
Program Development in an Algebraic Setting*

P e t e r P e p p e r

Technische Universits Berlin
Fachbereich Informatik
e-mail: pepper@cs.tu-berlin.de

A b s t r a c t

We present a framework for program development, which is based on concepts from algebra
and logic. In this framework, programming is viewed as a process that successively extends the
program under considerat ion by adding new axioms or theorems to it. In this setting, axioms
constitute design decisions, whereas theorems merely make deducible knowledge explicit.

Technically, this is achieved by combining concepts from two related areas: Algebraic speci-
fications are used to represent programs, and Gentzen-style rules of natural deduction are used
to represent derivation processes.

The paper presents the algebraic framework and a collection of characteristic derivation
rules. A number of small examples shall illustrate the underlying methodology.

1 I n s t e a d o f a n I n t r o d u c t i o n : A n E x a m p l e

We start by presenting an example. Even though we have to rely on the reader's intuit ion
throughout its presentation, such an example can give a good first impression of the basic
concepts and principles of the overall approach. The disadvantage is, of course, that such
an introductory example is by necessity very small. But toy examples can illustrate
notations and techniques just as well as intricate programming problems.

T h e e x a m p l e : (" B i n a r y l o r g a r i t h m " :) Suppose that we have a positive integer z >
0 and that we want to know, how many digits will be required for its binary repre-
sentation. In the sequel we will go through the derivation of a program that solves
this little problem.

1. Specification: Our first task is to describe the problem precisely. This is achieved by
the following specifications.

F u n blog : nat --+ nat
Spc blog(x) = n

P r e x > 0
P o s t 2 n - 1 < x < 2 n

* This work was partially sponsored by the German Ministry of Research and Technology
(BMFT) as part of the project "KORSO - Korrekte Software".

226 Peter Pepper

The essential meaning of this notation should be self-explaining; details will be given
in Sections 2 and 4.6.
Note: In the sequel we develop an implementation for this specification. Whether
the specification itself actually characterizes our original problem "number of digits
in the binary representation of x " is beyond the realm of our discussion here. In
other words: I f the speeification fails to properly describe the given problem, then the
implementation will not solve the problem. All that we ensure is the compatibility of
specification and implementation.

2. Deriving recurrence relations by use of induction: The decisive step in our develop-
ment is the derivation of a number of recurrence relations that together establish a
recursive function declaration. To this end, we have to make a suitable case distinction
for x.
(a) Let x = 1: Then we can deduce:

2 n-1 < 1 < 2 n [by postcondition]
F- n = 1 [by arithmetic]

(b) Let x >_ 2: Since we work in the context of binary number systems, the idea
comes to mind to make an even/odd case distinction.

i. Let x = 2y: Then we can calculate:

2 n-1 < 2y < 2 n [by postcondition]
P 2 (n-x)-1 < y < 2 n-1 [since n > 2]
P 2 'n-1 < x + 2 < 2 m A m = n -- 1 [since x = 2y]
P m = blog(x + 2) A n = m + 1 [by postcondition]
~- n = blog(x + 2) + 1

it. Let x = 2y + 1: Then we can calculate

2 n - I < 2y + 1 < 2 n [by postcondition]
P 2 n-1 < 2y < 2" [by arithmetic]

: [analogously to 2(b)i]
l- n = blog(x + 2) + 1

Since both cases 2(b)i and 2(b)ii yield the same result, the case distinction is not
really necessary. Therefore we have
P n = blog(x + 2) + 1
Note: Some of the above derivation steps are only legal, because certain conditions
are met due to the specification of blog. This will be elaborated in greater detail
in Section 4.6.

3. Recursive solution: The case distinction from the previous step is complete. Moreover,
the recurrence relations also meet the termination requirement (see below). Therefore
we obtain the following recursive function declaration.

De f blog(x) = I f x = 1 T h e n 1
Else blog(x + 2) + l Fi

The function x + 2 on the argument position of the recursive call establishes a strictly
decreasing sequence of values, ending in the termination case x = 1. Hence our
function is totally correct.

Program Development in an Algebraic Setting 227

4. Improving fhe recursion: The above function exhibits a so-called "linear recurs ion ' ,
which ul t imately leads to a stack implementation. Therefore we now change the type
of recursion. To this end we introduce an auxiliary function.

Fun bl : nat • nat --+ nat
D e r bt(x, k) = blog(x) + k.

This function generalizes blog in the sense that it has a parameter k at the point,
where (the expression around the recursive call of) blog has the constant 1. For this
function we can now calculate:

bl(~, k) = blog(x) + k
= (I f x - - - 1 T h e n 1

Else blog(x+2)+l F i) + k
= I f x = l T h e n l + k

Else b l o g (x + 2) + l + k Fi
= i f x = l T h e n l + k

Else bl(x+2,1+k) Fi

Note that this derivation depends on the associativity of + . The last equation - which
still meets the termination requirement - establishes a new version of the definition
of bl. (For reasons of readabili ty we also apply the commutat ivi ty of + , even though
this has no relevant effects for the algorithm.)

D e f b l (x , k) = I f x = 1 T h e n k + l
Else bl(x + 2, k + l) Fi

The connection between this new function bl and our original function blog is given
by the following equation, which is a direct consequence of the initial definition of bl.

blog(x) = blog(x) + 0 = bl(x, 0).

Hence we obtain the new declaration

D e f blog(x) = bl(x, 0).

Note that this only works, because + has a neutral element 0.
5. An iterative solution: The new function bl exhibits a recursion structure which is

called "tail recursion ' . This kind of i teration is equivalent to t radi t ional loop con-
structs of imperative languages. (As a mat ter of fact, all modern compilers realize
that this kind of recursion can be implemented without stacks.) Hence, we obtain
our final version

D e f blog(x) = Begin
V a r v, k : nat;
v, k := x, O;
W h i l e x > 1 D o x , k := x + 2 , k + l O d ;
R e t u r n k + 1 E n d

It now depends on the kind of programming language that we have at our disposal,
whether this has to be transformed further into procedures, or whether we can stop
at this level (except for some syntactic sugaring).

228 Peter Pepper

Discussion: This example - small as it may be - already illustrates some principal points:

t> A program derivation proceeds through several stages, which we will call milestones
in the sequel.

I> The successive milestones are related to each other through algebraic calculations
that establish their equivalence.

I> The overall development process - the strategy - is guided by the programmer 's ideas
("insights", "intuition").

I> Experience that has been gained over the years with this approach indicates that the
essential concepts for solving the given problem are best expressed on the functional
level. The transit ion to an imperative language level is in most cases very technical
and can even be left to a good compiler.

I n the remainder of this paper we will elaborate the theoretical and methodological
foundations of this approach in greater detail. In addition, we will i l lustrate its principles
further by presenting some more examples.

2 A n A l g e b r a i c V i e w o f P r o g r a m m i n g C o n c e p t s

We take a uniform algebraic view for our language concepts. (This even pertains to
concepts from imperative languages.) In order to be more precise, we at least want
to sketch here the notational and semantical framework within which we perform our
deductions

2.1 Signatures

Our specifications and programs consist of collections of functions tha t operate on certain
sets of da t a elements. These functions and da ta sets have to be appropr ia te ly named. We
do this here in the following way:

I> A so r t is a name for a da ta set. Well-known examples are
S o r t bool, nat, int, real, char, tex t etc.

But we do not only have such plain sorts, but also generic sorts. Examples are
S o r t seq[a], set[a], map[a,/~] etc.

Such generic sorts can he instantiated such as
S o r t seq[int], map[nat, real], set[seq[char]] etc.

I t is also possible to combine these last two concepts such as in seq[set[a]].
I> A f u n c t i o n s y m b o l is an identifier together with a functionality. A functionality

is a type expression, built up from sorts using direct product and function space.
Examples are

F u n + : nat • nat --* nat
F u n top : stack[a] ---, a
F u n topop : stack[a] ~ a x stack[a]
F u n f i l t e r : (a ~ bool) ~ seq[a] --~ seq[a]

The last one of these examples shows that we also admit hi#her-order functions, that
is, functions that have other functions as arguments and /o r results.
Notational conventions: We are very liberal with respect to overloading of symbols,
use of infix notations, etc.

Program Development in an Algebraic Setting 229

1> A s i g n a t u r e consists of a set S of sorts and a set F of function symbols, the func-
tionalities of which are expressed in terms of the sorts from S.

Given a signature , we immediately obtain the notions of t e r m s and f o r m u l a s .

I> A t e r m is a well-formed expression built up from the symbols of a given signature,
possibly including free variables. Examples:
(~ + v) * 2, push(s, top(s) + 3), . . .
The sor t o f a t e rm is the result sort of its outermost function symbol.

I> A f o r m u l a is a term of sort bool. Atomic formulas are applications of predicates such
a s

x > y, p u s h (s , x + 1) = pop(r), . . .
More complex formulas are then constructed with the help of boolean operations.
Examples:
x > y A y > _ z , x = O : : t . x * y = O , . . .

Finally, we can use quantifiers to bind variables. Examples (where ^ s tands for con-
catenation):
(Vx: seq) s # emp ty ~ (3r, t : seq, x : da ta) s = r ' z ' t
(Vs : s # e m p t y) (] r , t : seq, z : data) s = r ' x ^ t
Note tha t these two formulas are just notational variants of each other. Note also tha t
we automatical ly deduce the sorts of variables from the context whenever possible.

2.2 Specifications

In order to associate meaning to the symbols from a signature we provide specifications,
which usually are in the form of predicate-logic formulas. But for methodological as well
as for semantical reasons we distinguish several kinds of formulas.

I> A x i o m s provide the basic constraints that determine the meaning of the sorts and
function symbols. Examples are

A x m (V x : n a t) x + O = x

A x m (Vx, y: nat) x + sue(y) = suc(~ + y)
t> T h e o r e m s are derivable from the axioms in the specification. For example, the above

axioms entail - together with some further knowledge about 0 and suc - the following
theorems:

T h i n (Vx, y : n a t) x + y = y + x

T h m (V x , y , z : n a t) (x + y) + z = x + (y + z)
l> S p e c i f i c a t i o n s of functions are a notational variant of certain axiomatizat ions that

we encounter frequently. Example:
Spc blog(x) : n P r e x > 0 P o s t 2 n-1 ~ x < 2 ~

The relationship between these kinds of specifications and s tandard axioms will be
discussed in Section 4.6.

t> D e f i n i t i o n s of functions determine a least fixed-point semantics. Example:
D e f blog(x) = I f x = 1 T h e n 1

E lse blog(x - 2) + l F i

The impacts of such a fixed-point semantics will be discussed in Section 2.4.

230 Peter Pepper

t> S u b s o r t r e l a t i o n s express the fact that the da ta elements of one sort are also
members of another sort. Examples:

A x m nat C int
T h i n seq[nat] C seq[int]

t> Generat ion constra ints express the fact that all da ta elements of a sort can be
constructed with a certain set of operations. Examples:

A x m bool Generated b y true false
A x m nat G e n e r a t e d b y 0 sue
A x m seq G e n e r a t e d b y empty alrpend

These kinds of formulas lead to certain induction principles tha t will be discussed
further in Section 4.6

t> O b s e r v a b i l i t y is an important concept in connection with implementation. Two
objects of a given sort s are considered equivalent, if they cannot be distinguished
by "observing" them only "from the outside". Example:

A x m seq[~] O b s e r v a b l e b y a bool nat
This means that the elements of sort seq[a] may only be distinguished by applying
operations to them that lead into the sorts c~, nat, or bool. If we now write equality
formulas for elements of sort seq[~], they actually mean this observable equivalence.

Notational conventions: Again, we are very liberal in our notations: As long as the
meaning is clear from the context, we will omit explicit quantifications. Note also that
we allow all kinds of predicate formulas, not only equations.

2.3 Modular lzat ion and Parameter i za t ion

So far we have only considered means for programming in the small. But we also need ways
to structure programs into larger units. In this paper we do not want to adhere to a specific
language 2. Therefore we employ a slightly more abstract notat ion by using "operations"
such as S i g n a t u r e (. . .) that allow us to talk about the corresponding language features
without going into syntactic details.

t> C la s se s are our highest-level structuring concept. 3 They correspond to what is often
called specification, structure, encapsulation, module, etc. These classes consist of
signatures and specifications (axioms and theorems) and possibly some addit ional
information. Example:

Class Set = Signature(Set) U Speclficatlon(Set) U Impor t (Se t)
This states that the class Set consists of three sets of items. (For more details see
section 2.5.)

t> I m p o r t s make certain classes available in the definition of other classes. Example:
Impor t (Se t) = Bool U Nat

This means that all sorts, operations, and specifications from the two classes Bool
and Nat can be used in the definition of the class Set.

2 . . . even though we are influenced by the language SPECTRUM [10].
8 There are certain relationships to the class concept of object-oriented programming; but there

are also differences. We have chosen the name, because on the semantical level a "class"
represents a class of algebras (which some people prefer to view as a category of algebras).

Program Development in an Algebraic Setting 231

t> E x p o r t s state, which parts of classes are made available to the environment. This
way, certain sorts and operations of a class can be hidden, which is useful e.g. in
connection with internal auxiliary functions. Example:

Export(Set) = (set , E)
This means that only the sort set and the element test E can be impor ted by other
classes.

I> Renaming can be used to avoid name clashes between identifiers in different classes.
Example:
Set Renamed [0 To empty, E To has]

The result of this operation is the class Set, but with the operations 0 and E renamed
to empty and has, respectively.

i> Parameters of classes are other classes. That is, we designate certain subclasses as
parameters, very much like in the case of imports. Example:

P a r a m e t e r (O r d e r e d S e t) = So r t
Fun . -<. : c~ x a --, bool
Axm (Vx:a) x_x

But we could also write
P a r a m e t e r (OrderedSet) -- L inOrd

provided tha t there exists a class LinOrd defined as
Class LinOrd = S o r t c~

F u n . -< . : c~xc~- - ,boo l
A x m (V z : a) x - < x

Given a parameterized class like OvderedSet above, we can create instances:
OrdevedSet I n s t a n t i a t e d [c~ To nat, ~ To <]

Alternatively, we could also write
OrdevedSet I n s t a n t i a t e d B y Nat

provided tha t we have established the property
Nat I s a (LinOrd R e n a m e d [~ To nat, "< To <])

The advantage of this latter variant is that we can establish this property once and
for all for the specification of Nat and then reuse it wherever needed.

This short overview of possible constructs shall suffice for our purposes. A thorough
elaborat ion can be found in the paper of Wirsing [37] and in the textbooks of Ehrig and
Mahr [11]. In these references many subtleties are elaborated that we had to skip here.

2.4 Semantics

The aforementioned paper of Wirsing [37] also provides an excellent discussion of possible
semantics for algebraic specifications. Therefore we content ourselves with a brief sketch
here. As in the previous section, we have to skip many of the subtleties, challenging as
they may be.

The fundamental notion in this context is that of an algebra. An a l g e b r a is a family
of carrier sets together with a family of functions on these carrier sets. Such an algebra

232 Peter Pepper

`4 is called a S i g - a l g e b r a for a given signature S i g , if every sort of S i g is interpreted by
a carrier set of `4 and every function symbol of S i g is interpreted by a function of `4.

A S i g - a l g e b r a .4 is called a m e m b e r (or a m o d e l) of a class C, if S i g n a t u r e (C) =
S i g and if all properties in S p e c i f i c a t i o n (C) hold in .4. We denote the category of
all models of C by A 4 0 ~ (C) . This concept is termed loose s e m a n t i c s (sometimes even
ul t ra - loose or hyper - loose in the literature; see e.g. [9] or [26]).

In the l i terature there are also approaches where one specific algebra is designated
as the semantics of a given specification, usually the so-called i n i t i a l algebra. But taking
the whole class of all models has decisive methodological advantages, in part icular in
connection with a stepwise development process. It is now possible to s tar t with a very
abst ract specification, where no premature commitments have been made. Then we can
gradually add design decisions, which are reflected in addit ional axioms and thus con-
strain the class of admissible models. In the extreme case we end up with a completely
unambiguous specification, which has only one model left. Usually this final specification
will be in the form of executable algorithms.

There is one additional feature that we have to mention here. Since we also work with
recursive function declarations, we have to provide a suitable semantics for them as well.
We do this in the tradit ional form by means of l ea s t f i x p o i n t s . We refer to the s tandard
li terature, e.g. Manna [17], Scott [33], Gordon [13], or Schmidt [32]. Section 4.6 contains
addit ional information.

2 . 5 A n E x a m p l e : B a g s

Since we will need it in some of our examples, we use the structure of "bags" to il lustrate
our algebraic specification concepts. Bags , sometimes also called m u l t i s e t s , are essentially
like sets, the only difference being that multiple occurrences of elements are permit ted.
For example, the collection of numbers {1, 7, 5, 2, 5} is a bag, but not a set.

We first give the signature of the class B a g . Note that we allow great notat ional
freedom here, such as overloading of function symbols or infix and distfix notations.

S i g n a t u r e (B a g) =

P a r a m e t e r (So r t or)
S o r t bag [c~]

L e t bag = bag[(~] I n
F u n 0 : bag - -
F u n { . } : o~ --.* bag - -

F u n . t~. : bag x bag -* bag - -
F u n . ~ . : bag • o~ --, bag - -

F u n . ~ . : o~ x bag --, bag

F u n . @ . : bag x ot --, bag

F u n . E . : c~ x bag ---~ bool

F u n . in . : (~ • bag --* n a t

F u n c a r d : bag --. n a t

Obviously, this specification is based on Boolean values and natural numbers:

empty bag
singleton bag
union
addit ion of element

- - addition of element
- - deletion of element
- - element test
- - number of occurrences
- - cardinali ty

I m p o r t (B a g) = B o o l U N a t

Program Development in an Algebraic Setting 233

The specification of bags requires at least the following kinds of axioms:

Speclficatlon(Bag) =
A x m bag G e n e r a t e d by 0 {.} �9 tg.
A x m bag Generated by 0 �9 @ �9
A x m bag Observable by nat

A x m (VB : bag, x : a)
B C z = BeJ{x}

A x m
x e B = { x } ~ B
(VA, B : bag, z, y : a)
x i n O = 0
x i n { y } = f f x = y T h e n 1 E l s e 0 F i
x in A ~ B = (x in A) + (x in B)
x E B = ((x in B) > O)

Axrn

A x m

(VB : bag, ~ : a)
card(O) = 0
card(B �9 ~) = card(B) + 1
(VB : bag, x, y : a)
O@z =O
(B e x) e x = B
(B | e y = (B ~ 3 y) $ x I f x # y

Note that - in analogy to the language SPECTRUM - we presuppose the existence
of a built-in equality. Therefore we only need the sort a as a parameter.

2.6 Us ing Higher-order Funct ions

There is a whole subculture emphasizing the use of higher-order functions for achiev-
ing very concise program derivations. Today, main proponents of this methodology are
R. Bird and L. Meertens (and we refer the reader to their corresponding contributions
in this volume, as well as to [4, 5, 6]). We will briefly sketch, how this paradigm can be
integrated in our framework. First of all, we enrich Bag into an extended class:

Class ExlendedBag E n r i c h e s Bag

Then we add the desired functions. From the abundant wealth of operations considered
by Bird and Meertens we only select the three most fundamental ones for illustration
purposes;

S igna ture (ExtendedBag) =
F u n . <1.: (a --+ bool) x bag[a] --+ bag[a] - - filter
FUn . , . : (a --+ fl) x bag[a] -+ bag[fl] - - map
FUn ./. : (a x a --+ a) x bag[a] --+ bag[a] reduce

For these functions we have among others the following properties:

234 Peter Pepper

Specification(ExtendedBag) =
A x m (VA, B : bag[a], x : a, p : a --~ bool)

p<lO = 0
p <1 {x} = If p(x) T h e n {x} Else 0 Fi

A x m (VA, B : bag[a], x : a, f : a ---, a)
/ - 0 =0
f * .Ix} ---- {f(x)}
f . (A t~ B) .: (f . A) t~ (f . B)

A x m (VA, B : bag[a], x : a, . | a x a ~ a)
| = Neut ra l (|
| = { x }
| ~ B) = (Q/A) | (Q/B)
P r e (| = C o m m u t a t i v e (|

Here, Neu t ra l (| denotes the neutral element of the operation | the existence of which
we have to presuppose. Similarly, C o m m u t a t i v e (| expresses the requirement that |
be a commutative operation. Without these constraints the definition of the higher-level
functions would be in contradiction to the corresponding properties of ~. (The deeper
reason behind this problem is that / essentially is a homomorphism from the Bag-algebras
to the a-algebras, and that this homomorphism maps ~ to | hence both operations must
posses the same algebraic properties.)
On the basis of these axioms we can now derive further theorems that ultimately enable
the compact forms of reasoning advocated in the aforementioned papers. (Note: By o we
denote function composition.)

Specificatlon(ExtendedBag) ~- T h m (p~) o (q<3) = (q~) o (p<l)
T h m f * (g * B) : (f o g) * B

Since there are other contributions in this volume that deal extensively with these tech-
niques, we will not pursue the issue further here.

3 P r o g r a m m i n g B y T r a n s f o r m a t i o n s

It is unquestioned that programming is a stepwise process. No reasonably large or com-
plex piece of software is produced in one go. But the decisive question is: How are the
individiual steps performed?

I> The traditional approach - which still predominates in industrial software engineering
- is a more or less disciplined process ofstepwise refinement. Starting from an abstract
requirements document one proceeds through more and more concrete versions of the
program, mostly written in some kind of pseudo code, until one finally produces the
actual program code. The main weakness of this approach is that all these activities
are highly informal such that quality assurance must solely rely on managerial and
organizational means like "code waik-through", "structured testing", and the like.

Program Development in an Algebraic Setting 235

t> The verification approach strives for quality assurance through rigorous proof pro-
cedures: Any two successive stages in the development process have to be proved
equivalent. The prerequisite for this way of proceeding is, of course, a fully formal-
ized representation of all intermediate stages of the program, since formalization is
at the heart of any sound mathematical proof system. (Depending on the area of
application the most common formalisms are variations of Hoare logic or temporal
logic.)
By the way, early hopes that it would suffice to verify only the final program against
the initial specification have been shattered: The great gap between these two ver-
sions generally made the proofs too complex. Therefore, the evolutionary proceeding
through a series of intermediate stages had to be adopted in the verification approach
as well in order to keep the individual proofs manageable.

t> The transformational approach combines the evolutionary concept of a stepwise de-
velopment process with the mathematical rigour of the verification approach. But it
takes a slightly different view: In a verification-oriented development step one first
constructs the next version of the program "on speculation", and then performs an
"a posterior," verification of its equivalence to the previous version. By contrast,
the transformation idea is to derive the next version from the actual one according
to pre-verified, formal rules. In other words, one performs a constructive derivation,
leading from the initial specification to the final program code.

[version,] [versi~ I

creation & verification ~] transformation
(informal) (formal) [(formal)

[ersion,+l I

verification-oriented transformational
development step development step

t> We pursue here a mixed concept, which we baptize - for lack of better terminology
- simply deduc t ive approach . This is motivated by the following experience: In
general the evolutionary concept of transformational programming is most valuable;
but sometimes the compulsion of a strictly constructive, forward-oriented process
turns into a straitjacket. On those occasions we want to freely switch to a verification-
oriented way of proceeding.
In other words, we still adopt a mainly transformation-based style of programming.
But whenever necessary, we employ verification methods as well. Indeed, as will be
seen in the remainder of the paper, the division of the two concepts is fuzzy anyway.

4 A C a l c u l u s F o r D e d u c t i v e P r o g r a m m i n g

The technical realization of a transformational programming style can be effected in
various forms. We choose here the framework of logic and algebra. More precisely, our
concepts are oriented at the so-called calculus of natural deduction, which goes back
to Gentzen [12]. The advantages of this choice are evident: The foundations have been
thoroughly elaborated and are accepted for many years by now. The concept has proved

236 Peter Pepper

worthwhile in many areas of mathematics. The notations and techniques are clear and
easy to comprehend, in spite of their absolute formal rigour. For these reasons, this
kind of logic has been used by many computer scientists (such as Manna [17], Gries [14],
Kahn [16]). And it will be seen below that the natural-deduction style is very well suited
for our approach as well.

It is, however, not our intention to explain the underlying principles of natural de-
duction here. We will just employ them in our work.

4.1 R u l e s

The central concept of our method are d e d u c t i o n rules. Basically, such a rule consists
of several premises and a conclusion. But we also allow the combination of several rules
with identical premises into a single rule, which then has several conclusions.

F- premise1 ~" premise l
:

F- premisen l- premisen
~- conclusion ~- conclusion1

~- conelusionk

Such a rule expresses the following fact: Whenever the premises are valid, the conclu-
sion is valid as well. Hence, a rule is to be viewed as a judgement, that is, as a statement
of fact; it must not be confused with an implication formula, which can be either true or
false. A most trivial example of a rule is given by

I- -~B
t - I f B T h e n X Else Y Fi = Y

As premises and conclusions we usually have formulas. However, for reasons of unifor-
mity we also consider the other constructs of our language as a kind of special predicates
here-

l> Fun f : s ~ r is viewed as a predicate stating that the functionality of f is s --* r.
I> A x m F is viewed as a predicate stating that the formula F is an axiom (in the

given context). Analogously for T h i n .
I> S igna tu re (S) = Sig is viewed as a predicate stating that the signature of S is (the

text) Sig. Analogously for I m p o r t (S) , Specif icat lon(S) , etc.

4 .2 C o n t e x t s (" L o c a l T h e o r i e s ")

Any program derivation takes place within a certain contezt. Graph algorithms are de-
veloped within the context of graph theory, compilers are developed within the context
of language theory, matrix algorithms are developed within the context of linear algebra
and numerical analysis, and so on. Each of these contexts constitutes a local t h e o r y
that comprises the knowledge which is available from the relevant context. We respect
such local theories by extending our notion of "rule" to the following form:

Program Development in an Algebraic Setting 237

F1 F premise1

F, F premise,
F,+ I F conclusion

The meaning of such a rule is the following judgement: If the premises hold in their
respective contexts Fi, then the conclusion holds in the context Fi+l. (Mostly, all Fi will
be identical.) Example:

Nat, Set ~- eard(s u {~}) > o
Nat, Set F I f card(sU {x}) = 0 T h e n A Else B Fi = B

This means: If we can show in the context of the specifications Nat and Set that the
eardinality of the set s U {z} is greater 0, then the same context ensures that the given
conditional reduces to its Else-branch.

t> Our contexts will usually be collections of specifications such as Nat, Seq, Set, etc.,
but we also allow single formulas such as x >_ O, s ~ empty, etc.

l> We may write Post (f) F . . . or Spc(f) I- . . . to express the fact that some
conclusion can be drawn from the specification of f or from the postcondition of f .

Convenlions: To increase readability we employ a number of notational conventions.

�9 When the context or parts of the context in a rule are identical or evident, we omit
them.

�9 When a context remains invariant over a longer development period, then we will
only state it at the very beginning.

�9 We sometimes state a requirement like " . . . where z is a new variable". This means
that x does not occur freely in any formula of the given context.

4.3 Trivial Rules For Specifications

There are some fundamental rules that are so obvious that we will usually not even men-
tion them explicitly in our derivations. But since they form the basis for our operations
on specifications and contexts, we will at least exemplify them by a few selected rules
here.

1. It is self-evident that any property, which is explicitly written down in a specification,
also holds in the context of this specification. But technically we need to express this
fact in a rule: It transfers written specification text into the basic formulas of a
deduction.

The notation P E Spec means that P is an actual part of the text Spec.

238 Peter Pepper

2. If a property P is deducible from a specification Spec we can add it to Spec as a
theorem:

e____
F F- Spec =_ Spec 0 { T h i n P}

Again, the notation Spec U { T h i n P} means that the law T h i n P is added to the
specification text Spec. And ' - ' means semantic equivalence.

To emphasize this again: Such trivialities will not be mentioned in the sequel, but
from a technical point of view they have to be part of our calculus.

4.4 Design Decisions And Modalities

In the course of a program development we usually have to make design decisions. This
means that we strengthen the specification in the sense that the class of possible models
is reduced. 4 Obviously, such strengthening properties are not derivable in the calculus.
All we can expect is that they are compatible with the remainder of the specification.

From a practical point of view this simply means that we need operations that perform
the pertinent modifications of the specification under consideration - - provided that the
necessary premises are fulfilled. However, this would mean that the conclusions of our
rules are no longer predicates but rather actions. And this would be in contrast with a
clean notion of "calculus".

Therefore we introduce a notation that from a pragmatic point of view may be inter-
preted as "permission" to apply such an operation. But fortunately there is also a clear
conceptual view of this notation, based on principles from modal logic. In the sequel we
will briefly elaborate this viewpoint.

We are confronted with the following situation: At any given stage of our develop-
ment process we are dealing with a certain theory ~ (which specifies a class of models
)t4OD(T/), where - intuitively speaking - the various models represent the possible "im-
plementations" of our current specification). A true design decision usually excludes some
of these possible implementations and only leaves the remaining ones as candidates. That
is, we pass on to a new theory Ti+l, which has the properties

r # ~ao~(7~+1) c_ .~o~(7~)
that is, T/+x k T/

In other words, the development process To ~ . . . ~ ~ ~ "/i/+1 --~ "'" proceeds in the
converse direction of the entailment relation '~-'. But this means that the main transition
steps of our derivation process, viz. the transitions T --* T ' , cannot be expressed within
the calculus. All we can do is the following:

I> First, apply the changes leading from 7" to 7"' on speculation.
t> Then verify the entailment T ' k T,

4 There are also design decisions which are true alterations of the specification (reflecting e.g.
a change of the requirements); but these are not considered here.

Program Development in an Algebraic Setting 239

Since this is technically unpleasant, we may use the following trickS: We derive within
the old theory 7" "admissible" modifications, that is, modifications that guarantee 7-' ~- 7".
However, since these modifications are in general true strengthenings of the theory 7",
they cannot be directly "derived". All we can say is that they are "compatible" with 7-.

This could be expressed in a modal logic of "necessity and possibili ty" [23]. In such
a logic we could write, for instance, a formula like

poss ib ly (x > 0 =~ f (x) = f (x + 2) q- 1).

for which we use the short-hand notation (that is usually employed in the area of modal
or temporal logic)

(x > 0 :=~ f (x) = f(ac + 2) -4- 1).

This means tha t the decision to define for x > 0 the function f (x) as f (x + 2) + 1 is
compatible with the rest of the specification, even though it does not necessarily follow
from it.

We need this notat ion in particular in connection with the introduction of new axioms
or definitions, that is, whenever we have to make a true design decision. Then we write
e.g.

F b ~ A x m F

This means that the formula F is compatible with the rest of the specification and
therefore can be added as an axiom. (By contrast, a theorem is actually deducible from
the specification.) The same principle applies to other constructs that reflect design
decisions, such as

~- <> D e f f (x)
F- <> Spc f (x)

Pragmatically this simply means that the old definition or specification, respectively,
of f shall be replaced by the new one.

Wha t do we gain from this concept theoretically? Suppose we have a current theory
T and we are able to derive

7- I- ~ F

This means that there is at least one model in M O : P (T) , in which F holds. Hence, we
can pass to

,~t def
= u {F}

and we know that A 4 0 ~ (T ') # 0 and T ' b 7". In other words, the necessary meta-level
s tep from one theory to the next has been completely prepared within the calculus.

6 This is an experimental idea that we pursue for the first time in this paper. Its practical
fe~ibihty still has to be investigated.

240 Peter Pepper

Note, however, that this concept is in a certain sense "non-monotonic ' . To see this,
suppose that we had also established the additional property 7" I- <>E. Then it need
not be the case that q'* still entails <>E. Hence, the commitment to one possible design
decision requires a reassessment of all other possibilities.

To round off the discussion we should at least sketch the essential semantical and
logical properties of the <>-operator.

The semantics of '<>' is explained as follows: Let 7" be a specification and A4OT)(T)
its class of models. Then we define a "reachability relation" ~ between algebras by

AeB ~ ,4 ~ M O V (T) ^ B ~ MOV(T)

This trivial relation is reflexive, symmetric, and transitive. (Therefore we obtain - in
the terminology of modal logic - a so-called system $5.) Now we define the vafidily of a
formula <> F in an algebra ,4 by

(, 4 ~ < > F) 4 % (3B,,4~B: B ~ F)

This operator obeys among others the following axioms (as described e.g. in [15]).

F ~ O F
<>OF ~ <>F
<>(E V F) r (<>E) V (OF)
<>(E A F) =~ (<>E) A (<>F)

Note, however, that the converse direction of the last implication does in general not
hold.

4 . 5 S t a n d a r d R u l e s For P r e d i c a t e L o g i c

The Gentzen calculus of natural deduction originally has been developed for propositional
logic and predicate logic. It is documented in textbooks such as those of Manna [17] and
Gries [14]. The calculus is organized in such a way that for each logical symbol there is
one rule for its introduction and one rule for its elimination. Traditionally, this entails
the following rules:

* The rules -.-introduction and -.-elimination.
�9 The rules V-introduction and V-elimination.
�9 The rules A-introduction and A-elimination.
�9 The rules ::~-introduetion and =~-efimination.
�9 The rules r and r
�9 The rules V-introduction and V-efimination.
�9 The rules 3-introduction and 3-efimination.

We employ all rules from this calculus, but we will usually not mention them explicitly,
because they are again trivial and well-known. But there are a few exceptions, which are
more relevant from a methodological point of view:

Program Development in an Algebraic Setting 241

1. We often argue by case distinctions. This is formalized by the rule

Rule 3 (v-e l lmlnat ion, "proof by case distinction"'

A ~ - P

B F P

I . -AVB

I -P

2. A classical proof technique proceeds by contradiction:

A i- false

3. The connection between rules and implication formulas is established by the following
pair of rules.

I
Rule 6 (=~-introduction, "deduction theorem"

_ _

P A = v B

4.6 R u l e s For Spec i f ic L a n g u a g e C o n s t r u c t s

The constructs of a programming language can be viewed as operations in an algebra.
Therefore they possess properties like operations in any other algebra. In the sequel we
present some illustrative examples for such properties.

R u l e s fo r c o n d i t i o n a l e x p r e s s i o n s . A conditional expression can be introduced ac-
cording to the following rule, which is closely related to the rule 3, because D e f i n e d (C)
- - which means that the evaluation of the expression C does neither abor t nor diverge
- - is the same as C V --C.

242 Peter Pepper

Rule 7 (If-introduction)

C ~ - x = E 1

-~C ~- x : E2

I- Defined(C)

I- x = I f C T h e n E1 Else E2 F i

The converse direction allows us to eliminate a conditional expression.

I
Rul___ee 8 (If-elimlnatio__n_)

~- x = I f C T h e n E1 Else E2 F i

Note that this rule has an important effect: It allows us to deduce facts about the
Then -b ranch in an extended context, reflecting the knowledge tha t the condition is
true. The analogous rule is available for -~C. And it is evident, how these rules can be
generalized to nested conditionals and to conditionals with more than two cases.

Rules for L e t - c l a u s e s . Often we want to introduce an auxiliary identifier tha t abbre-
viates the value of an expression. The following two rules formalize this activity. Note
tha t this introduces an abbreviat ing identifier into the development, and not yet into the
program texts.

I
Rule 9 (Let-introduction'

�9 = A_

~-Let x = A

where x is a new identifie]

This rule is closely related to the classical Gentzen rules for the existential quantifier.
I t says: When the expression A has a well-defined value (that is, its evaluation does not
abor t or diverge), then we can name this value by x (as long as no name clashes occur).

Rule 10 (Let,elimination)l

~-Let x = A I

This rule merely performs the necessary "theory propagation" tha t allows us to make
use of the declaration in the remainder of the development.

We can bring such Let-clauses from the development level into the program level by
the following rule:

Program Development in an Algebraic Setting

Rule 11 (Let-clause)

~-Let x = A

t - E = F

~ - E = L e t x = A I n F

x must not occur freely in E

243

R u l e s for f u n c t i o n spec i f i ca t ions . The effect of our specification construct, which is
based on pre- and posteonditions, can also be obtained with standard axiomatic nota-
tions. But then we have to talk about the complete set of all axioms in many derivations,
which is technically unpleasant. Therefore we add this concept to our calculus in order
to be able to localize full axiomatizations in one syntactic construct.

There are several ways in which the roles of pre- and postconditions can be defined.
We choose here the view of "total correctness"; that is, the precondition holds if and only
if the function terminates with a well-defined value. This is made precise in the following
rule.

Notational convention: We use the notations P[x] and R[x, y] to denote the following
conventions: The expression R[x, y] may contain the identifiers x and y, whereas P[x]
may only contain x, but not y.

Rule 12 (deduct ions from function specifications)

F I- Spc f (x) = y P r e P[x] Pos t R[x,y]

F, e[x] ~- (3y) y = f(x)

r , (3v) ~ = f (x) ~ Fix]

F, y = f (x) ~- R[x, y]
x and y must not occur freely in the given context F

The first two conclusions state that the precondition P[x] holds if and only if the
application f (x) is defined. The last conclusion states that the result meets the postcon-
dition.

The converse direction of this rule means to extract a pre/postcondition-based spec-
ification of f from the given algebraic axiomatization. To do this we have to express the
fact that any property Q[f] that follows from the axiomatization F also follows from the
postcondition R. This necessitates a premise of the kind

<< from F t- Q[x,f(x)] infer F t- R[x,y] =~ Q[x,y] > ,

which, unfortunately, would add a third level to our two-level calculus. Since it is much
easier to express this collection of all f-related axioms algorithmically, we refrain from
this complication of the calculus.

From the above definitions we obtain a rule that reflects the activity of making design
decisions in the course of a development: We can always strengthen a given postcondition,

244 Peter Pepper

thus restricting the degrees of freedom that are permitted by the specification. In doing
so we have, of course, to ensure that the specification does not become inconsistent.

Rule 13 (strengthening the postcondlt ion)

F t- Spc f (x) = y Vre P[x] P o s t R[x, y]

F, P[x] }-- (3y) Q[x, y]

r, P N F Q[~, y] ~ R[~, y]

F F- ~ Spc f (x) = y Pre P[x] Pos t Q[x,y]

x and y must not occur freely in the given context r

An analogous rule can be given for weakening the precondition.

Ru les for f ixpoint equat ions . Of particular interest are possibilities for passing from
function specifications to function definitions. We Split this process into (at least) two
kinds of rules: The first kind introduces fixpoint equations from specifications, and the
second one passes from fixpoint equations to least-fixpoint definitions.

For the first class of rules we give four variants. (Note that they are all design decisions,
which in general requires the possibility operator ' ~ ' from Section 4.4).

The first rule reflects the classical verification-oriented way of proceeding: We "guess"
a solution, that is, a possible function body E[x, f] and prove that this design meets the
specification.

Rule 14 (introduction of flxpoint equations)

r F- Spc f (x) = y Vre P[x] Post R[z, y]

F, P[x] ~ (By) y = E[x, .f]

F, Fix] F- y = S[x, .f] ~ R[x, y]

_r F 0 A x m P[x] ~ f (x) = E[x, f]

x and y must not occur freely in the given context / -

The justification of this rule is simple: It is a corollary to rule 13 above.

The second rule is more "constructive" in the sense that it deduces the recursion
structure of f from certain algebraic properties of expressions E and K - - which, however,
still have to be invented by the programmer.

Program Development in an Algebraic Setting 245

Rule 15 (introduction of flxpoint equations)

F I- Spc f (x) = y Vre P[x] Pos t R[x, y]

F, P[x] ~ R[g[x], y] =:r R[x, E[x, y]]

F, P[x], ~P[g[x]] ~ R[x, E[x, 2_]]

F I- <> A x m P[x] ~ f(x) = E[x, f(g[x])]

x and y must not occur freely in the given context F

Let us briefly consider the justification of this rule. To this end, recall that a specifica-
tion generally admits many implementations. And the above rule says that among these
solutions there is at least one, which obeys the given recursive equation. Formally, this
rule is a simple corollary to rule 13 above, since we can consider the additional fixpoint
property as a strengthening of the postcondition:

Spc f(x) = y P r e P[x] P o s t R[x,y] A y = E[x, .f(K[x])]

For this strengthening the first and third premise of rule 13 are trivially fulfilled.
Therefore it remains to establish the second premise, that is,

P[x] e (3v) R[~, y] ^ v = E[~,/(K[~])].

We distinguish two cases:

1. P[K[x]] holds. Then we can deduce:

~- R[K[x], f(K[x])] [by spec. of f]
R[x, E[x, f(K[~])]] [by 2nd premise of rule 15]

Hence, y d=cf E[x, f(K[x])] is a "witness" for the validity of the existential formula
above.

2. -,P[K[x]]. Then we can deduce:

I-- f (K[x]) -- 2_ [by spec. of f]
F- E[x, f(K[x])] = E[x, 2_]
~- R[x, E[x, 2_]] [by 3rd premise of rule 15]

Hence, y ~f E[x, 2_] is a witness.

The possibility operator is needed, since in general the postcondition R[x, y] is com-
patible with several different fixpoint equations. If, however, R determines the function
uniquely, we obtain the equation as a theorem:

246 Peter Pepper

Rule 16 (introduction of flxpoint equations)

F }- Spc f (x) = y P r e P[x] P o s t R[x, y]

r , P[x] l- R[K[x], y] :=~ R[x, E[x, y]]

F, P[x], - ,P[g[x]] I- R[x, E[x, .1_]]

F, P[x] ~- R[x, y] A R[z, y'] =~ y = y~

r ~" T h m P[x] =~ f (z) = E[x, f(K[x])]

x and y must not occur freely in the given context F

It is sometimes convenient to work with the following variants of the above rule.
These variants are simply obtained by algebraic transformations of the second premise
of rule 15 above.

Rule 17 (introduction of flxpoint equations)

F ~- Spc f (x) = y P r e P[x] P o s t R[x, y]

F, P[x] ~- K-I[K[x]] = x

F, Fix] ~ R[x, y] =:. RfK-I [z] , E[K-l fz] , y]]

F, P[x] , "-,P[g[x]] ~- R[x, E[x, _1_]]

F i- <> A x m P[x] ::V f(x) = E[z, f(K[~])]

and y must not occur freely in the given context F

Rule 18 (introduction of flxpoint equations)

F ~- Spc f (x) = y P r e P[x] P o s t R[x, y]

F, P[x] }- E- '[x,E[x,y]] = y

/ ' , P[z] ~- Rig[x], E- l [z , y]] =~ R[x, y]

F, P[x], --,P[g[x]] }- R[x, E[x, .l_]]

r 1- O A x m P[x] =*, f(x) = E[x, f(g[x])]

and y must not occur freely in the given context F

We can also combine the above rules with the rule 7 for If-introduction. In the first
case we obtain the combined rule

Program Development in an Algebraic Setting 247

Rule 19 (introduction of conditional fixpoint equations)

F I- Spc f (z) = y Pre P[z] Post R[z, y]

F, P[x], -~C[z] ~- R[gtzl, y] ~ R[z, E[z, y]]

F, P[z], C[z] t- R[x, A[z]]

F, Fix] ~" Defined(C[z])

F ~- <~ A x m P[z] =~ f(x) = If C[z] Then A[x]

Else E[x , f (K[z])]Fi

x and y must not occur freely in thegiven context F

Analogous variants can be given for the other rules. And it is also evident, how these
rules can be generalized to more than two cases.

Rules for funct ion definitions. Our equational calculus allows us to derive equations
such as the theorem f (x) = E[z, f] in the above rule. And very often these equations are
recursive; that is, the expression E contains applications of f . However, not every such
equation constitutes a feasible recursive definition of f - as can be seen from the trivial
equation f (x) = f (x) . The problem is that an equational calculus can at best show that
a function is a solution (a "fixpoint ') of a given equation, but it does not suffice to show
that a function is the least solution.

Therefore we have to employ a domain theory on the basis of so-called complete partial
orders, as it is described e.g. by Scott [33], Gordon [13], Schmidt [32], and also Manna
[17]. We cannot go into the details of such theories but will only mention that they are
based on a definedness ordering: f E g 4:, Vx : f (x) =- g(x) V undefined(f(x))
Using this ordering we can express the fact that our recursive function definitions not
only determine some fixpoint but rather designate the unique least fixpoint.

Rule 20 (introduction of function definitions)

r F f(~) : E[~, f]

F, g(x) = E[x, g] ~- f E g

F I- Def f(x) = E[x, f]

g and z must not occur freely in the given context [

The disadvantage of this rule is that it relies on the definedness ordering E, which
is not easy to work with. One situation, where this problem can be overcome, occurs
when there is a well-founded ordering on the argument sorts. In such an ordering there
are no infinite strictly decreasing chains of the kind z0 ~- xl ~- z2 ~- Hence, we can
guarantee termination.

We illustrate this principle by a phenotypical rule, where we use the following conven-
tion: A notation like E[z, /(g[x])] expresses the fact that E is an expression containing

248 Peter Pepper

exactly one application of the function f , the argument of which is computed by the
ex ~ression K[x].

Rule 21 (terminating function definitions)

F b Wellfounded(-()

r, ~c[~] k K[~] ~ x

F ~- f(x) = If C[x] Then A[x] Else E[x, f(K[x])] Fi

F I- D e f f(x) = I f C[x] T h e n A[x] Else E[x, f(K[x])] F i

must not occur freely in the given context F

If there is more than one application of f , then the well-foundedness has to be required
for each of them.

One s tandard way for providing a well-founded ordering is to invent a mapping v
from the parameter sort s into the natural numbers A f such that v(K[x]) < r (x) holds
for the s tandard <-relation in Af.

S t r u c t u r a l I n d u c t i o n . No reasonable development method can do without induction.
As has already been pointed out in Section 2.2 our generation constraints provide a means
for establishing specific induction rules. The classical example are, of course, the natural
numbers.

Rule 22 (structural induction for Nat)

F I- nat G e n e r a t e d b y 0 sue

r k ~[0]

r, ~[i] F y[s~c(i)]

r ~ (vn : nat) ~:[n]

i must not occur freely in the given context F

The same principle applies also to our example Bag. Here we obtain actually two induc-
tion rules, because we have given two generation axioms.

Rule 23 (s t ruc tu ra l induction for Bag)

F b bag G e n e r a t e d b y 0 {.}

r F y[r

r F yC{x}]

r, Y[A], Y[8] F y[A ~ B]

r F (VB: bag) 7[B]

x, A, B must not occur freely in the given context r

Program Development in an Algebraic Setting 249

Rule 24 (structural induction for Bag)

F ~- bag G e n e r a t e d by 0 . @.

r ~ 5[0]

F, ~'[S] I- ~ '[B @ x]

F P (VB: bag) ~'[B]

x and B must not occur freely in the given context F

In this way our specifications yield a wealth of rules that can be utilized in program
derivations, since every generation constraint automatical ly induces a corresponding in-
duction rule. The textbooks by Manna and Waldinger [18] provide an extensive overview
over the s t ructural induction rules that are typically used in programming.

4.7 A n o t h e r S i m p l e E x a m p l e

Let us i l lustrate the impacts o f this calculus on our methodology for program derivations
by using an example that is equMly simple as the introductory example blog in Section 1:
We want to derive a circuit for integer division, which is, of course, based on the binary
representation of numbers. The following derivation yields the algori thm underlying the
envisaged circuit.

D e v e l o p m e n t Division

1. Establishing the domain theory. Our given problem lives in the domain of the natura l
numbers. We presuppose that the corresponding laws of ar i thmetic are contained in
a suitable specification.

C o n t e x t (D i v i s i o n) t- Ar i thmet ic (1)

This context, that is, the laws of arithmetic entail in part icular the following property,
on which we will rely frequently in the sequel s .

T h m (O < a - i . b < b) A (O < a - j . b < b) ~ (i : j) (2)

Note: We will also employ other, more basic properties of ar i thmetic without men-
tioning them explicitly.

2. Specification of the problem. Our task can be fomulated in terms of a single function.

F u n

S p c

div : nat x nat --+ nat x nat

div(a, b) = q, r (3)

P r e a < 2 n A 0 < b (4)

P o s t a = q - b + r (5)

0 < r < b (6)

6 In a real development we would not state this theorem before we actually need it. But for
keeping the presentation more readable, we list it already now.

250 Peter Pepper

Note that the precondition a < 2 n (with some fixed n) already reflects the fact that
our machines operate with bounded numbers. But this feature will only be used in
later stages of our development.
The postcondition can be extended by the following equations that we will need in a
moment:

t- r = a - q . b [b y 5] (7)

F- O < a - q . b < b [b y 6 , 7] (8)

3. Termination case. When the dividend is smaller than the divisor, no calculation is
necessary.

Case 1: a < b (9)

I- q = O [b y 5 , 9] (10)

t- r = a [b y 7 , 10] (11)

4. Recurrences. Since we operate within a binary number system, the idea comes to
mind to aim at a logarithmic algorithm by doubling the divisor in each step.

Case 2: b <_ a (12)

Let q', r ' = div(a, 2. b) (13)

}- a = q ' . 2 . b + r ' [by 13,5] (14)

f- r ' - - a - 2 . q ' . b [by 14] (15)

f- r = (2 . q ' - q) . b + r ' [by 15,5] (16)

After collecting these basic facts, we now have to make a straightforward case dis-
tinction for r', which is complete due to the postcondition of div:

~- O < r ' < b V b < r ' < 2 . b [b y 6 , 131 (17)

On this basis we can now make the respective case distinction:

Case 2 . 1 : 0 < r' < b

t- O < a - 2 . q ' . b < b

Case 2.2:

}- q = 2 , q I

~- r - - r t

b < r I < 2b

b- b < a - 2 . q ' . b < 2 b

[by 18, 15]

[b y 2 , 8 , 19]

[by 16, 20]

[by 22, 15]

(18)

(19)
(20)
(21)

(22)

(23)
(24)

(25)
(26)

t- O < a - (2 . q ' + l) . b < b [b y 2 3]

F- q - - 2 . q ' + l [by 2, 8, 24]

F- r = r ' - b [by 16, 25]

5. Fizpoint equalion. Since the above case distinctions are complete and disjoint, we
can introduce a conditional fixpoint equation according to (a slightly generalized
variant of) the rule 19. Note that we do not need a possibility operator here, since
the postcondition determines the function uniquely. Hence, the fixpoint equation is
a theorem.

Program Development in an Algebraic Setting 251

}- T h m div(a, b) = (27)
I f a < b T h e n 0,a

Else Let ql, r I = div(a, 2 . b)
In
I f r I < b T h e n 2. q', r '

Else 2 . q l + l , r I - b F i Fi

6. Termination. In order to convert the above fixpoint equation 27 into a least-fixpoint
definition, rule 20 requires that we find a termination ordering. Therefore we intro-
duce the termination function

Let r (a ,b) : 2 . a - b

Then we can deduce for the recursive call div(a, 2 . b) within its context
0 < b < a
~- 7-(a, 2 .b) = 2 - a - 2. b < 2 . a - b = r(a ,b)
On the other hand, we can deduce:
v(a, b) < 0
b" v(a,b) = 2 a - b < 0
~ - 2 a < b
~ a < b
And this is the condition of the termination case. Hence, theorem 27 can be converted
into a definition.

~- Def div(a, b) -- (28)
I f a < b

7.

T h e n 0, a
Else Let q', r ' = div(a, 2. b)

In
I f r I < b T h e n 2 - q / , r I

E l s e 2 . q l + l , r I - b F i F i

Tail-recursive solution. Our function still has a severe deficiency: It exhibits a so-
called linear recursion, which requires a parameter sta~k for the implementation.
However, since the argument function 2 �9 b of the recursive call has the inversion
property (2 �9 b) - 2 = b, a standard transformation rule for "recursion removal" can
be applied.
The idea behind this transformation is relatively simple: While going down into the
recursion the function div first counts its parameter upward from b to some suitable
value 2 i �9 b; on the way back it performs the actual calculations. But we can avoid
the expensive stacking of the arguments by performing the backward counting with
the help of the inverse function b - 2.
In spite of its conceptual simplicity the technical details of this transformation are
a little intricate. This is a typical situation, where a subdevelopment is relatively
mechanical but time-consuming. Moreover, it occurs similarly in many development
tasks. Therefore, we codify the effect of this subdevelopment in a general rule such
that the whole development now boils down to a single rule application. (This rule
can be found e.g. in the textbooks of Bauer and WSssner [3] or Partsch [19]; but
for illustration purposes we will also derive it explicitly in Section 4.8 below.) By
applying this rule, our function becomes

252 Peter Pepper

D e f div(a, b) = divide(a, b)(b. 2/)(0, a)
W h e r e i S u c h t h a t b. 2 i > a

D e f divide(a, b)(b', q', r ') =
I f b I = b T h e n ql, r I

E l se Le t dvd = divide(a, b)
b" = b' + 2

I n
I f a < b" T h e n dvd(b")(O, a)

Else I f r ' < b" T h e n dvd(b") (2 , q', r')
Else dvd(b") (2 , q' + 1, r ' - b")

Fi Fi Fi

The i in the body of div(a, b) can be deduced from the precondition 4 of div: We
simply take i = n + 1.

4.8 Der ived Transformat ion Rules

An impor tant feature of any calculus is that it not only allows us to apply its rules in
concrete deductions but that it also permits the deduction of new "derived" rules, which
may then in turn be used in other deductions. In other words, derived rules act as a kind
of shortcut for deductions that occur similarly in many developments. We will exemplify
this by a well-known rule for "recursion removal".

1. Establishin 9 the contezt. Suppose that we are given the following schema for a recur-
sire function:

F u n f : s --+ r

D e f f (x) = I f C[x] T h e n A[x] Else B[x, f (K[x])] Fi (1)

Moreover, let us suppose that the argument expression K[x] of the recursive call has
an inverse; that is

K [K - I [x l] = x (2)

2. Specification of the new -function. Now we may introduce the following function:

F u n F : s --* s • v--+ r

s p r F (~) (~ ' , r = ~

P r e x ' = Ki[z] for some i_> 0 (3)

9 / = f (x ') (4)

P o s t y = .f(x) (5)

Note that (3) and (4) establish invariant relationships between the parameters z, x',
and y'.

3. Relating the two -functions to each other. Due to the postcondition (5) any call
F (z) (. . .) yields as its result f (z) , provided that the preconditions of F are met.
But since we want to avoid calls of f , the following choice is reasonable:

T h i n ,f(x) = F(x) (Ki[x] ,A[Ki[z]]) (6)

W h e r e i S u c h t h a t C[Ki[z]]

Program Development in an Algebraic Setting 253

From the definition (1) it is irnmediatly seen that the preconditions (3) and (4) are
met.

4. Termination case .for F. We can terminate F when the parameter x I has reached x.

Case 1: z ' = z (7)
l- y = f (x) ---- f (x ') = y' [by 5, 7, 41 (8)

5. Recurrence. When x' has not yet reached z, we can establish a straightforward re-
currence relation for F .

Case 2: z ' # z

b F(z) (z ' , y ~)

-~ f(x)
--_ F(x)(K-l[x'], f (K-l[x ']))
: Le t x " = K - l [x I] I n

F(x)(x", I f C[x"] T h e n A[x"]
E l s e B[x", f(K[x"])] F i

: L e t x Ir : K - l [x l] I n

I f B[x"] T h e n F(x)(z", A[x"])
E l s e

[by 5]
[by 5, 4]

[by 1]

F(z)(x", B[x", y']) F i [by 2, 4]

6. Derived rule. We can collect this subderivation into the rule given below. Note,
however, that this rule is quite complex due to its generality. If we would choose
i = min{j]c[gJ[x]]}, then the function F would simplify to the more efficient form

Def F(z) (x ' , y ~) =
I f x I = x T h e n yl

Else Let x" ---- K-I[x] I n F(x)(x", B[x",y']) Fi

However, as the example in the previous section demonstrates, this efficient version
is not always asked for. Therefore we present the general variant here.

254 Peter Pepper

Rule 25 (recursion removal using function inversion)

b- F u n f : s --* r

F- D e f y(x) = I f C[x] T h e n A[x] Else B[x, f(K[x])] Fi

~- g [g - l [x]] = x

] -O F u n F :s-- , , s x r - - * r

D e f F(x) (x ' , y') =

I f x' = x T h e n y'

Else Let X" : K-I[x I] I n

I f C[x'q T h e n F (x) (x ' , A [x '])

Else F(x)(x",B[x",y']) Fi Fi

Def f (x) = F(x) (Ki[x] ,A[Ki[x])

W h e r e i S u c h t h a t C[K~[z]]
where F is a new identifier

5 The Organization of Developments

A calculus alone does not yet provide a programming methodology. The rules of such a
calculus are nothing but tools for ensuring that our reasoning is correct. On top of such
a formalism we always need guidelines for organizing our developments. In addition, it
would by nice, if there would also be an automated system to assist us in our work. In
the sequel we will very briefly comment on these issues.

5.1 D e v e l o p m e n t s and S u b d e v e l o p m e n t s

No reasonably large development task can be performed in one go. We always concentrate
on one aspect at a time. In its simplest instance this paradigm could already be seen in
our little examples blog and div. There we performed various case distinctions, each of
which led to a little subdevelopment. From these examples we can infer basic principles
of such an organization:

t> Every (sub)development takes place within a certain congext Therefore we start each
development by defining the appropriate context. And, of course, we need means for
extending the context whenever the need arises.

t> Subdevelopments are usually nested within each other. Therefore we inherit the con-
text from the encompassing development level and extend it appropriately. Therefore
we obtain a hierarchical tree-like structure of the following kind:

Program Development in an Algebraic Setting

Development 1
'Context F)

255

Subdevelopment 1.1
(Context r U / 1)

Subdevelopment 1.1.1
(Context F U/'1 U/"1.1)

(end of subdevelopment 1.1.1)

Subdevelopment 1.2
(Context F U F2)

(end of subdevelopment 1.2)

end of development)
l> However, experience shows that we usually work on more than one development

simultaneously. (We all know the situation that we keep several piles of paper around,
each belonging to one component of the system to be developed.) This way we can
immediately extend or modify one part, when the need for doing so arises when
working on some other part. Therefore we must be able to suspend (sub)developments
and to resume them again.

1> There are also situations, where we do not want to suspend our current development,
even though a certain property that we need is not provided by the context. Then
we must be able to claim this property. That is, we assume for the t ime being tha t
the desired property indeed holds and just continue the actual development. In our
formalism this means that the property is added to the current context as an unproven
assumption. The rules for combining subdevelopments then ensure that the missing
proof still has to be given.

The principles sketched above allow us to carry out developments in a well-structured
and safe manner. However, they will usually end in an unordered collection of program
fragments (signature fragments, axioms, theorems, function definitions, etc.). Therefore
we usually have to subsequently clean up this unstructured assembly of facts.

This leads us into techniques for "programming in the large": Now we have to apply
rules tha t organize the program fragments obtained so far into larger units that represent
a proper modularizat ion of the program. In Section 2.3 we have already listed many of the
pert inent constructs that are needed for such a modularization. The rules, by which this
act ivi ty can be performed in an orderly and correct fashion, are very much like the ones

256 Peter Pepper

given earlier in this paper. (A more detailed discussion is given in [26]. Moreover, these
rules are the topic of intensive study in the research project KORSO that is currently
under way at several German universities and research institutions.)

It goes without saying that the activities of detailed deriviation-in-the-small and
global reorganization-in-the-large are interleaved. (It obviously does not make sense to
first generate a huge mass of unstructured facts and afterwards try to get some structure
into them.) But experience shows that this organization task needs as much flexibility as
the detailed derivation tasks. A purely stepwise refinement - as it is often advocated in
the literature on software engineering - is not adequate; it happens frequently that we
have to restructure several modules by merging or splitting them, and by recombining
them in new fashions.

5.2 Transformation Systems

The examples given in this paper clearly indicate, how helpful the assisitance by an auto-
mated system could be. Such a system could carry out the application of the individual
rules, thus saving us from performing the tedious and boring activity of rewriting our
programs in dozens or maybe even hundreds of versions. Moreover, such a system would
be much safer than we are, because it makes fewer errors by thoughtlessness:

I> When rewriting programs, we are likely to make copying errors, which is very unlikely
for machines.

t> If a rule requires many premises, we tend to overlook some of them or to just "believe"
that they are fulfilled; a machine is completely stubborn here.

t> In lengthy developments we may easily lose the orientation; a good system will keep
an accurate record of the completed and pending activities.

l> Finally, a system may ease the reuse of developments, because it allows us to redo
earlier developments, when we encounter similar problems.

This sounds all very plausible. Yet, it has to be admitted that it is the details that
are most intricate. A number of transformation systems have been created over the past
years for experimental purposes, Examples are - among others - the CIP-system described
in [1] or the KIDs-system described in [36]. The latter is probably the most advanced
system of its kind. But even with this system a lot of experience is still required in order
to actually carry out ambitious developments. Nevertheless, the progress that has been
made is very promising.

The principles listed above represent some kind of "requirements analysis" for a trans-
formation systems. As a matter of fact, the transformation system CIP-S has been de-
signed on the basis of the formal calculus given in [24]. This CIP-calculus resembles the
one given here, but it is much more technical, oriented towards the needs of an au-
tomated system. By contrast, our calculus in this paper is oriented at methodological
considerations.

5.3 Strategies

The most challenging aspect of any methodology for program derivation is the formula-
tion of strategies or at least tactics. Our examples have already indicated some instances
of such principles, for example:

Program Development in an Algebraic Setting 257

I> We always start by formulating the domain theory, that is, the operations and prop-
erties that are relevant for the application area under consideration.
Of course, we will usually not foresee all necessary aspects of the domain theory
at the very beginning; therefore our development method allows us to extend the
domain theory whenever the need for doing so arises.

t> When dealing with a concrete function specification, we usually formulate subgoals
by making appropriate case distinctions. Each of these subgoals then leads to a
corresponding subdevelopment.

I> Some of these subdevelopments aim at the formulation of suitable recurrence rela-
tions. This is frequently guided by the structure of the underlying data types. Here
the generation axioms play a central role. (Theoretically speaking, this amounts to
some kind of "programming with homomorphisms'.)

I> Finally we try to optimize the resulting algorithms by applying more technical trans-
formations such as recursion removal and the like. Particularly helpful are rules known
under buzzwords like "strength reduction" or "finite differencing", "fusion", "struc-
ture sharing", and the like.

The above techniques might be classified as tactics, by contrast to more encompassing
and ambitious rules that might qualify as strategies. Typical instances are here:

t> Divide and conquer. This is probably the most widespread technique in computer
science. The formalization of this principle has been intensively studied by D. Smith
[34]; this work also shows, how the method can be integrated in a system such as
KIDS. [26] demonstrates the integration of this principle into a formal derivation
calculus.

t> Global search is another paradigm that has been integrated into the KIDS system;
see [35].

t> Implementation of data types is another challenging task. Attempts to do this by
means of abstraction and representation morphisms have been made in [8] and [26].

This list could be extended. However, these papers also illustrate a problem with these
strategies: The more general they are the more useless they become for the programmer.
At a certain point one can no longer really benefit from the guidelines provided by
the strategy, because they just formalize noncommittal truisms. So one has to achieve a
subtle balacing between useful generality and abstractness on the one side and overdrawn
universality on the other side.

5.4 A n E x a m p l e : " M a j o r i t y V o t e "

To illustrate the aforementioned principles we use another little example that recently has
gained some popularity. We hope that the subsequent derivation will convey some of the
potential elegance and clarity that can be achieved by adopting an algebraic deduction
style.

D e v e l o p m e n t Majority Vote

1. Informal paraphrasing of the problem. We are given a collection of coloured objects.
We shall determine, whether more than 50% of the objects are equally coloured.
Unfortunately, there exists an unlimited variety of possible colours.

258 Peter Pepper

2. The domain theory. As our first task we must establish the global context, that is,
the theory of the underlying object domain. In our case, we are only concerned with
collections of colours, since the nature of the objects themselves is irrelevant.

C o n t e x t (Majorily Vole) = Colour O Bag[colour]

To ease our subsequent specifications it will be helpful to provide a function that
yields the share of a colour in a bag.

Fun share : colour x bag[colour] -* real
A x m share(c, B) = ~c in B

3. Problem specification. Within the given context we can now formalize the original
problem.

Fun majori ty : bag[colour] --* colour
S p c major i ty (B) = c

P r e true
P o s t share(c,B) > 50%

E x c e p t i o n c = nil

Remark: The notation E x c e p t i o n c = nil is a shorthand for expressing the fact that
the default value nil shall be taken as result, if there does not exist a value c that
fulfills the rest of the posteondition.

4. An important insight (eureka/). No formalism in the world can replace the need to
think. So we will have to ponder over our problem. (There has to be a bet ter way
than the obvious O(n2)-algorithm, where we simply count the colours one after the
other.) The following observations put us on the right track:

t> For any given "candidate" colour a simple linear scanning will determine, whether
this candidate has the majori ty or not.

i> So it would be nice, if we could designate one colour as the only candidate (which
then could or could not have the majori ty) .

I> Now let us suppose that in some given collection A no colour has the majority.
This immediately has the following two consequences:

�9 If we add a colour e to A, then c becomes the only candidate.
�9 If we add two different colours c # d to A, then there still is no majority.

Now we have to turn this informal reasoning into a formal program derivation.
5. Eztendin# the Domain theory. We need some auxiliary predicates to formulate our

ideas.

Fun cand : colour • bag[colour] -* bool
Fun anarchic : bag[colour] --* bool
FUn un i f o rm : bag[colour] --* bool

A x m canal(c, B) r (Vz E B , z # c) share(z ,B) <_ 50%
A x m anarchic(B) ~=~ (Vz e B) share(x, B) < 50%
A x m un i fo rm(B) r (Vz, y e B) x = y

The properties that have been stated informally above, now can be formalized as
follows:

Program Development in an Algebraic Setting 259

T h i n anarchic(B) A c ~ d ~ anarchic(B @ c ~ d)
T h i n anarchic(B) ~ cand(c, B @ c)

Since these theorems immediately follow from the properties of Bag and elementary
ari thmetic, we skip their proofs here. (In a transformation system they would be
recorded as "unfulfilled proof obligations".)

6. Introducing subgoals. Our main idea was to first find a candidate and then check,
whether it indeed has the majority. Therefore, we split our original function into two
functions.

Fun f indCandidate : bag[colour] --~ colour
Fun dominant : colour x bag[colour] --~ bool

A x m f indCandidate(B) = c ~ cand(c)
A x m dominant(c, B) ' r share(c, B) > 50%

With these specifications it is trivially demonstrated that the following proper ty
holds:

T h m major i ty (B) = Le t c = f indCandidate(B) I n
I f dominant(c) T h e n c E lse nil F i

This theorem yields a definition for the function major i ty as soon as we have suitable
implementat ions for the functions dominant and candidate.
The function dominant is no problem, because it is only based on elementary func-
tions from Bag. Hence, the rule 21 converts the above axiom into the declaration.

D e f dominant(c, B) = share(c, B) > 50%.

7. Implementing the function findCandidate. After all these preparatory steps we can
now concentrate on the real challenge of our development, viz. the finding of the
candidate. To this end we introduce another auxiliary function that splits a given
bag into two bags, an ararchic one and a uniform one.

Fun spli t: bag[colour] --* bag[colour] x bag[colour]
Spc split(B) = (A,V)

P o s t A t C U = B
anarchic(A)
un i form(U)

In order to find an implementation for this specification we consider the possible
cases for bags.

(a) Termination case: For empty bags the choice
A x m split(O) = (O,O)
immediately fulfills the postcondition of split.

(b) Establishing recurrence relations. For nonempty bags, which are of the form BOx,
we can perform the following deductions:
Assumption: L e t split(B) = (A', U').

260

Case1 : U I =
Assumption: split(B @ x) = (A', {z})
I- A ' ~ { ~ } = B @ z
~- Anarchic(A')
~- un i form({z})

Case2 : x E U'
Assumption: split(B ~ x) = (A', U' ~ z)
k- A ' t ~ U ' ~ x = B ~ x
k- anarchic(A')
}-- uni form(U' ~ x)

Case3 : x ~ U' A y E U'
Assumption: split(B @ x) = (A' ~ z ~ y,
l- A ' @ x ~ y ~ U l ~ y = B $ x
~- anarchic(A' @ z @ y)
k- uni form(U I 0 x)

Peter Pepper

U' O y)

This is an instance of (a variant of) the rule 19, because the case distinctions are
complete and disjoint, and each case fulfills the postcondition. Together with the
rules 21 and 25 this leads to the final definition

Let (A', U') = spTit(B @ z) W h e r e z E B
In
I f U' -- 0 T h e n A', {x}
I f x E U ' T h e n A ', U ~ $ z
I f z f L U ' AU' ~ O T h e n A ' ~ z @ y , U ' O y

W h e r e y E U ~

De f sp l i t (B)=
If B=O T h e n

Else

Fi
Fi

Now it remains to perform some optimizations for the data representation. For exam-
ple, the uniform bags can be efficiently represented by one data element and the number
of its occurrences. But this kind of cleaning up is quite straightforward and mechanical.
Therefore we refrain from doing this here explicitly. What is important is the fact that
we have succeeded to systematically develop an O(n) algorithm.

6 Conclus ion

We have tried to demonstrate that programs can be formally developped on the basis
of a very rigorous and simple calculus. In this framework the two seemingly irriconsi-
lable paradigms of verification-oriented and transformation-oriented programming are
naturally integrated.

The foundation of the approach is a strictly algebraic view, in which programs and
specifications are unified. This algebraic treatment allows us in particular to deal with
the development of data structures and algorithms simultaneously.

Program Development in an Algebraic Setting 261

It is, however, evident that some assistance by a semi-automatic system is necessary
in order to make this very stringent way of proceeding feasible in practice. But even if
no such system is available, the general paradigm is still very helpful as an organization
principle. The only difference will then be that many proofs are not carried out to the
last detail but rather are only sketched - very much in the style of classical mathematical
proofs.

Acknowledgement

The concepts presented in this paper were influenced by many discussions with Manfred
Broy. Wolfram Schulte and the referees provided valuable comments and suggestions.
Manuela Weitkamp-Smith helped in typing the manuscript. But my particular thanks go
to Carola Gerke; without her assistance this paper would not have come into existence.

References

1. Bauer, F.L. et al.: The Munich Project Cip. Vol II: The Program Transformation System
CIP-S. Lecture Notes in Computer Science 292. Berlin: Springer 1987.

2. Bauer, F.L., Mfller, B., Partseh, H., Pepper, P.: Formal Program Construction by Trans-
formations Computer-Aided, Intuition-Guided Programming. IEEE Trans. on Softw. Eng.
15:2 (1989), 165-180.

3. Bauer, F.L., WSssner, H.: Algorithmic Language And Program Development. Berlin:
Springer 1982.

4. Bird, R.S.: An Introduction to the Theory of Lists. In: Broy, M. (ed.): Logic of Programming
and Calculi of Discrete Design, NATO series F, vol. 36, Berlin: Springer 1986.

5. Bird, R.S.: Lectures on Constructive Functional Programming. In: Broy, M. (ed.): Con-
structive Methods in Computing Science. NATO series F, vol. 52, Berlin: Springer 1988.

6. Bird, R.S., Wadler, Ph.: Introduction to Functional Programming. Prentice Hall, 1988.
7. Broy, M.: Algebraic Methods for Program Construction: The Project CIP. In: Pepper, P.

(ed.): Proc. of the Workshop on Program Transformation and Programming Environments.
Berlin: Springer 1984, 199222.

8. Broy, M.: Deductive Program Development: Evaluation in Reverse Polish Notation as an
Example. In: Broy, M., Wirsing, M. (eds.): Methods of Programming. Lecture Notes in
Computer Science 544, Berlin: Springer 1991.

9. Broy, M., Wirsing, M.: Ultra-loose Algebraic Specification. Bulletin of the EATCS 35 (June
1988), 117-128.

10. Broy, M. et al.: The Requirement and Design Specification Language SPECTRUM - An
Informal Introduction. Techn. Univ. Mfinchen, Institut ffir Informatik, Techn. Rep. TUM-
I9140, Oct. 1991.

11. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification. Vol I/II. Berlin: Springer
1985/1990.

12. Gentzen, G. Untersuchungen fiber das logische Schlieflens. Math. Zeitschrift 39 (1935),
176-210, 405-431.

13. Gordon, M.J.C.: The Denotational Description of Programming Languages. Berlin: Springer
1979.

14. Gries, D.: The Science of Programming. Berlin: Springer 1981.
15. Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. London: Methuen 1986.

262 Peter Pepper

16. Kahn, G.: Natural Semantics. In: Brandenburg et al. (eds.): Proc. STACS 87, Lecture Notes
in Computer Science 247, Berlin: Springer 1987, 22-39.

17. Manna, Z.: Mathematical Theory of Computation. New York: McGraw-Hill 1974.
18. Manna, Z., Waldinger, R.: The Logical Basis for Computer Programming, Vo1.1+2. Read-

ing: Addison-Wesley, 1985,1990.
19. Partsch, H.: Specification and Transformation of Programs. Berlin: Springer 1990.
20. Partsch, H., Pepper, P.: Program transformations expressed by algebraic type manipula-

tions. Technique et Science Informatiques 5:3 (1986), 197-212.
21. Pepper, P.: A Study on Transformational Semantics. In: Bauer, F.L., Broy, M. (eds.):

Program Construction. Lect. Notes in Comp. So. 69, Berlin: Springer 1979, 322-405.
22. Pepper, P.: Algebraic Techniques for Program Specification. In: Pepper, P. (ed.): Proc. of the

Workshop on Program Transformation and Programming Environments. Berlin: Springer
1984, 231-244.

23. Pepper, P.: Application of Modal Logics to the Reasoning About Applicative Programs.
In: Meertens, L.G.L.T. (ed.): Program Specification and Transformation. Proc. IFIP TC2
Working Conf., Amsterdam: North Holland 1987, 429-449.

24. Pepper, P.: A simple calculus for program transformation (inclusive of induction). Science
of Computer Programming 9 (1987), 221-262.

25. Pepper, P. (ed.): The Programming Language Opal-1. Technical Report, Fachbereich In-
formatik, Technische Uuiversitt Berlin, 1991.

26. Pepper, P.: Transforming Algebraic Specifications - Lessons Learnt From An Example.
In: M611er, B. (ed.): Constructing Programs From Specifications. Proc. IFIP TC2 Working
Conference, Pacific Grove, Ca, May 1991. Amsterdam: North-Holland 1991, 399-426.

27. Pepper, P.: Literate Program Derivation: A Case Study. In: Broy, M., Wirsing, M. (eds.):
Methods of Programming. Lecture Notes in Computer Science 544, Berlin: Springer 1991.

28. Plotkin, G.D.: A Structural Approach to Operational Semantics. DAIMI FN-19, Comp. Se.
Dept., Aarhus University, Aarhus, Denmark, Sept. 1981.

29. Sannella, D.T., Tarlecki, A.: On Observational Equivalence and Algebraic Specifications.
J.Comp.System Sci. 34 (1987) 150-178.

30. Sannella, D.T., Tarlecki, A.: Toward Formal Development of Programs From Algebraic
Specifications: Implementations Revisited. In: Ehrig, H. et al. (eds.): TAPSOFT '87, Lecture
Notes in Computer Science 249, Berlin: Springer 1987, 96-100.

31. Sannella, D.T., Wirsing, M.: A Kernel Language for Algebraic Specification and Implemen-
tation. In: Coll. on Foundations of Comp. Th., Linkping 1983, Lecture Notes in Computer
Science 158, Berlin: Springer 1983, 413-427.

32. Schmidt, D.A.: Denotational Semantics. Dubuque: Brown Publishers 1988.
33. Scott, D.: Outline of a Mathematical Theory of Computation. Proc. 4th Annual Princeton

Conf. on Information Sciences and Systems, 169-176, 1970.
34. Smith, D.R.: The Design of Divide-and-Conquer Algorithms. Sci. Comp. Progr. 5 (1985)

37-58.
35. Smith, D.R.: Structure and Design of Global Search Algorithms. Techn. Rep. KES.U.87.12,

Kestrel Institute, Nov. 1987. (to appear in Acta Informatica).
36. Smith, D.R.: KIDS - A Semi-automatic Program Development System. IEEE Trans. on

Softw. Eng. 16:9 (1990) 1024-1043.
37. Wirsing, M.: Algebraic Specification. In: van Leeuven, J. (ed.): Handbook for Theoretical

Computer Science. Amsterdam: North-Holland, 1990.

