/-/-/_-/-; 
. i l  

IP I 
J '  

I i 31 51 

./ 

/ / "  

,r 

Ih I 

1 3 5 

L~:for  i - -  l t o 5 b y  1 do o( 0 ') 
s l :  A[i]b] = A[i - 11[/1 + A[i - l l [ j  - 11; 

Fig. 2. Loop nest example with self dependent statement and iteration domain of the 
original, reversed and skewed loop nest. 

SRP-transformations can be modeled as linear transformations in the iteration 
space, represented by unimodular matrices. By applying the transformations any oc- 
currence of loop variable li in the statement part is substituted by the i-th element 
of the transformed iteration vector ivt = T .  iv. T denotes the possibly compound 
transformation matrix modifying the dependence matrix to De = T .  D. Recom- 
puting new loop bounds after transformation can be done by Fourier Elimination 
in the integer domain [WL91b]. Skewing and reversal are commonly used to trans- 
form loop nests to a fully permutable form where all components of the transformed 
dependence vectors are nonnegative. This important property allows arbitrary per- 
mutation and tiling transformations. The SRP transformations will now be applied 
to the example loop nest in Fig. 2. 

R e v e r s a l  can be achieved by using the matrix Tr which is the identity matrix 
where the i-th element on the main diagonal is -1. This matrix reverses the i-th 
loop in the nest. The reversed loop runs from the negative upper bound ( - u b i )  to 
the negative lower bound ( - l b i )  of the former loop Li. The transformed dependence 
matrix and the resulting loop nest are shown in Fig. 3. 

( , : )  
L2: for j ' =  -5  t o - 1  by 1 do T~= 0 1 

So : J = - J ' ;  Dm~ = T~ �9 D = 
Sa: A[i][j] = A[i - 1][j] + A[i - al[j - 1]; 

Fig. 3. Prograzn after reversal transformation 

Skewing  adds to an inner loop variable an multiple value of an outer loop 
variable. The transformation matrix is the identity matrix with a single constant 
value in the lower left triangle e.g. ti,k(i > k). Loop variable lk is skewed by the 
value t i ,k .  li. In the transformed example loop nest(Fig. 4) there are no dependences 
between iterations with equal j~ (cf. Fig. 2). Skewing doesn't change the execution 
order of the statement part, so this transformation is always legal. 



147 

Ll : fo r  i=- l t o 5 b y  1 do 
L2 : f o r  j '  = i + l t o  i + S b y  l d o  

So : j = j '  - i; 

$1 :  A[i] [31 ---- A t i  - 11 [j] + A[i  - 11 D - ll; 

Fig. 4. Program after skewing the inner loop 

(1 01) T~= 1 

P e r m u t a t i o n  exchanges loops in the nest. The transformation is performed by 
the identity matrix with permuted rows. When applying this transformation care 
has to be taken of computing the new loop bounds properly [WL91b] (Fig. 5). 

L l : fo r  j---- 2 t o l 0 b y  1 do 
L2 : for i -- m a x ( j -  5, 1) to m l n ( j -  1,5) by 1 do 
So:  j = j '  - i; 
$1: A[i]H -- A[ i -  l lb  l + A [ i - l l b -  11; 

(0 
T p =  0 

11) 
Fig. 5. Program after permutation 

3 Compiling Nested Loops for LC-VLIWs 

In conventional VLIW-compilation source code is first translated to machine code 
and then scheduled for the given machine. The schedule is computed solely on the 
basis of the operation dependency graph. We exploit the regular structure of nested 
loop programs to map whole iteration points onto one cluster and then refine the 
assignment by mapping machine instructions to the functional units of the cluster. 
The quality of both mappings can be drastically enhanced by the application of well 
known loop transformations to the given loop nest. Tt(us the problem to determine 
a high quality mapping becomes a transformation selection problem. 

Starting with a presentation of a model capturing properties of the loop nest, we 
proceed by giving descriptions of essential stepping-stones encountered during the 
selection process. We illustrate the transformations by incrementally applying them 
to a well known example loop nest. Data reuse, parallelism and resource utilization 
are discussed. The transformation will consist of a series of simple steps dedicated 
to the aspects mentioned above. Fig. 6 shows the sequence of transformation steps 
applied to a loop nest. The first four steps determine transformations represented by 

full per- 
mutability 

,] data 
reuse parallelism ,[ utilization load 

balance 

Fig. 6. The transformation steps 

appropriate matrices and will be denoted by T i p ,  Tlo~, T~oa,~ and T ~ t i h  respectively. 
Due to the restriction to SRP-transformations matrices Typ up to T~ave  will be 
unimodular, whereas Tu td  may be not unimodular. Step 5 provides a row vector trot 
causing clusters to execute identical instruction sequences. The whole transformation 
is represented by the product r ,  ot �9 T~til  . T~a~e �9 Tzoc �9 T i p .  



148 

3.1 Assignment of  Iterations to Clusters 

Prior to the discussion of single selection steps we introduce the notion of a cluster 
assignment mapping whole loop iterations to clusters. Properties of this mapping 
will be fully exploited in Sect. 4 but they already impose restrictions on the trans- 
formation selection for data reuse. The assignment mapping provides the basis for 
reuse of operands in subsequent iterations. If both the generation and the use of one 
value take place on the same cluster, reuse is possible without any extra effort. If 
two different clusters are involved, a series of register-register transfers will be issued 
on clusters in-between source and destination. Due to small entries in dependence 
vectors, the distance to be covered is usually very small, most often a single hop is 
sufficient. Because all clusters are identical, only distances and directions are of inter- 
est here. This simplifies the piecewise linear function which captures the assignment 
resulting from the transformation phase and is given in (1). 

C(i) = (r~o, �9 T .  i) m o d c  = (rro~" T~,il" T~,a~e. Tzo~" Tjp i) rood c (1) 

Function C maps each iteration i to exactly one of the c clusters of the machine. 

3.2 Modeling dependences of the loop nest 

We will use a straight-forward extension of the commonly used dependence matrix 
to guide the transformation selection phase tailored to instruction level parallelism. 
For a nest of n loops the extended dependence matrix D E M(Z ,  n, m) is built of 
two submatrices Dw and DR, arranged as D = (Dw IDR). Submatrix Dw includes 
dependence vectors imposing a certain execution order on iterations, submatrix DR 
includes somewhat artificial dependences indicating a common read between iter- 
ations. Vectors from DR do not impose any restrictions on the execution order of 
iterations but are crucial to the reuse optimization of read only operands. 

3.3 Transformation selection 

Transforming for full permutability: The task of the first phase is to provide 
a canonical form of the given loop nest, the fully permutable nest (fp-nest for short). 

�9 The dependence matrix of a fp-nest does not contain any negative entries and hence 
allows to permute the nesting of loops arbitrarily. It is also the starting point for 
many transformation techniques presented in recent publications which stem from 
different areas of compilation as exploiting parallelism [WL91b], locality [WL91a], or 
partitioning iteration spaces of arbitrary size into subspaces of limited size [RS92]. 
The interested reader is referred to reference [WL91b] for more details on this topic. 
There it is also proven that the required transformation always exists and is a simple 
sequence of skewing transformations. Step 1 of the compilation process can be stated 
as follows: Find a transformation with matrix Tip satisfying det(T/p) E { -1 ,  1) and 

V i E { 1 , . . . , n } , j  E { 1 , . . . , m }  : d~j > O where (d~j) = T/p . Dw 

Nonnegativity in DR is of no importance, as each vector in DR can be turned into 
a nonnegative vector multiplying it by -1 .  This is trivially legal, because there 



149 

is no difference, whether a value is first used in a computation ca and then in a 
computation c2 or vice versa. The restriction of det(T/p) to 1 or -1 is due to the use 
of SRP-transformations. 

The example given in Fig. 7 will accompany all stages of compilation and is 
the well known Horner loop (cf. [Dow90]). Because there are no negative entries 

L2: for J = - N t o - I b y  1 do D =  
S~ : B [ I ] [ - J ]  = B [ I - 1 ] [ - J ] + X * B H [ - J + I ] ;  1 l0 

Fig. 7. The untransformed Hornet loop and its dependences 

in Dw, there is no need to apply any transformation to gain full permutability. 
Hence T/v = Iz, denoting the identity matrix of dimension 2. We now focus on 
transformations tailoring the loop nest to the specific machine model sketched in 
Fig. 1. The selection phase proceeds by searching for factors Tloc, Twave and Tutit, 
refining the overall linear-transformation. 

T r a n s f o r m i n g  for  D a t a - R e u s e :  Load and store instructions belong to the most 
expensive instructions of architectures available nowadays. They involve peripheral 
memory operating at lower rates than the CPU. As the gap between memory access 
time and CPU cycle time widens, techniques minimizing memory access receive 
additional importance, even for architectures using fast cache-memories. 

Values produced in one iteration and required during subsequent iterations can 
be reused without a memory fetch if involved iterations differ only in the parallel and 
the innermost sequential loop components. This observation is easily translated into 
properties of dependence vectors. For operands to be reused, there must be at most 
two nonzero entries in the components of dependence vectors describing the flow of 
data. Hence we are looking for a transformation matrix ~o~ maximizing function 
reuse(Tzo~, D) in (2), capturing the reuse of operands: 

reuse(Ttoc,D)=i{d'[d' Ttoc-dh(d~ .. ,  ,~-2) 0}l (2) 

Due to the fact that nonzero components of dependence vectors have to appear in 
the same rows of the transformed dependence matrix, the problem to find an optimal 
reuse transformation becomes intractable. 

The above observation leads to a simple heuristic algorithm. We want to gather 
nonzero components in a minimum number of rows. Therefore we apply a variant 
of the Gaussian-elimination algorithm, producing additional zero components in the 
dependence matrix and keeping the loop nest fully permutable. As it is welt known 
from linear algebra, the number of nonzero rows in the resulting dependence matrix 
will be equal to the dimensionality of the vector space spanned by a maximal set of 
linear independent dependence vectors. Due to this property, we can not expect to 
reuse all data in the general case as tong as we can not reduce the dimensionality. 
Preprocessing the loop nest with reorder and distribution transformations may yield 
this desired effect but is beyond the scope of this paper. 



150 

a l g o r i t h m  Determine_Tzo~ : 

Tzoc := I , ;  
Apply elimination algorithm; 
Permute zero rows outermost;  
Permute critical row innermost- l ;  

e n d  Determine_Tloc.  

~oc := Tzoc " TeUrn; 
Tzoc := Tzo~ �9 To~t; 
Tlo~ := Tto~ " Tr 

The algorithm is a straight-forward formulation of the given explanation. If the de- 
pendence vectors do not span the entire iteration space we move zero rows outermost,  
because they do not exhibit reuse. An explanation of substep 3 is postponed to the re- 
lated Sect. 4. This algorithm was inspired by techniques presented in [Fea92], where 
the Gaussian elimination is applied to optimize data distribution for distributed 
memory computers, which obviously is a closely related problem. 

L2: f o r I =  l t o - J b y l d o  D =  1 1 0 1  

$1 : B [ I ] [ -  J] = B [ I - 1 ] [ - J ] + X . B [ / ] [ - J + I ] ;  011 0 

Fig. 8. The Hornet loop after reuse transformation and its dependences 

There is no reuse to gain in our example. As is easily seen, the dependence vectors 
in D w  are linear independent and no SRP transformation can exist, making them 
span a one dimensional space only. The innermost row is detected to be the critical 
one and therefore permuted into row n - 1 = 1. Thus Tloc is a simple permutat ion 
matrix, exchanging the two rows of the dependence matrix D. 

T r a n s f o r m i n g  fo r  P a r a l l e l i s m :  To operate clusters in parallel at least one loop 
must be a parallel one. From the viewpoint of data reuse one parallel loop is al- 
ready enough. More levels of parallelism are equivalent to more loops without de- 
pendences (otherwise there would be no parallelism), thus inhibiting data  reuse 
between neighboring iterations of parallel loops. The parallelism will be generated 
using a wavefront t ransformation comprising SRP-transformations only. The follow- 
ing observation provides the basis for this transformation: 

Loop i of a nest (L1, �9 . . ,  Ln) with depth n can be executed in parallel 
r  ( d l , . . . , d i - 1 ) > 0  V d i = 0  (3) 

Condition (3) expresses that  a dependence has to exist either in a level j < i or in 
a level j > i, but  there must  be no dependence on the i-th level. 

As we want to exploit the fine-grained parallelism at the instruction level by a 
VLIW-machine,  the innermost loop of the nest must be a parallel one. Because we 
are interested in just one level of parallelism, we have to satisfy condition (3) for the 
case of i = n. Therefore we have to guarantee that  all column vectors constituting 
the transformed dependence matr ix satisfy the special case of (3) given in (4). 

Vj E { 1 , . . . , m } , d j  = ( d l , . . . , d = ) :  ( d l , . . . , d n - 1 )  > 0 (4) 

Having the fp-nest, the parallelizing transformation is constructed as a sequence of 
less than n skewing transformations T/S,n and one final permutat ion transformation 



151 

TP_l,n. The mat r ix  depicted in (5) represents a general t ransformation of this kind 
and assures condition (4) for an already fully permutable  loop nest: 

10...000"~ 
0 1 . . . 0 0 0 [  

: : ' . .  : : : =T.  P T s T. s T s Twave :" ; ; . . ' i ; ; ]  n- l ,n"  1,n" 2,n""  n- l ,n (5) 

11...111| 
00...010/ 

Applying Twave to an arbi t rary fp-nest yields a new fp-nest with at least one level of 
parallelism in the innermost  loop. T,~ave first makes the components  of dependence 
vectors in the n-th level nonzero and than exchanges the two innermost loops. The 
property of full permutabi l i ty  assures d i j  _> 0 for all i, j .  Also there always exists 
at least one i such tha t  di,j > 0, otherwise the zero-vector representing a self- 
dependent computa t ion  would be included in the dependence matr ix ,  contradicting 
the sequential computa t ion  order. Hence we have (~in__l di j )  > 0 Vj E {1 , . . . ,  m}. 

The above wavefront scheme is applicable to generate up to n - 1 levels of par- '  
allelism, as is often the case for systolic array compilation [MF86] by adjusting the 
final permuta t ion  t ransformat ion appropriately. For j < n levels of parallelism rows 
n and j must  be exchanged. The matr ix  given in (5) works for all fp-nests but intro- 
duces redundancy for fp-nests with dense rows. In practice, we reduce the number 
of necessary skewing-transformations using the greedy-algorithm sketched below: 

a l g o r i t h m  Determine_T~ave : 

w h i l e  3j  E { 1 , . . . , m } :  ( d l , j , . . . , d , - 2 , j , d n , j )  = 0 d o  
s. t. adding row i to row n of D will elim- 

choose any i E { 1 , . . . ,  n - 1} : inate a maximum number of zero entries 
t~  a ~  := t~ ~ + tW ~ e ' ,  , d ,  := d,~ + di; 

o d  
w a v e  w a v e  . swap( tn_ l , tn ), 

end Deterrnine_Twave. 

Fig. 9 shows our sample loop nest after t ransformation for parallelism. The innermost 
loop is now a parallel loop as is indicated by the keyword p a r a l l e l .  

L l : f o r  I - -  1 - N t o 0 b y  1 do ; 1  "~ 
L2: for  J = - N t o I - 1  by 1 do paral le l  D =  1 ]1 1 

0 ) S~ : S [ I -  J l [ -  J] = B [ I -  J - 1 I [ -  J] + X . B [ I -  J ] [ -  J + I]; 1101  

Fig. 9. The Homer loop after wavefront transformation and its dependences 

3.4 Transforming for Resource-Ut i l i za t ion  

The main  problem we face here is to provide enough useful machine instructions 
to finish up with a s t ream of large instruction words that  is as dense as possible. 



152 

Its execution makes the best possible use of the assumed machine. The transfor- 
mation step for improved resource-utilization evaluates information provided by a 
preliminary schedule to derive further transformations increasing the code density. 

We need to know the portion of the time slots for functional units not yet filled 
with useful instructions. A function provided by the scheduler module is aware of 
empty slots and provides the desired nonnegative value e. Unrolling adjacent itera- 
tions places them onto the same cluster, provides multiple instruction sequences to 
execute and promises to fill the empty slots. The number of empty slots e we can fill 
using this approach heavily depends on the dependences existing between unrolled 
iterations. If we unroll dependent iterations, we can not expect their machine in- 
structions to result in dense, long instruction words, because they have to be placed 
in subsequent time slots obeying execution order restrictions. From the number e 
and the schedule length l we derive the parameter of the unroll-transformation by 
u := [l_--te]. As we have already made the innermost loop a parallel loop that triv- 
ially is free of dependences, we unroll exactly u of its iterations and end up with 
multiple instruction sequences being independent. Two iterations i = ( i l , . . . , i n )  
and j = ( j l , . . .  , jn) now belong to the same iteration if 

[ik/ukJ = [jk/ukJ Vk e {1 , . . . , n}  (6) 

Using matrix notation, we arrange the numbers uk on the diagonal of a square 
matrix and get the matrix Tutit introduced in (1). For nontrivial unrolling at least 
one of the uk is not 1 and therefore I-I~=l 1/ukk ---- det(Tu~d) may not be 1. Here we 
leave the set of unimodular transformations. As we are interested in unrolling the 
innermost and parallel loop only, we immediately have ui = 1 Vi E {1 , . . . ,  n -  1} 
and complete the construction of the factor Tutii by setting u,~ = u. Fig. 10 depicts 

1 -1  - I " I " I - I - I - I - I - I 

: ~ , X , X , X , ~ ' , f  l.y l~. ~k. l j  l j j_y2~t_l  merge==~ 

 , ZZZZZZZ: 
I - I  " I " I - I " I - I - I - I - I 

Fig, 10, Merging two adjacent iterations of the parallel loop 

an unrolling of the innermost Horner loop by factor 2. Unrolling means merging 
adjacent iterations along the innermost parallel loop and reduces the iteration space 
by the unroll factor. 

Our approach is a variant of loop quantization [Nic88] with the restriction to 
unroll the innermost loop only. Unrolling the innermost loop seems to be a severe 
restriction at first. But as loop nest of depth two are the most common ones, unrolling 
the paratlelized loop onto clusters and software-pipeling the innermost loop of the 
remaining nest performs very well in the average case. (SeeSect. 5 for early results). 



153 

4 C o d e  G e n e r a t i o n  

This section deals with the problem of code generation for the transformed nest. 
The first task is to compute the source level code of the transformed nest. Comput- 
ing bounds having applied SRP-transformations is easy and exhaustively treated in 
[WL91b], for example. The decomposition into convex subspaees is more difficult 
but possible using the algorithms presented in [A]91], which are more powerful than 
necessary here. Finally, problems specific to the machine code level are discussed 
and supplements necessary to make the final code work properly are presented. 

C o m p u t i n g  t he  t r a n s f o r m e d  nest:  To generate the transformed loop nest, al- 
gorithms generating a loop nest after tiling transformations and generating loop 
bounds from a set of inequalities are used. They are given in [AI91] and not dis- 
cussed here. We have to extract the inequalities from the transformed loop bounds 
and additional inequalities bounding the rectangular subspaces for the cluster map- 
ping. The latter ones can be computed, given the number of clusters utilized and 
the number of iterations merged to one node. As the final result on source level 
we get a loop nest of depth n -I- 1. The additional loop is used to cover the two 
dimensional iteration space with the rectangular tiles. The remaining loops control 
higher dimensions of the iteration space. Fig. 11 shows the final source code loop 

L l : f o r  t---- 0 t o N - 1  by c d o  
L~: f o r I = l - N §  

L3: for J - -  - N + ~ t o - N + ~ + l b y  1 do parallel 

$1: B [ I -  J ] [ -  JI = B[I - J - 1 ] [ -  JI § X , B [ I -  J ] [ -  J + I]; 

L4 : for I = c -  N § t to O by  l do 

Lh: for J =  - N + t t o - N + ~ §  by 1 do parallel 
$2: B [ I -  J ] [ -  J] ~- B [ I -  J - 1 ] [ -  J] + X * B [ I -  J ] [ -  J § I]; 

Fig. 11. The hornet-loop after final transformation 

nest of the running example. Loop L1 initiates the execution of tiles with height 
c, loop nest (L;, L3) covers triangles left by the rectangular subspaces covered by 
(L4, Lh). Fig. 12 depicts the iteration spaces for the loop nests (L2, L3) and (L4, Lh) 
and exactly one value of the outermost loop counter t. 

I n se r t i ng  s t a r t u p  and  f inal izat ion code: The loop bounds of the transformed 
nest usually constitute a polytope of arbitrary shape. To cover the points in the 
polytope by an effective computation of our LC-VLIW, we need to isolate areas 
of rectangular shape and sufficient parallelism. Therefore, the iteration space of 
the loops has to be decomposed into disjoint subspaces which can be processed 
separately. This decomposition requires an additional precaution to run properly. 
Fig. 12 depicts a typical subspace-decomposition. Because the LC-VLIW model 
does not have any mechanism to disable some of its clusters for "certain iterations, 
areas with varying parallelism have to be cut off. The resulting iteration space is 
of rectangular shape and therefore very well suited for the assumed machine. As 



154 

d a t a  reuse  cu t  off 

I 

L _  

increasing parallelism rectangular subspace 

Fig. 12. Iteration space decomposition 

the figure already indicates, additional instructions have to be inserted between 
separated iteration spaces. The sequence to be executed before any instruction of 
the rectangular space establishes our loop invariant. Reused operands are read from 
registers and kept in registers for reuse during subsequent iterations. Therefore, this 
sequence has to fetch operands used within but not generated by computations of 
the rectangular space. 

G e n e r a t i n g  code  for  r e c t a n g u l a r  subspaces:  To emit correct and efficient code 
for rectangular subspaces, the compiler has to obey several restrictions imposed by 
our technique. In general, d'ata is reused in the parallel (spatial) as well as in the 
surrounding sequential (temporal) domain. Unfortunately, the cluster processing the 
lower border of the rectangular subspace not only has to perform the instructions 
resulting from operations belonging to the loop body, but also has to fetch operands 
from memory. Therefore, this cluster has to execute additional instructions for ad- 
dress calculation and fetching of reused operands. The remaining clusters do not issue 
load instructions, they receive these operands using more efficient communication 
instructions not involving the memory interface. Due to the difference in execution 
time, most clusters waste cycles waiting for few clusters driven by longer instruction 
sequences. 

To solve this problem, we apply a technique of load balancing to the so far 
transformed nest and achieve an uniform load distribution. The idea is to move 
load instructions for operand fetching in a round-robin manner through available 
clusters. This is easily accomplished using the loop-rotation transformation described 
in [Wol90]. It is applicable without any inspection of dependence vectors, because 
the rotated loop is known to be free of dependences. Fig. 13 shows the application of 
rotation to our example. In each sequential iteration a different cluster now performs 
the additional load instructions. To generate code without any branches, we need 

Rotation 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]  

Fig. 13. Rotating the cluster assignment for even load balance 

to unroll lcm(c, Isl) sequential iterations, where tsl denotes the shift of the rotation. 
If each cluster processes iterations belonging to the border, there is an optimal 
load balance between all clusters. Their instruction sequences do not differ, they 



155 

just access different memory locations which leads to an overall shorter execution 
time for the sequential domain. Since rotation is possible for different directions and 
values, a procedure determining these values on the basis of the so far transformed 
loop nest is required. 

Given the dependence matrix, we have to select the direction and step value 
for the rotation, i. e. we have to find a vector rro, E :7/'~ optimizing load balance 
and transport latency. Two aspects are of interest here: minimizing the number of 
values to move and minimizing the delay incurred by communication. The instruction 
reusing a value produced in a previous iteration will block and prevent all dependent 
instructions from execution as long as the desired value is not provided. Therefore we 
place the generation and use of the value having the least amount of time to travel 
from source to destination on the same cluster. Using this heuristic, we favour the 
localization of time critical communications over the minimization of inter cluster 
data exchange. 

The product rro~' d = s denotes the distance and direction a reused operand has 
to move to its destination. The generated value is the result of a root node in the  
DAG representing the assignment in question. We search for a vector rro~ placing 
the critical communication onto one cluster. Employing our assignment function (1), 
we have to assure C(i) = C(j) for involved iterations. The critical communication 
satisfies u s e ( d r  - g e n ( d c r i ~ )  = rain. The difference u s e  - g e n  provides the level 
distance in the operation dependency graph resulting from expressions used within 
the loop body. Now vector t r o t  must solve the equation trot �9 dcrit = 0, obeying the 
restriction rn-1 ~ 0 A r j  = 0 Vj E { 1 , . . . , n - 2 } .  Fig. 14 illustrates the above 

t I 

I I 

i I 

I i 

I L 

t t 
C~ I L 0 J C~+1 J 

Ci+~ 

Fig. 14. Abstract operation dependency graph for the body of the hornet-loop 

reasoning. The rotation is chosen, such that the most time critical iteration reusing 
B is mapped onto the same cluster as the generating iteration. For this example we 
have rro~ -- ( 1 , - 1 )  and localize the generation of B [ I ] [ J ]  and reuse in B [ I ] [ J  - 1] 
from the original loop nest given in Fig. 7. 



156 

5 P r e l i m i n a r y  R e s u l t s  a n d  C o n c l u s i o n s  

We have presented a loop transformation technique to optimize VLIW performance 
of nested loops. The result of these transformations is used as input to a conventional 
software pipelining VLIW code generator. We evaluated the proposed transforma- 
tion technique using an experimental VLIW compilation environment [Pfa92]. The 
machine model we used is a 3-cluster VLIW architecture similar to the one depicted 
in Fig. 1. The input programs were "matrix" (a matrix * vector multiplication), 
"convolution" (a convolution loop), "horner" (polynomial evaluation), and "sor" 
(successive over-relaxation). 

Fig. 15 shows our preliminary results. It compares the length of the initiation 
interval II determined by the software pipetining scheduler for both the original and 
the transformed program loops. If we neglect the execution time of the prologue and 
epilogue code of the software pipeline, this length is equivalent to the execution time 
(in machine cycles) for the 10op body. In the original program this loop body covers 
exactly one iteration point. The transformed loop body covered 9 iteration points 
for each of our input programs. 

Input 

matrix 

convolution 

homer 

s o t  

Original Loop 

II cycles/iteration point 

27 27 

25 25 

26 26 

35 35 

Fig. 15. Length of the initiation intervals 

Transformed Loop 

II cycles/iteration point 

72 8 

62 6.9 

62 6.9 

126 14 

Due to the impressive speedups and the fact that the proposed techniques apply 
to a large subset of loop programs, we expect our algorithm to work very well in the 
average case. Nevertheless, several questions remain open for further research 

- Can the VLIW performance be further increased by a more flexible functional 
unit assignment strategy, e.g. by spreading iteration points across clusters ("one- 
to-many mapping")? 

- How do the proposed transformation techniques interact with other well-known 
loop techniques such as reordering and distribution? 

- How can non-clustered VLIW and superscalar architectures benefit from the 
proposed or similar loop transformations? 

R e f e r e n c e s  

[AI91] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In 3rd ACM 
SIGPLAN Symposium on Principles and Practise of Parallel Programming, 
pages 39-50, July 1991. 



157 

[AK87] 

[Ban93] 

[CDN92] 

[CNO+87] 

[Dow90] 

[Fea92] 

[Kun88] 

[Lam74] 

[MF86] 

[NicS8] 

[Pfa92] 

[RF93] 

[RS92] 

[WL91a] 

[WL91b] 

[Wolg0] 

[zcg0] 

Randy Allen and Ken Kennedy. Automatic translation of FORTRAN programs 
to vector form. ACM Transactions on Programming Languages and Systems, 
9(4):491-542, October 1987. 
Utpal Banerjee. Loop Transformations for Restructuring Compilers. Kluwer 
Academic Publishers, 1993. 
A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register files for VLIWs: A 
prehminary analysis of tradeoffs. In Proc. 25th Annual Int'l Syrup. on Microar- 
chitecture, 1992. 
R. P. Colwell, R. P. Nix, O'Donnel, J. J. Pappworth, and P. K. Rodman. A 

VLIW architecture for a trace scheduhng compiler. In 2nd International Con. 
ference on Architectural Support for Programming Languages and Operating Sys- 
tems, October 1987. 
Michael L. Dowling. Optimal code parallehzation using unimodular transforma- 
tions. Parallel Computing, 16:157-171, 1990. 
Paul Feautrier. Toward automatic distribution. Technical Report 92.95, 
IBP/MASI, December 1992. 
Sun Yuan Kung. VLSI Array Processors. Information and system sciences se- 
ries. Prentice Hall, 1988. 
Leslie Lamport. The parallel execution of DO loops. COMMUNICATIONS OF 
THE ACM, 17(2):83-93, 1974. 
Dan I. Moldovan and Jose A. B. Fortes. Partitioning and mapping algorithms 
into fixed size systohc arrays. IEEE-TRANSA C TIONS ON COMPUTERS, c- 
35:1-12, January 1986. 
Alexandru Nicolau. Loop quantization: A generalized loop unwinding technique. 
Journal of Parallel and Distributed Computing, 5:568-586, 1988. 
P. Pfahler. A code generation environment for fine-grained parallehzation. 
In Proc. 2nd PASA Workshop, G1//ITG Mitteilungen der Fachgruppe 3.1.2 
"Parallel-Algorithmen und Rechnerstrukturen (PARS}", February 1992. 
B.R. Rau and J.A. Fisher. Instruction-level processing: History, overview, and 
perspective. The Journal of Supercomputing, 7(1/2), 1993. 
J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for 
multicomputers. Journal of Parallel and Distributed Computing, 16:108-120, 
1992. 
Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In 
Proceedings of the ACM SIGPLAN 91 Conference on Programming Language 
Design and Implementation, Toronto, Ontario, Canada, pages 30-44, June 1991. 
Michael E. Wolf and Monica S. Lain. A loop transformation theory a~d an 
algorithm to maximize parallelism. IEEE TRANSACTIONS ON PARALLEL 
AND DISTRIBUTED SYSTEMS, 2(4):452-471, October 1991. 
Michael Wolfe. Data dependence and programm restructuring. The Journal of 
Supercomputing, 4:321-344, 1990. 
Hans Zima and Barbara Chapman. Supereompilers for Parallel and Vector Com- 
puters. ACM Press Frontier Series. Addison Wesley, 1990. 


