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A b s t r a c t  

We present a framework for program development, which is based on concepts  from algebra 
and logic. In this framework, programming is viewed as a process that successively extends the 
program under considerat ion by adding new axioms or theorems to it. In this setting, axioms 
constitute design decisions, whereas theorems merely make deducible knowledge explicit. 

Technically, this is achieved by combining concepts from two related areas: Algebraic speci- 
fications are used to represent programs, and Gentzen-style rules of natural deduction are used 
to represent derivation processes. 

The paper presents the algebraic framework and a collection of characteristic derivation 
rules. A number of small examples shall illustrate the underlying methodology. 

1 I n s t e a d  o f  a n  I n t r o d u c t i o n :  A n  E x a m p l e  

We start by presenting an example. Even though we have to rely on the reader's intuit ion 
throughout its presentation, such an example can give a good first impression of the basic 
concepts and principles of the overall approach. The disadvantage is, of course, that such 
an introductory example is by necessity very small. But toy examples can illustrate 
notations and techniques just  as well as intricate programming problems. 

T h e  e x a m p l e :  ( " B i n a r y  l o r g a r i t h m " : )  Suppose that we have a positive integer z > 
0 and that we want to know, how many digits will be required for its binary repre- 
sentation. In the sequel we will go through the derivation of a program that  solves 
this little problem. 

1. Specification: Our first task is to describe the problem precisely. This is achieved by 
the following specifications. 

F u n  blog : nat  --+ nat 
Spc blog(x) = n 

P r e  x > 0 
P o s t  2 n - 1  < x < 2  n 

* This work was partially sponsored by the German Ministry of Research and Technology 
(BMFT) as part of the project "KORSO - Korrekte Software". 
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The essential meaning of this notation should be self-explaining; details will be given 
in Sections 2 and 4.6. 
Note: In the sequel we develop an implementation for this specification. Whether 
the specification itself actually characterizes our original problem "number of digits 
in the binary representation of x "  is beyond the realm of our discussion here. In 
other words: I f  the speeification fails to properly describe the given problem, then the 
implementation will not solve the problem. All that we ensure is the compatibility of 
specification and implementation. 

2. Deriving recurrence relations by use of induction: The decisive step in our develop- 
ment is the derivation of a number of recurrence relations that together establish a 
recursive function declaration. To this end, we have to make a suitable case distinction 
for x. 
(a) Let x = 1: Then we can deduce: 

2 n-1 < 1 < 2 n [by postcondition] 
F- n = 1 [by arithmetic] 

(b) Let x >_ 2: Since we work in the context of binary number systems, the idea 
comes to mind to make an even/odd case distinction. 

i. Let x = 2y: Then we can calculate: 

2 n-1 < 2y < 2 n [by postcondition] 
P 2 (n-x)-1 < y < 2 n-1 [since n > 2] 
P 2 'n-1 < x + 2 < 2 m A m = n -- 1 [since x = 2y] 
P m = blog(x + 2) A n = m + 1 [by postcondition] 
~- n = blog(x + 2) + 1 

it. Let x = 2y + 1: Then we can calculate 

2 n - I  < 2y + 1 < 2 n [by postcondition] 
P 2 n-1 < 2y < 2" [by arithmetic] 

: [analogously to 2(b)i] 
l- n = blog(x + 2) + 1 

Since both cases 2(b)i and 2(b)ii yield the same result, the case distinction is not 
really necessary. Therefore we have 
P n = blog(x + 2) + 1 
Note: Some of the above derivation steps are only legal, because certain conditions 
are met due to the specification of blog. This will be elaborated in greater detail 
in Section 4.6. 

3. Recursive solution: The case distinction from the previous step is complete. Moreover, 
the recurrence relations also meet the termination requirement (see below). Therefore 
we obtain the following recursive function declaration. 

De f  blog(x) = I f  x = 1 T h e n  1 
Else blog(x + 2) + l Fi 

The function x + 2 on the argument position of the recursive call establishes a strictly 
decreasing sequence of values, ending in the termination case x = 1. Hence our 
function is totally correct. 
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4. Improving fhe recursion: The above function exhibits a so-called "linear recurs ion ' ,  
which ul t imately leads to a stack implementation. Therefore we now change the type 
of recursion. To this end we introduce an auxiliary function. 

Fun  bl : nat • nat --+ nat 
D e r  bt(x, k) = blog(x) + k. 

This function generalizes blog in the sense that  it  has a parameter  k at  the point,  
where (the expression around the recursive call of) blog has the constant 1. For this 
function we can now calculate: 

bl(~, k) = blog(x) + k 
= ( I f x - - - 1 T h e n  1 

Else blog(x+2)+l F i ) + k  
= I f x = l  T h e n  l + k  

Else  b l o g ( x + 2 ) + l + k  Fi 
= i f x = l  T h e n  l + k  

Else bl(x+2,1+k) Fi 

Note that  this derivation depends on the associativity of + .  The last equation - which 
still meets the termination requirement - establishes a new version of the definition 
of bl. (For reasons of readabili ty we also apply the commutat ivi ty  of + ,  even though 
this has no relevant effects for the algorithm.) 

D e f b l ( x , k ) = I f  x =  1 T h e n  k + l  
Else  bl(x + 2, k + l) Fi 

The connection between this new function bl and our original function blog is given 
by the following equation, which is a direct consequence of the initial definition of bl. 

blog(x) = blog(x) + 0 = bl(x, 0). 

Hence we obtain the new declaration 

D e f  blog(x) = bl(x, 0). 

Note that  this only works, because + has a neutral  element 0. 
5. An iterative solution: The new function bl exhibits a recursion structure which is 

called "tail recursion ' .  This kind of i teration is equivalent to t radi t ional  loop con- 
structs of imperative languages. (As a mat ter  of fact, all modern compilers realize 
that  this kind of recursion can be implemented without stacks.) Hence, we obtain 
our final version 

D e f  blog(x) = Begin 
V a r  v, k : nat; 
v, k := x, O; 
W h i l e  x >  1 D o x ,  k := x + 2 ,  k + l  O d ;  
R e t u r n  k + 1 E n d  

It  now depends on the kind of programming language that  we have at  our disposal, 
whether this has to be transformed further into procedures, or whether we can stop 
at  this level (except for some syntactic sugaring). 
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Discussion: This example - small as it may be - already illustrates some principal points: 

t> A program derivation proceeds through several stages, which we will call milestones 
in the sequel. 

I> The successive milestones are related to each other through algebraic calculations 
that  establish their equivalence. 

I> The overall development process - the strategy - is guided by the programmer 's  ideas 
("insights", "intuition"). 

I> Experience that  has been gained over the years with this approach indicates that  the 
essential concepts for solving the given problem are best expressed on the functional 
level. The transit ion to an imperative language level is in most cases very technical 
and can even be left to a good compiler. 

I n  the remainder of this paper we will elaborate the theoretical and methodological 
foundations of this approach in greater detail. In addition, we will i l lustrate its principles 
further by presenting some more examples. 

2 A n  A l g e b r a i c  V i e w  o f  P r o g r a m m i n g  C o n c e p t s  

We take a uniform algebraic view for our language concepts. (This even pertains to 
concepts from imperative languages.) In order to be more precise, we at  least want 
to sketch here the notational and semantical framework within which we perform our 
deductions 

2.1 Signatures 

Our specifications and programs consist of collections of functions tha t  operate  on certain 
sets of da t a  elements. These functions and da ta  sets have to be appropr ia te ly  named. We 
do this here in the following way: 

I> A so r t  is a name for a da ta  set. Well-known examples are 
S o r t  bool, nat,  int,  real, char, tex t  etc. 

But we do not only have such plain sorts, but also generic sorts. Examples are 
S o r t  seq[a], set[a], map[a,/~] etc. 

Such generic sorts can he instantiated such as 
S o r t  seq[int], map[nat, real], set[seq[char]] etc. 

I t  is also possible to combine these last two concepts such as in seq[set[a]]. 
I> A f u n c t i o n  s y m b o l  is an identifier together with a functionality. A functionality 

is a type expression, built up from sorts using direct product  and function space. 
Examples are 

F u n  + : nat • nat --* nat 
F u n  top : stack[a] ---, a 
F u n  topop : stack[a] ~ a x stack[a] 
F u n  f i l t e r :  (a  ~ bool) ~ seq[a] --~ seq[a] 

The last one of these examples shows that  we also admit  hi#her-order functions, that  
is, functions that  have other functions as arguments and /o r  results. 
Notational conventions: We are very liberal with respect to overloading of symbols, 
use of infix notations, etc. 
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1> A s i g n a t u r e  consists of a set S of sorts and a set F of function symbols, the func- 
tionalities of which are expressed in terms of the sorts from S. 

Given a signature , we immediately obtain the notions of t e r m s  and f o r m u l a s .  

I> A t e r m  is a well-formed expression built up from the symbols of a given signature, 
possibly including free variables. Examples: 
(~ + v) * 2, push(s, top(s) + 3), . . .  
The sor t  o f  a t e rm  is the result sort of its outermost function symbol. 

I> A f o r m u l a  is a term of sort bool. Atomic formulas are applications of predicates such 
a s  

x > y, p u s h ( s , x  + 1) = pop(r), . . .  
More complex formulas are then constructed with the help of boolean operations.  
Examples: 
x > y A y > _ z ,  x = O : : t . x * y = O ,  . . .  

Finally, we can use quantifiers to bind variables. Examples (where ^ s tands for con- 
catenation):  
(Vx: seq) s # emp ty  ~ (3r, t : seq, x :  da ta )  s = r ' z ' t  
(Vs : s # e m p t y )  ( ] r , t  : seq, z :  data)  s = r ' x ^ t  
Note tha t  these two formulas are just  notational variants of each other. Note also tha t  
we automatical ly deduce the sorts of variables from the context whenever possible. 

2.2 Specifications 

In order to associate meaning to the symbols from a signature we provide specifications, 
which usually are in the form of predicate-logic formulas. But for methodological as well 
as for semantical  reasons we distinguish several kinds of formulas. 

I> A x i o m s  provide the basic constraints that  determine the meaning of the sorts and 
function symbols. Examples are 

A x m  ( V x : n a t )  x + O = x  

A x m  (Vx, y: nat) x + sue(y) = suc(~ + y) 
t> T h e o r e m s  are derivable from the axioms in the specification. For example, the above 

axioms entail - together with some further knowledge about 0 and suc  - the following 
theorems: 

T h i n  (Vx, y : n a t )  x + y = y + x  

T h m ( V x ,  y , z : n a t ) ( x + y ) + z = x + ( y + z )  
l> S p e c i f i c a t i o n s  of functions are a notational variant of certain axiomatizat ions that  

we encounter frequently. Example: 
Spc blog(x)  : n P r e  x > 0 P o s t  2 n-1 ~ x < 2 ~ 

The relationship between these kinds of specifications and s tandard  axioms will be 
discussed in Section 4.6. 

t> D e f i n i t i o n s  of functions determine a least fixed-point semantics. Example: 
D e f  blog(x )  = I f  x = 1 T h e n  1 

E lse  blog(x - 2) + l F i  

The impacts  of such a fixed-point semantics will be discussed in Section 2.4. 
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t> S u b s o r t  r e l a t i o n s  express the fact that  the da ta  elements of one sort are also 
members of another sort. Examples: 

A x m  nat C int 
T h i n  seq[nat] C seq[int] 

t> Generat ion  constra ints  express the fact that  all da ta  elements of a sort can be 
constructed with a certain set of operations. Examples: 

A x m  bool Generated  b y  true false 
A x m  nat G e n e r a t e d  b y  0 sue 
A x m  seq G e n e r a t e d  b y  empty alrpend 

These kinds of formulas lead to certain induction principles tha t  will be discussed 
further in Section 4.6 

t> O b s e r v a b i l i t y  is an important  concept in connection with implementation.  Two 
objects of a given sort s are considered equivalent, if they cannot be distinguished 
by "observing" them only "from the outside". Example: 

A x m  seq[~] O b s e r v a b l e  b y  a bool nat 
This means that  the elements of sort seq[a] may only be distinguished by applying 
operations to them that  lead into the sorts c~, nat, or bool. If  we now write equality 
formulas for elements of sort seq[~], they actually mean this observable equivalence. 

Notational conventions: Again, we are very liberal in our notations:  As long as the 
meaning is clear from the context, we will omit explicit quantifications. Note also that  
we allow all kinds of predicate formulas, not only equations. 

2.3 Modular lzat ion  and Parameter i za t ion  

So far we have only considered means for programming in the small. But we also need ways 
to structure programs into larger units. In this paper we do not want to adhere to a specific 
language 2. Therefore we employ a slightly more abstract  notat ion by using "operations" 
such as S i g n a t u r e ( . . . )  that  allow us to talk about  the corresponding language features 
without going into syntactic details. 

t> C la s se s  are our highest-level structuring concept. 3 They correspond to what is often 
called specification, structure, encapsulation, module, etc. These classes consist of 
signatures and specifications (axioms and theorems) and possibly some addit ional  
information. Example: 

Class Set = Signature(Set)  U Speclficatlon(Set) U Impor t (Se t )  
This states that  the class Set consists of three sets of items. (For more details see 
section 2.5.) 

t> I m p o r t s  make certain classes available in the definition of other classes. Example: 
Impor t (Se t )  = Bool U Nat 

This means that  all sorts, operations, and specifications from the two classes Bool 
and Nat can be used in the definition of the class Set. 

2 . . .  even though we are influenced by the language SPECTRUM [10]. 
8 There are certain relationships to the class concept of object-oriented programming; but there 

are also differences. We have chosen the name, because on the semantical level a "class" 
represents a class of algebras (which some people prefer to view as a category of algebras). 
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t> E x p o r t s  state,  which parts  of classes are made available to the environment.  This 
way, certain sorts and operations of a class can be hidden, which is useful e.g. in 
connection with internal auxiliary functions. Example: 

Export(Set) = (set ,  E) 
This means that  only the sort set and the element test E can be impor ted  by other 
classes. 

I> Renaming can be used to avoid name clashes between identifiers in different classes. 
Example: 
Set Renamed [0 To empty, E To has] 

The result of this operation is the class Set, but with the operations 0 and E renamed 
to empty and has, respectively. 

i> Parameters of classes are other classes. That is, we designate certain subclasses as 
parameters, very much like in the case of imports. Example: 

P a r a m e t e r ( O r d e r e d S e t )  = So r t  
Fun  . -<.  : c~ x a --, bool 
Axm (Vx:a) x_x 

But we could also write 
P a r a m e t e r (  OrderedSet  ) -- L inOrd 

provided tha t  there exists a class LinOrd defined as 
Class LinOrd = S o r t  c~ 

F u n  . -< .  : c~xc~- - ,boo l  
A x m  ( V z : a )  x - < x  

Given a parameterized class like OvderedSet above, we can create instances: 
OrdevedSet  I n s t a n t i a t e d  [c~ To nat, ~ To <] 

Alternatively, we could also write 
OrdevedSet I n s t a n t i a t e d  B y  Nat 

provided tha t  we have established the property 
Nat I s a  (LinOrd R e n a m e d  [~ To nat, "< To <]) 

The advantage of this latter variant is that  we can establish this property once and 
for all for the specification of Nat and then reuse it wherever needed. 

This short overview of possible constructs shall suffice for our purposes. A thorough 
elaborat ion can be found in the paper of Wirsing [37] and in the textbooks of Ehrig and 
Mahr [11]. In these references many subtleties are elaborated that  we had to skip here. 

2.4 Semantics 

The aforementioned paper of Wirsing [37] also provides an excellent discussion of possible 
semantics for algebraic specifications. Therefore we content ourselves with a brief sketch 
here. As in the previous section, we have to skip many of the subtleties, challenging as 
they may be. 

The fundamental  notion in this context is that  of an algebra. An a l g e b r a  is a family 
of carrier sets together with a family of functions on these carrier sets. Such an algebra 
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`4 is called a S i g - a l g e b r a  for a given signature S i g ,  if every sort of S i g  is interpreted by 
a carrier set of `4 and every function symbol of S i g  is interpreted by a function of `4. 

A S i g - a l g e b r a  .4 is called a m e m b e r  (or a m o d e l )  of a class C, if S i g n a t u r e ( C )  = 
S i g  and if all properties in S p e c i f i c a t i o n ( C )  hold in .4. We denote the category of 
all models of C by A 4 0 ~ ( C ) .  This concept is termed loose s e m a n t i c s  (sometimes even 
ul t ra - loose  or hyper - loose  in the literature; see e.g. [9] or [26]). 

In the l i terature there are also approaches where one specific algebra is designated 
as the semantics of a given specification, usually the so-called i n i t i a l  algebra. But taking 
the whole class of all models has decisive methodological advantages, in part icular  in 
connection with a stepwise development process. It is now possible to s tar t  with a very 
abst ract  specification, where no premature commitments have been made. Then we can 
gradually add design decisions, which are reflected in addit ional  axioms and thus con- 
strain the class of admissible models. In the extreme case we end up with a completely 
unambiguous specification, which has only one model left. Usually this final specification 
will be in the form of executable algorithms. 

There is one additional feature that  we have to mention here. Since we also work with 
recursive function declarations, we have to provide a suitable semantics for them as well. 
We do this in the tradit ional  form by means of l ea s t  f i x p o i n t s .  We refer to the s tandard  
li terature,  e.g. Manna [17], Scott [33], Gordon [13], or Schmidt [32]. Section 4.6 contains 
addit ional  information. 

2 . 5  A n  E x a m p l e :  B a g s  

Since we will need it in some of our examples, we use the structure of "bags" to il lustrate 
our algebraic specification concepts. Bags ,  sometimes also called m u l t i s e t s ,  are essentially 
like sets, the only difference being that  multiple occurrences of elements are permit ted.  
For example, the collection of numbers {1, 7, 5, 2, 5} is a bag, but not a set. 

We first give the signature of the class B a g .  Note that  we allow great notat ional  
freedom here, such as overloading of function symbols or infix and distfix notations. 

S i g n a t u r e ( B a g )  = 

P a r a m e t e r  (So r t  or) 
S o r t  bag [c~] 

L e t  bag = bag[(~] I n  
F u n  0 : bag - - 
F u n { . }  : o~ --.* bag - -  

F u n  . t~. : bag x bag -* bag - - 
F u n  . ~ . : bag • o~ --, bag - - 

F u n  . ~ . : o~ x bag --, bag 

F u n  . @ .  : bag x ot --,  bag 

F u n  . E . : c~ x bag ---~ bool 

F u n  . in .  : (~ • bag --* n a t  

F u n  c a r d  : bag --. n a t  

Obviously, this specification is based on Boolean values and natural  numbers: 

empty bag 
singleton bag 
union 
addit ion of element 

- - addition of element 
- - deletion of element 
- - element test 
- - number of occurrences 
- -  cardinali ty 

I m p o r t ( B a g )  = B o o l  U N a t  
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The specification of bags requires at least the following kinds of axioms: 

Speclficatlon( Bag) = 
A x m  bag G e n e r a t e d  by  0 {.} �9 tg. 
A x m  bag Generated  by  0 �9 @ �9 
A x m  bag Observable  by  nat 

A x m  (VB : bag, x : a)  
B C z  = BeJ{x} 

A x m  
x e B  = { x } ~ B  
(VA, B : bag, z, y : a)  
x i n O  = 0  
x i n { y }  = f f x = y T h e n  1 E l s e 0 F i  
x in A ~ B = (x in A) + (x in B) 
x E B = ((x in B) > O) 

Axrn 

A x m  

(VB : bag, ~ : a)  
card(O) = 0 
card(B �9 ~) = card(B) + 1 
(VB : bag, x, y : a) 
O@z =O 
( B e x ) e x  = B  
( B |  e y  = ( B ~ 3 y ) $ x  I f x # y  

Note that - in analogy to the language SPECTRUM - we presuppose the existence 
of a built-in equality. Therefore we only need the sort a as a parameter. 

2.6 Us ing  Higher-order  Funct ions  

There is a whole subculture emphasizing the use of higher-order functions for achiev- 
ing very concise program derivations. Today, main proponents of this methodology are 
R. Bird and L. Meertens (and we refer the reader to their corresponding contributions 
in this volume, as well as to [4, 5, 6]). We will briefly sketch, how this paradigm can be 
integrated in our framework. First of all, we enrich Bag into an extended class: 

Class  ExlendedBag E n r i c h e s  Bag 

Then we add the desired functions. From the abundant  wealth of operations considered 
by Bird and Meertens we only select the three most fundamental  ones for illustration 
purposes; 

S igna ture (  ExtendedBag)  = 
F u n .  <1.: (a --+ bool) x bag[a] --+ bag[a] - - filter 
FUn . , .  : (a --+ fl) x bag[a] -+ bag[fl] - - map 
FUn ./. : (a x a --+ a) x bag[a] --+ bag[a] reduce 

For these functions we have among others the following properties: 



234 Peter Pepper 

Specification( ExtendedBag) = 
A x m  (VA, B :  bag[a], x :  a, p :  a --~ bool) 

p<lO = 0  
p <1 {x} = If  p(x) T h e n  {x} Else 0 Fi  

A x m  (VA, B : bag[a], x : a,  f : a ---, a )  
/ - 0  =0  
f * .Ix} ---- {f(x)} 
f . (A t~ B) .: ( f . A )  t~ ( f . B )  

A x m  (VA, B :  bag[a], x :  a,  . |  a x a ~ a)  
|  = Neut ra l ( |  
|  = { x }  
| ~ B) = (Q/A) | (Q/B) 
P r e ( |  = C o m m u t a t i v e ( |  

Here, Neu t ra l ( |  denotes the neutral element of the operation | the existence of which 
we have to presuppose. Similarly, C o m m u t a t i v e ( |  expresses the requirement that | 
be a commutative operation. Without these constraints the definition of the higher-level 
functions would be in contradiction to the corresponding properties of ~. (The deeper 
reason behind this problem is that / essentially is a homomorphism from the Bag-algebras 
to the a-algebras, and that this homomorphism maps ~ to | hence both operations must 
posses the same algebraic properties.) 
On the basis of these axioms we can now derive further theorems that ultimately enable 
the compact forms of reasoning advocated in the aforementioned papers. (Note: By o we 
denote function composition.) 

Specificatlon(ExtendedBag) ~- T h m  (p~)  o (q<3) = (q~)  o (p<l) 
T h m  f * ( g * B )  : ( f o g ) * B  

Since there are other contributions in this volume that deal extensively with these tech- 
niques, we will not pursue the issue further here. 

3 P r o g r a m m i n g  B y  T r a n s f o r m a t i o n s  

It is unquestioned that programming is a stepwise process. No reasonably large or com- 
plex piece of software is produced in one go. But the decisive question is: How are the 
individiual steps performed? 

I> The traditional approach - which still predominates in industrial software engineering 
- is a more or less disciplined process ofstepwise refinement. Starting from an abstract 
requirements document one proceeds through more and more concrete versions of the 
program, mostly written in some kind of pseudo code, until one finally produces the 
actual program code. The main weakness of this approach is that  all these activities 
are highly informal such that quality assurance must solely rely on managerial and 
organizational means like "code waik-through", "structured testing", and the like. 
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t> The verification approach strives for quality assurance through rigorous proof pro- 
cedures: Any two successive stages in the development process have to be proved 
equivalent. The prerequisite for this way of proceeding is, of course, a fully formal- 
ized representation of all intermediate stages of the program, since formalization is 
at the heart of any sound mathematical proof system. (Depending on the area of 
application the most common formalisms are variations of Hoare logic or temporal 
logic.) 
By the way, early hopes that it would suffice to verify only the final program against 
the initial specification have been shattered: The great gap between these two ver- 
sions generally made the proofs too complex. Therefore, the evolutionary proceeding 
through a series of intermediate stages had to be adopted in the verification approach 
as well in order to keep the individual proofs manageable. 

t> The transformational approach combines the evolutionary concept of a stepwise de- 
velopment process with the mathematical rigour of the verification approach. But it 
takes a slightly different view: In a verification-oriented development step one first 
constructs the next version of the program "on speculation", and then performs an 
"a posterior," verification of its equivalence to the previous version. By contrast, 
the transformation idea is to derive the next version from the actual one according 
to pre-verified, formal rules. In other words, one performs a constructive derivation, 
leading from the initial specification to the final program code. 

[version, ] [ versi~ I 

creation & verification ~] transformation 
(informal) (formal) [ (formal) 

[  ersion,+l I 

verification-oriented transformational 
development step development step 

t> We pursue here a mixed concept, which we baptize - for lack of better terminology 
- simply deduc t ive  approach .  This is motivated by the following experience: In 
general the evolutionary concept of transformational programming is most valuable; 
but sometimes the compulsion of a strictly constructive, forward-oriented process 
turns into a straitjacket. On those occasions we want to freely switch to a verification- 
oriented way of proceeding. 
In other words, we still adopt a mainly transformation-based style of programming. 
But whenever necessary, we employ verification methods as well. Indeed, as will be 
seen in the remainder of the paper, the division of the two concepts is fuzzy anyway. 

4 A C a l c u l u s  F o r  D e d u c t i v e  P r o g r a m m i n g  

The technical realization of a transformational programming style can be effected in 
various forms. We choose here the framework of logic and algebra. More precisely, our 
concepts are oriented at the so-called calculus of natural deduction, which goes back 
to Gentzen [12]. The advantages of this choice are evident: The foundations have been 
thoroughly elaborated and are accepted for many years by now. The concept has proved 



236 Peter Pepper 

worthwhile in many areas of mathematics. The notations and techniques are clear and 
easy to comprehend, in spite of their absolute formal rigour. For these reasons, this 
kind of logic has been used by many computer scientists (such as Manna [17], Gries [14], 
Kahn [16]). And it will be seen below that the natural-deduction style is very well suited 
for our approach as well. 

It is, however, not our intention to explain the underlying principles of natural de- 
duction here. We will just employ them in our work. 

4.1  R u l e s  

The central concept of our method are d e d u c t i o n  rules.  Basically, such a rule consists 
of several premises and a conclusion. But we also allow the combination of several rules 
with identical premises into a single rule, which then has several conclusions. 

F- premise1 ~" premise l  
: 

F- premisen  l- premisen  
~- conclusion ~- conclusion1 

~- conelusionk 

Such a rule expresses the following fact: Whenever  the premises are valid, the conclu- 
sion is valid as well. Hence, a rule is to be viewed as a judgement,  that  is, as a statement 
of fact; it must not be confused with an implication formula, which can be either true or 
false. A most trivial example of a rule is given by 

I- -~B 
t - I f  B T h e n  X Else Y Fi  = Y 

As premises and conclusions we usually have formulas. However, for reasons of unifor- 
mity we also consider the other constructs of our language as a kind of special predicates 
here- 

l> Fun  f : s ~ r is viewed as a predicate stating that the functionality of f is s --* r. 
I> A x m  F is viewed as a predicate stating that the formula F is an axiom (in the 

given context). Analogously for T h i n .  
I> S igna tu re (S)  = Sig is viewed as a predicate stating that the signature of S is (the 

text) Sig. Analogously for I m p o r t ( S ) ,  Specif icat lon(S) ,  etc. 

4 .2  C o n t e x t s  ( " L o c a l  T h e o r i e s " )  

Any program derivation takes place within a certain contezt. Graph algorithms are de- 
veloped within the context of graph theory, compilers are developed within the context 
of language theory, matrix algorithms are developed within the context of linear algebra 
and numerical analysis, and so on. Each of these contexts constitutes a local  t h e o r y  
that  comprises the knowledge which is available from the relevant context. We respect 
such local theories by extending our notion of "rule" to the following form: 
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F1 F premise1 

F, F premise, 
F,+ I F conclusion 

The meaning of such a rule is the following judgement: If the premises hold in their 
respective contexts Fi, then the conclusion holds in the context Fi+l.  (Mostly, all Fi will 
be identical.) Example: 

Nat, Set ~- eard(s u {~}) > o 
Nat, Set F I f  card(sU {x}) = 0 T h e n  A Else B Fi  = B 

This means: If we can show in the context of the specifications Nat and Set that  the 
eardinality of the set s U {z} is greater 0, then the same context ensures that  the given 
conditional reduces to its Else-branch. 

t> Our contexts will usually be collections of specifications such as Nat, Seq, Set, etc., 
but  we also allow single formulas such as x >_ O, s ~ empty, etc. 

l> We may write Post ( f )  F . . .  or Spc( f )  I- . . .  to express the fact that  some 
conclusion can be drawn from the specification of f or from the postcondition of f .  

Convenlions: To increase readability we employ a number of notational conventions. 

�9 When the context or parts of the context in a rule are identical or evident, we omit 
them. 

�9 When a context remains invariant over a longer development period, then we will 
only state it at the very beginning. 

�9 We sometimes state a requirement like " . . .  where z is a new variable". This means 
that x does not occur freely in any formula of the given context. 

4.3 Trivial Rules For Specifications 

There are some fundamental rules that are so obvious that we will usually not even men- 
tion them explicitly in our derivations. But since they form the basis for our operations 
on specifications and contexts, we will at least exemplify them by a few selected rules 
here. 

1. It is self-evident that any property, which is explicitly written down in a specification, 
also holds in the context of this specification. But technically we need to express this 
fact in a rule: It transfers written specification text into the basic formulas of a 
deduction. 

The notation P E Spec means that P is an actual part of the text Spec. 
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2. If a property P is deducible from a specification Spec we can add it to Spec as a 
theorem: 

e____ 
F F- Spec =_ Spec 0 { T h i n  P} 

Again, the notation Spec U { T h i n  P} means that the law T h i n  P is added to the 
specification text Spec. And ' - '  means semantic equivalence. 

To emphasize this again: Such trivialities will not be mentioned in the sequel, but 
from a technical point of view they have to be part of our calculus. 

4.4 Design Decisions And Modalities 

In the course of a program development we usually have to make design decisions. This 
means that we strengthen the specification in the sense that the class of possible models 
is reduced. 4 Obviously, such strengthening properties are not derivable in the calculus. 
All we can expect is that they are compatible with the remainder of the specification. 

From a practical point of view this simply means that we need operations that perform 
the pertinent modifications of the specification under consideration - -  provided that  the 
necessary premises are fulfilled. However, this would mean that  the conclusions of our 
rules are no longer predicates but rather actions. And this would be in contrast with a 
clean notion of "calculus". 

Therefore we introduce a notation that from a pragmatic point of view may be inter- 
preted as "permission" to apply such an operation. But fortunately there is also a clear 
conceptual view of this notation, based on principles from modal logic. In the sequel we 
will briefly elaborate this viewpoint. 

We are confronted with the following situation: At any given stage of our develop- 
ment process we are dealing with a certain theory ~ (which specifies a class of models 
)t4OD(T/), where - intuitively speaking - the various models represent the possible "im- 
plementations" of our current specification). A true design decision usually excludes some 
of these possible implementations and only leaves the remaining ones as candidates. That  
is, we pass on to a new theory Ti+l, which has the properties 

r # ~ao~(7~+1) c_ .~o~(7~) 
that is, T/+x k T/ 

In other words, the development process To ~ . . .  ~ ~ ~ "/i/+1 --~ "'" proceeds in the 
converse direction of the entailment relation '~-'. But this means that  the main transition 
steps of our derivation process, viz. the transitions T --* T ' ,  cannot be expressed within 
the calculus. All we can do is the following: 

I> First, apply the changes leading from 7" to 7"' on speculation. 
t> Then verify the entailment T '  k T,  

4 There are also design decisions which are true alterations of the specification (reflecting e.g. 
a change of the requirements); but these are not considered here. 



Program Development in an Algebraic Setting 239 

Since this is technically unpleasant, we may use the following trickS: We derive within 
the old theory 7" "admissible" modifications, that  is, modifications that  guarantee 7-' ~- 7". 
However, since these modifications are in general true strengthenings of the theory 7", 
they cannot be directly "derived". All we can say is that  they are "compatible" with 7-. 

This could be expressed in a modal  logic of "necessity and possibili ty" [23]. In such 
a logic we could write, for instance, a formula like 

poss ib ly  (x > 0 =~ f (x)  = f (x  + 2) q- 1). 

for which we use the short-hand notation ( that  is usually employed in the area of modal  
or temporal  logic) 

(x > 0 :=~ f ( x )  = f(ac + 2) -4- 1). 

This  means tha t  the decision to define for x > 0 the function f (x )  as f ( x  + 2) + 1 is 
compatible  with the rest of the specification, even though it does not necessarily follow 
from it. 

We need this notat ion in particular in connection with the introduction of new axioms 
or definitions, that  is, whenever we have to make a true design decision. Then we write 
e.g.  

F b ~ A x m  F 

This means that  the formula F is compatible with the rest of the specification and 
therefore can be added as an axiom. (By contrast, a theorem is actually deducible from 
the specification.) The same principle applies to other constructs that  reflect design 
decisions, such as 

~- <> D e f  f (x)  . . . .  
F- <> Spc f (x)  . . . .  

Pragmatically this simply means that  the old definition or specification, respectively, 
of f shall be replaced by the new one. 

Wha t  do we gain from this concept theoretically? Suppose we have a current theory 
T and we are able to derive 

7- I- ~ F  

This means that  there is at least one model in M O : P ( T ) ,  in which F holds. Hence, we 
can pass to 

,~t def 
= u {F} 

and we know that  A 4 0 ~ ( T ' )  # 0 and T ' b 7". In other words, the necessary meta-level 
s tep from one theory to the next has been completely prepared within the calculus. 

6 This is an experimental idea that we pursue for the first time in this paper. Its practical 
fe~ibihty still has to be investigated. 
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Note, however, that this concept is in a certain sense "non-monotonic ' .  To see this, 
suppose that we had also established the additional property 7" I- <>E. Then it need 
not be the case that q'* still entails <>E. Hence, the commitment to one possible design 
decision requires a reassessment of all other possibilities. 

To round off the discussion we should at least sketch the essential semantical and 
logical properties of the <>-operator. 

The semantics of '<>' is explained as follows: Let 7" be a specification and A4OT)(T) 
its class of models. Then we define a "reachability relation" ~ between algebras by 

AeB ~ ,4 ~ M O V ( T )  ^ B ~ MOV(T) 

This trivial relation is reflexive, symmetric, and transitive. (Therefore we obtain - in 
the terminology of modal logic - a so-called system $5.) Now we define the vafidily of a 
formula <> F in an algebra ,4 by 

( , 4 ~ < > F )  4 %  (3B,,4~B: B ~ F )  

This operator obeys among others the following axioms (as described e.g. in [15]). 

F ~ O F  
<>OF ~ <>F 
<>(E V F)  r (<>E) V (OF) 
<>(E A F)  =~ (<>E) A (<>F) 

Note, however, that  the converse direction of the last implication does in general not 
hold. 

4 . 5  S t a n d a r d  R u l e s  For  P r e d i c a t e  L o g i c  

The Gentzen calculus of natural deduction originally has been developed for propositional 
logic and predicate logic. It is documented in textbooks such as those of Manna [17] and 
Gries [14]. The calculus is organized in such a way that for each logical symbol there is 
one rule for its introduction and one rule for its elimination. Traditionally, this entails 
the following rules: 

* The rules -.-introduction and -.-elimination. 
�9 The rules V-introduction and V-elimination. 
�9 The rules A-introduction and A-elimination. 
�9 The rules ::~-introduetion and =~-efimination. 
�9 The rules r and r 
�9 The rules V-introduction and V-efimination. 
�9 The rules 3-introduction and 3-efimination. 

We employ all rules from this calculus, but we will usually not mention them explicitly, 
because they are again trivial and well-known. But there are a few exceptions, which are 
more relevant from a methodological point of view: 
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1. We often argue by case distinctions. This is formalized by the rule 

Rule  3 (v-e l lmlnat ion,  "proof by case distinction"' 

A ~ - P  

B F P  

I . -AVB 

I -P  

2. A classical proof technique proceeds by contradiction: 

A i- false 

3. The connection between rules and implication formulas is established by the following 
pair  of rules. 

I 
Rule 6 (=~-introduction, "deduction theorem" 

_ _  

P A = v B  

4.6 R u l e s  For Spec i f ic  L a n g u a g e  C o n s t r u c t s  

The constructs of a programming language can be viewed as operations in an algebra. 
Therefore they possess properties like operations in any other algebra. In the sequel we 
present some illustrative examples for such properties. 

R u l e s  fo r  c o n d i t i o n a l  e x p r e s s i o n s .  A conditional expression can be introduced ac- 
cording to the following rule, which is closely related to the rule 3, because D e f i n e d ( C )  
- -  which means that  the evaluation of the expression C does neither abor t  nor diverge 
- -  is the same as C V --C. 
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Rule  7 (If-introduction) 

C ~ - x = E 1  

-~C ~- x : E2 

I- Defined(C) 

I- x = I f  C T h e n  E1 Else E2 F i  

The converse direction allows us to eliminate a conditional expression. 

I 
Rul___ee 8 (If-elimlnatio__n_) 

~- x = I f  C T h e n  E1 Else  E2 F i  

Note that  this rule has an important  effect: It allows us to deduce facts about  the 
Then -b ranch  in an extended context, reflecting the knowledge tha t  the condition is 
true. The analogous rule is available for -~C. And it is evident, how these rules can be 
generalized to nested conditionals and to conditionals with more than two cases. 

Rules for L e t - c l a u s e s .  Often we want to introduce an auxiliary identifier tha t  abbre- 
viates the value of an expression. The following two rules formalize this activity. Note 
tha t  this introduces an abbreviat ing identifier into the development, and not yet into the 
program texts. 

I 
Rule 9 (Let-introduction' 

�9 = A_ 

~-Let  x = A  

where x is a new identifie] 

This rule is closely related to the classical Gentzen rules for the existential quantifier. 
I t  says: When the expression A has a well-defined value ( that  is, its evaluation does not 
abor t  or diverge), then we can name this value by x (as long as no name clashes occur). 

Rule 10 (Let,elimination)l 

~-Let  x = A  I 

This rule merely performs the necessary "theory propagation" tha t  allows us to make 
use of the declaration in the remainder of the development. 

We can bring such Let-clauses from the development level into the program level by 
the following rule: 
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Rule 11 (Let-clause)  

~-Let x = A 

t - E = F  

~ - E = L e t  x = A I n  F 

x must not occur freely in E 
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R u l e s  for f u n c t i o n  spec i f i ca t ions .  The effect of our specification construct, which is 
based on pre- and posteonditions, can also be obtained with standard axiomatic nota- 
tions. But then we have to talk about the complete set of all axioms in many derivations, 
which is technically unpleasant. Therefore we add this concept to our calculus in order 
to be able to localize full axiomatizations in one syntactic construct. 

There are several ways in which the roles of pre- and postconditions can be defined. 
We choose here the view of "total correctness"; that is, the precondition holds if and only 
if the function terminates with a well-defined value. This is made precise in the following 
rule. 

Notational convention: We use the notations P[x] and R[x, y] to denote the following 
conventions: The expression R[x, y] may contain the identifiers x and y, whereas P[x] 
may only contain x, but not y. 

Rule 12 (deduct ions  from function specifications) 

F I- Spc  f (x)  = y P r e  P[x] Pos t  R[x,y] 

F, e[x] ~- (3y) y = f(x)  

r ,  (3v) ~ = f (x)  ~ Fix] 

F, y = f ( x )  ~- R[x, y] 
x and y must not occur freely in the given context F 

The first two conclusions state that the precondition P[x] holds if and only if the 
application f (x )  is defined. The last conclusion states that the result meets the postcon- 
dition. 

The converse direction of this rule means to extract a pre/postcondition-based spec- 
ification of f from the given algebraic axiomatization. To do this we have to express the 
fact that  any property Q[f] that follows from the axiomatization F also follows from the 
postcondition R. This necessitates a premise of the kind 

<< from F t- Q[x,f(x)] infer F t- R[x,y] =~ Q[x,y] > ,  

which, unfortunately, would add a third level to our two-level calculus. Since it is much 
easier to express this collection of all f-related axioms algorithmically, we refrain from 
this complication of the calculus. 

From the above definitions we obtain a rule that reflects the activity of making design 
decisions in the course of a development: We can always strengthen a given postcondition, 
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thus restricting the degrees of freedom that are permitted by the specification. In doing 
so we have, of course, to ensure that the specification does not become inconsistent. 

Rule 13 (strengthening the postcondlt ion) 

F t- Spc f (x)  = y Vre P[x] P o s t  R[x, y] 

F, P[x] }-- (3y) Q[x, y] 

r, P N  F Q[~, y] ~ R[~, y] 

F F- ~ Spc f (x)  = y Pre P[x] Pos t  Q[x,y] 

x and y must not occur freely in the given context r 

An analogous rule can be given for weakening the precondition. 

Ru les  for  f ixpoint  equat ions .  Of particular interest are possibilities for passing from 
function specifications to function definitions. We Split this process into (at least) two 
kinds of rules: The first kind introduces fixpoint equations from specifications, and the 
second one passes from fixpoint equations to least-fixpoint definitions. 

For the first class of rules we give four variants. (Note that they are all design decisions, 
which in general requires the possibility operator ' ~ '  from Section 4.4). 

The first rule reflects the classical verification-oriented way of proceeding: We "guess" 
a solution, that  is, a possible function body E[x, f] and prove that  this design meets the 
specification. 

Rule 14 (introduction of  flxpoint equations) 

r F- Spc  f (x)  = y Vre P[x] Post  R[z, y] 

F, P[x] ~ (By) y = E[x, .f] 

F, Fix] F- y = S[x, .f] ~ R[x, y] 

_r F 0 A x m  P[x] ~ f (x)  = E[x, f] 

x and y must not occur freely in the given context / -  

The justification of this rule is simple: It is a corollary to rule 13 above. 

The second rule is more "constructive" in the sense that it deduces the recursion 
structure of f from certain algebraic properties of expressions E and K - -  which, however, 
still have to be invented by the programmer. 
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Rule 15 (introduction of flxpoint equations) 

F I- Spc f (x )  = y Vre P[x] Pos t  R[x, y] 

F, P[x] ~ R[g[x], y] =:r R[x, E[x, y]] 

F, P[x], ~P[g[x]] ~ R[x, E[x, 2_]] 

F I- <> A x m  P[x] ~ f(x) = E[x, f(g[x])] 

x and y must not occur freely in the given context F 

Let us briefly consider the justification of this rule. To this end, recall that  a specifica- 
tion generally admits many implementations. And the above rule says that among these 
solutions there is at least one, which obeys the given recursive equation. Formally, this 
rule is a simple corollary to rule 13 above, since we can consider the additional fixpoint 
property as a strengthening of the postcondition: 

Spc  f(x)  = y P r e  P[x] P o s t  R[x,y] A y = E[x, .f(K[x])] 

For this strengthening the first and third premise of rule 13 are trivially fulfilled. 
Therefore it remains to establish the second premise, that is, 

P[x] e (3v) R[~, y] ^ v = E[~,/(K[~])].  

We distinguish two cases: 

1. P[K[x]] holds. Then we can deduce: 

~- R[K[x], f(K[x])] [by spec. of f] 
R[x, E[x, f(K[~])]] [by 2nd premise of rule 15] 

Hence, y d=cf E[x, f(K[x])] is a "witness" for the validity of the existential formula 
above. 

2. -,P[K[x]]. Then we can deduce: 

I-- f (K[x])  -- 2_ [by spec. of f] 
F- E[x, f(K[x])] = E[x, 2_] 
~- R[x, E[x, 2_]] [by 3rd premise of rule 15] 

Hence, y ~f  E[x, 2_] is a witness. 

The possibility operator is needed, since in general the postcondition R[x, y] is com- 
patible with several different fixpoint equations. If, however, R determines the function 
uniquely, we obtain the equation as a theorem: 
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Rule 16 (introduction of flxpoint equations) 

F }- Spc f (x )  = y P r e  P[x] P o s t  R[x, y] 

r ,  P[x] l- R[K[x], y] :=~ R[x, E[x, y]] 

F, P[x], - ,P[g[x]]  I- R[x, E[x, .1_]] 

F, P[x] ~- R[x, y] A R[z, y'] =~ y = y~ 

r ~" T h m  P[x] =~ f ( z )  = E[x, f(K[x])] 

x and y must not occur freely in the given context F 

It is sometimes convenient to work with the following variants of the above rule. 
These variants are simply obtained by algebraic transformations of the second premise 
of rule 15 above. 

Rule 17 (introduction of flxpoint equations) 

F ~- Spc  f (x)  = y P r e  P[x] P o s t  R[x, y] 

F, P[x] ~- K-I[K[x]] = x 

F, Fix] ~ R[x, y] =:. RfK-I [z ] ,  E[K-l fz] ,  y]] 

F, P[x] ,  "-,P[g[x]] ~- R[x, E[x, _1_]] 

F i- <> A x m  P[x] ::V f(x)  = E[z, f(K[~])] 

and y must not occur freely in the given context F 

Rule  18 (introduction of flxpoint equations) 

F ~- Spc f (x)  = y P r e  P[x] P o s t  R[x, y] 

F, P[x] }- E- '[x,E[x,y]] = y 

/ ' ,  P[z] ~- Rig[x], E- l [z ,  y]] =~ R[x, y] 

F, P[x], --,P[g[x]] }- R[x, E[x, .l_]] 

r 1- O A x m  P[x] =*, f(x) = E[x, f(g[x])] 

and y must not occur freely in the given context F 

We can also combine the above rules with the rule 7 for If-introduction. In the first 
case we obtain the combined rule 
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Rule 19 (introduction of conditional fixpoint equations) 

F I- Spc f ( z )  = y Pre P[z] Post R[z, y] 

F, P[x], -~C[z] ~- R[gtzl, y] ~ R[z, E[z, y]] 

F, P[z], C[z] t- R[x, A[z]] 

F, Fix] ~" Defined(C[z]) 

F ~- <~ A x m  P[z] =~ f(x) = If C[z] Then  A[x] 

Else E[x , f (K[z] ) ]Fi  

x and y must not occur freely in thegiven context F 

Analogous variants can be given for the other rules. And it is also evident, how these 
rules can be generalized to more than two cases. 

Rules  for funct ion definitions. Our equational calculus allows us to derive equations 
such as the theorem f (x )  = E[z, f] in the above rule. And very often these equations are 
recursive; that is, the expression E contains applications of f .  However, not every such 
equation constitutes a feasible recursive definition of f - as can be seen from the trivial 
equation f ( x )  = f (x) .  The problem is that an equational calculus can at best show that  
a function is a solution (a "fixpoint ') of a given equation, but it does not suffice to show 
that a function is the least solution. 

Therefore we have to employ a domain theory on the basis of so-called complete partial 
orders, as it is described e.g. by Scott [33], Gordon [13], Schmidt [32], and also Manna 
[17]. We cannot go into the details of such theories but will only mention that  they are 
based on a definedness ordering: f E g 4:, Vx : f (x )  =- g(x) V undefined(f(x)) 
Using this ordering we can express the fact that our recursive function definitions not 
only determine some fixpoint but rather designate the unique least fixpoint. 

Rule 20 (introduction of function definitions) 

r F f(~) : E[~, f] 

F, g(x) = E[x, g] ~- f E g 

F I- Def f(x) = E[x, f] 

g and z must not occur freely in the given context [ 

The disadvantage of this rule is that it relies on the definedness ordering E, which 
is not easy to work with. One situation, where this problem can be overcome, occurs 
when there is a well-founded ordering on the argument sorts. In such an ordering there 
are no infinite strictly decreasing chains of the kind z0 ~- xl ~- z2 ~- . . . .  Hence, we can 
guarantee termination. 

We illustrate this principle by a phenotypical rule, where we use the following conven- 
tion: A notation like E[z, /(g[x])]  expresses the fact that E is an expression containing 
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exactly one application of the function f ,  the argument of which is computed by the 
ex ~ression K[x]. 

Rule 21 (terminating function definitions) 

F b Wellfounded(-() 

r, ~c[~] k K[~] ~ x 

F ~- f(x) = If C[x] Then A[x] Else E[x, f(K[x])] Fi 

F I- D e f  f(x) = I f  C[x] T h e n  A[x] Else  E[x, f(K[x])] F i  

must not occur freely in the given context F 

If  there is more than one application of f ,  then the well-foundedness has to be required 
for each of them. 

One s tandard  way for providing a well-founded ordering is to invent a mapping v 
from the parameter  sort s into the natural  numbers A f such that  v(K[x])  < r (x)  holds 
for the s tandard <-relation in Af. 

S t r u c t u r a l  I n d u c t i o n .  No reasonable development method can do without induction. 
As has already been pointed out in Section 2.2 our generation constraints provide a means 
for establishing specific induction rules. The classical example are, of course, the natural  
numbers. 

Rule 22 (structural induction for Nat) 

F I- nat G e n e r a t e d  b y  0 sue 

r k ~[0] 

r, ~[i] F y[s~c(i)] 

r ~ (vn : nat) ~:[n] 

i must not occur freely in the given context F 

The same principle applies also to our example Bag. Here we obtain actually two induc- 
tion rules, because we have given two generation axioms. 

Rule  23 ( s t ruc tu ra l  induction for Bag) 

F b bag G e n e r a t e d  b y  0 {.} 

r F y[r 

r F yC{x}] 

r, Y[A], Y[8] F y[A ~ B] 

r F (VB: bag) 7[B] 

x, A, B must not occur freely in the given context r 
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Rule 24 (structural  induction for Bag) 

F ~- bag G e n e r a t e d  by 0 . @. 

r ~ 5[0] 

F, ~'[S] I- ~ '[B @ x] 

F P (VB:  bag) ~'[B] 

x and B must  not occur freely in the given context F 

In this way our specifications yield a wealth of rules that  can be utilized in program 
derivations, since every generation constraint automatical ly induces a corresponding in- 
duction rule. The textbooks by Manna and Waldinger [18] provide an extensive overview 
over the s t ructural  induction rules that  are typically used in programming. 

4.7  A n o t h e r  S i m p l e  E x a m p l e  

Let us i l lustrate the impacts o f  this calculus on our methodology for program derivations 
by using an example that  is equMly simple as the introductory example blog in Section 1: 
We want to derive a circuit for integer division, which is, of course, based on the binary 
representation of numbers. The following derivation yields the algori thm underlying the 
envisaged circuit. 

D e v e l o p m e n t  Division 

1. Establishing the domain theory. Our given problem lives in the domain of the natura l  
numbers. We presuppose that  the corresponding laws of ar i thmetic are contained in 
a suitable specification. 

C o n t e x t ( D i v i s i o n )  t- Ar i thmet ic  (1) 

This context,  that  is, the laws of arithmetic entail in part icular  the following property,  
on which we will rely frequently in the sequel s . 

T h m  ( O < a - i . b < b )  A ( O < a - j . b < b ) ~ ( i : j )  (2) 

Note: We will also employ other, more basic properties of ar i thmetic without  men- 
tioning them explicitly. 

2. Specification of the problem. Our task can be fomulated in terms of a single function. 

F u n  

S p c  

div : nat x nat --+ nat x nat 

div(a, b) = q, r (3) 

P r e  a < 2  n A 0 < b  (4) 

P o s t  a = q - b + r  (5) 

0 < r < b (6) 

6 In a real development we would not state this theorem before we actually need it. But for 
keeping the presentation more readable, we list it already now. 
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Note that the precondition a < 2 n (with some fixed n) already reflects the fact that 
our machines operate with bounded numbers. But this feature will only be used in 
later stages of our development. 
The postcondition can be extended by the following equations that we will need in a 
moment: 

t- r = a - q . b  [ b y 5 ]  (7) 

F- O < a - q . b < b [ b y 6 , 7 ]  (8) 

3. Termination case. When the dividend is smaller than the divisor, no calculation is 
necessary. 

Case 1: a < b (9) 

I- q = O [ b y 5 , 9 ]  (10) 

t- r = a [ b y 7 ,  10] (11) 

4. Recurrences. Since we operate within a binary number system, the idea comes to 
mind to aim at a logarithmic algorithm by doubling the divisor in each step. 

Case 2: b <_ a (12) 

Let  q', r '  = div(a, 2.  b) (13) 

}- a = q ' . 2 . b + r '  [by  13,5]  (14) 

f- r ' - - a - 2 . q ' . b  [by  14] (15) 

f- r =  ( 2 . q ' - q ) . b + r '  [by  15,5] (16) 

After collecting these basic facts, we now have to make a straightforward case dis- 
tinction for r', which is complete due to the postcondition of div: 

~- O < r '  < b V b < r '  < 2 . b [ b y 6 ,  131 (17) 

On this basis we can now make the respective case distinction: 

Case 2 . 1 : 0  < r' < b 

t- O < a - 2 . q ' . b < b  

Case 2.2: 

}- q = 2 , q  I 

~- r - -  r t 

b < r I < 2b 

b- b < a - 2 . q ' . b < 2 b  

[ by 18, 15 ] 

[ b y 2 , 8 ,  19] 

[ by 16, 20] 

[ by 22, 15] 

(18) 

(19) 
(20) 
(21) 

(22) 

(23) 
(24) 

(25) 
(26) 

t- O < a - ( 2 . q ' + l ) . b < b [ b y 2 3 ]  

F- q - - 2 . q ' + l  [ by 2, 8, 24 ] 

F- r = r ' - b  [ by 16, 25] 

5. Fizpoint equalion. Since the above case distinctions are complete and disjoint, we 
can introduce a conditional fixpoint equation according to (a slightly generalized 
variant of) the rule 19. Note that we do not need a possibility operator here, since 
the postcondition determines the function uniquely. Hence, the fixpoint equation is 
a theorem. 
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}- T h m  div(a, b) = (27) 
I f a < b T h e n  0,a 

Else Let ql, r I = div(a, 2 . b) 
In 
I f  r I < b T h e n  2.  q', r '  

Else 2 . q l + l , r  I - b F i  Fi  

6. Termination. In order to convert the above fixpoint equation 27 into a least-fixpoint 
definition, rule 20 requires that we find a termination ordering. Therefore we intro- 
duce the termination function 

Let r (a ,b )  : 2 . a - b  

Then we can deduce for the recursive call div(a, 2 .  b) within its context 
0 < b < a  
~- 7-(a, 2 .b)  = 2 - a -  2. b < 2 . a - b  = r(a ,b)  
On the other hand, we can deduce: 
v(a, b) < 0 
b" v(a,b) = 2 a -  b < 0 
~ - 2 a < b  
~ a < b  
And this is the condition of the termination case. Hence, theorem 27 can be converted 
into a definition. 

~- Def  div(a, b) -- (28) 
I f a < b  

7. 

T h e n  0, a 
Else Let q', r '  = div(a, 2.  b) 

In 
I f r  I < b T h e n 2 - q / ,  r I 

E l s e 2 . q l + l ,  r I - b  F i  F i  

Tail-recursive solution. Our function still has a severe deficiency: It exhibits a so- 
called linear recursion, which requires a parameter sta~k for the implementation.  
However, since the argument function 2 �9 b of the recursive call has the inversion 
property (2 �9 b) - 2 = b, a standard transformation rule for "recursion removal" can 
be applied. 
The idea behind this transformation is relatively simple: While going down into the 
recursion the function div first counts its parameter upward from b to some suitable 
value 2 i �9 b; on the way back it performs the actual calculations. But we can avoid 
the expensive stacking of the arguments by performing the backward counting with 
the help of the inverse function b -  2. 
In spite of its conceptual simplicity the technical details of this transformation are 
a little intricate. This is a typical situation, where a subdevelopment is relatively 
mechanical but time-consuming. Moreover, it occurs similarly in many development 
tasks. Therefore, we codify the effect of this subdevelopment in a general rule such 
that  the whole development now boils down to a single rule application. (This rule 
can be found e.g. in the textbooks of Bauer and WSssner [3] or Partsch [19]; but  
for illustration purposes we will also derive it explicitly in Section 4.8 below.) By 
applying this rule, our function becomes 
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D e f  div(a,  b) = divide(a,  b)(b. 2/)(0, a) 
W h e r e  i S u c h t h a t  b. 2 i > a 

D e f  divide(a,  b)(b', q', r ' )  = 
I f  b I = b T h e n  ql, r I 

E l se  Le t  dvd = divide(a,  b) 
b" = b' + 2 

I n  
I f  a < b" T h e n  dvd(b")(O, a) 

Else  I f  r '  < b" T h e n  dvd(b") (2 ,  q', r') 
Else  dvd(b") (2 ,  q' + 1, r '  - b") 

Fi Fi Fi 

The i in the body of div(a, b) can be deduced from the precondition 4 of div: We 
simply take i = n + 1. 

4.8 Der ived  Transformat ion  Rules  

An impor tant  feature of any calculus is that  it not only allows us to apply its rules in 
concrete deductions but that  it also permits the deduction of new "derived" rules, which 
may then in turn be used in other deductions. In other words, derived rules act as a kind 
of shortcut for deductions that  occur similarly in many developments. We will exemplify 
this by a well-known rule for "recursion removal". 

1. Establishin 9 the contezt. Suppose that  we are given the following schema for a recur- 
sire function: 

F u n  f : s --+ r 

D e f  f (x )  = I f  C[x] T h e n  A[x] Else  B[x, f (K[x])]  Fi (1) 

Moreover, let us suppose that  the argument expression K[x] of the recursive call has 
an inverse; that  is 

K [ K - I [ x l ]  = x (2) 

2. Specification of  the new -function. Now we may introduce the following function: 

F u n  F : s --* s • v--+ r 

s p r  F ( ~ ) ( ~ ' , r  = ~ 

P r e  x ' =  Ki[z] for some i_> 0 (3) 

9 / = f ( x ' )  (4) 

P o s t  y = .f(x) (5) 

Note that  (3) and (4) establish invariant relationships between the parameters  z, x', 
and y'.  

3. Relating the two -functions to each other. Due to the postcondition (5) any call 
F ( z ) ( . . . )  yields as its result f ( z ) ,  provided that  the preconditions of F are met. 
But since we want to avoid calls of f ,  the following choice is reasonable: 

T h i n  ,f(x) = F(x) (Ki[x] ,A[Ki[z]] )  (6) 

W h e r e  i S u c h t h a t  C[Ki[z]] 
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From the definition (1) it  is irnmediatly seen that  the preconditions (3) and (4) are 
met. 

4. Termination case .for F. We can terminate F when the parameter  x I has reached x. 

Case 1: z '  = z (7) 
l- y = f (x )  ---- f ( x ' )  = y' [by 5, 7, 41 (8) 

5. Recurrence. When x'  has not yet reached z, we can establish a straightforward re- 
currence relation for F .  

Case 2: z '  # z 

b F(z ) ( z ' , y  ~) 

-~ f(x) 
--_ F(x)(K-l[x'],  f (K-l[x ']))  
: Le t  x " =  K - l [ x  I] I n  

F(x)(x", I f  C[x"] T h e n  A[x"] 
E l s e  B[x", f(K[x"])] F i  

: L e t  x Ir : K - l [ x l ]  I n  

I f  B[x"] T h e n  F(x)(z",  A[x"]) 
E l s e  

[by 5] 
[by 5, 4] 

[by 1] 

F(z)(x",  B[x", y']) F i  [by 2, 4] 

6. Derived rule. We can collect this subderivation into the rule given below. Note, 
however, that  this rule is quite complex due to its generality. If we would choose 
i = min{j  ]c[gJ[x]]}, then the function F would simplify to the more efficient form 

Def F(z) (x ' , y  ~) = 
I f x  I = x T h e n  yl 

Else Let x" ---- K-I[x] I n  F(x)(x",  B[x",y']) Fi 

However, as the example in the previous section demonstrates,  this efficient version 
is not always asked for. Therefore we present the general variant here. 
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Rule 25 (recursion removal using function inversion) 

b- F u n  f : s --* r 

F- D e f  y(x)  = I f  C[x] T h e n  A[x] Else B[x, f(K[x])] Fi  

~- g [ g - l [ x ] ]  = x 

] -O F u n  F :s-- , ,  s x r - - * r  

D e f  F(x ) ( x ' ,  y') = 

I f  x'  = x T h e n  y' 

Else Let X" : K-I[x  I] I n  

I f  C[x'q T h e n  F ( x ) ( x ' , A [ x ' ] )  

Else F(x)(x",B[x",y']) Fi Fi 

Def  f ( x )  = F(x) (Ki[x] ,A[Ki[x] )  

W h e r e  i S u c h t h a t  C[K~[z]] 
where F is a new identifier 

5 The Organization of Developments 

A calculus alone does not yet provide a programming methodology. The rules of such a 
calculus are nothing but tools for ensuring that our reasoning is correct. On top of such 
a formalism we always need guidelines for organizing our developments. In addition, it 
would by nice, if there would also be an automated system to assist us in our work. In 
the sequel we will very briefly comment on these issues. 

5.1 D e v e l o p m e n t s  and S u b d e v e l o p m e n t s  

No reasonably large development task can be performed in one go. We always concentrate 
on one aspect at a time. In its simplest instance this paradigm could already be seen in 
our little examples blog and div. There we performed various case distinctions, each of 
which led to a little subdevelopment. From these examples we can infer basic principles 
of such an organization: 

t> Every (sub)development takes place within a certain congext Therefore we start each 
development by defining the appropriate context. And, of course, we need means for 
extending the context whenever the need arises. 

t> Subdevelopments are usually nested within each other. Therefore we inherit the con- 
text from the encompassing development level and extend it appropriately. Therefore 
we obtain a hierarchical tree-like structure of the following kind: 
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Development 1 
'Context  F )  

255 

Subdevelopment 1.1 
(Context  r U / 1 )  

Subdevelopment 1.1.1 
(Context F U/'1 U/"1.1) 

(end of subdevelopment 1.1.1) 

Subdevelopment 1.2 
(Context  F U F2) 

(end of subdevelopment 1.2) 

end of development) 
l> However, experience shows that  we usually work on more than one development 

simultaneously. (We all know the situation that  we keep several piles of paper  around, 
each belonging to one component of the system to be developed.) This way we can 
immediately extend or modify one part,  when the need for doing so arises when 
working on some other part.  Therefore we must be able to suspend (sub)developments 
and to resume them again. 

1> There are also situations, where we do not want to suspend our current development,  
even though a certain property that  we need is not provided by the context.  Then 
we must be able to claim this property. That  is, we assume for the t ime being tha t  
the desired property indeed holds and just  continue the actual  development. In our 
formalism this means that  the property is added to the current context as an unproven 
assumption. The rules for combining subdevelopments then ensure that  the missing 
proof  still has to be given. 

The principles sketched above allow us to carry out developments in a well-structured 
and safe manner. However, they will usually end in an unordered collection of program 
fragments (signature fragments, axioms, theorems, function definitions, etc.). Therefore 
we usually have to subsequently clean up this unstructured assembly of facts. 

This leads us into techniques for "programming in the large": Now we have to apply 
rules tha t  organize the program fragments obtained so far into larger units that  represent 
a proper modularizat ion of the program. In Section 2.3 we have already listed many of the 
pert inent  constructs that  are needed for such a modularization. The rules, by which this 
act ivi ty can be performed in an orderly and correct fashion, are very much like the ones 
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given earlier in this paper. (A more detailed discussion is given in [26]. Moreover, these 
rules are the topic of intensive study in the research project KORSO that  is currently 
under way at several German universities and research institutions.) 

It goes without saying that  the activities of detailed deriviation-in-the-small and 
global reorganization-in-the-large are interleaved. (It obviously does not make sense to 
first generate a huge mass of unstructured facts and afterwards try to get some structure 
into them.) But experience shows that this organization task needs as much flexibility as 
the detailed derivation tasks. A purely stepwise refinement - as it is often advocated in 
the literature on software engineering - is not adequate; it happens frequently that  we 
have to restructure several modules by merging or splitting them, and by recombining 
them in new fashions. 

5.2 Transformation Systems 

The examples given in this paper clearly indicate, how helpful the assisitance by an auto- 
mated system could be. Such a system could carry out the application of the individual 
rules, thus saving us from performing the tedious and boring activity of rewriting our 
programs in dozens or maybe even hundreds of versions. Moreover, such a system would 
be much safer than we are, because it makes fewer errors by thoughtlessness: 

I> When rewriting programs, we are likely to make copying errors, which is very unlikely 
for machines. 

t> If a rule requires many premises, we tend to overlook some of them or to just "believe" 
that they are fulfilled; a machine is completely stubborn here. 

t> In lengthy developments we may easily lose the orientation; a good system will keep 
an accurate record of the completed and pending activities. 

l> Finally, a system may ease the reuse of developments, because it allows us to redo 
earlier developments, when we encounter similar problems. 

This sounds all very plausible. Yet, it has to be admitted that  it is the details that  
are most intricate. A number of transformation systems have been created over the past 
years for experimental purposes, Examples are - among others - the CIP-system described 
in [1] or the KIDs-system described in [36]. The latter is probably the most advanced 
system of its kind. But even with this system a lot of experience is still required in order 
to actually carry out ambitious developments. Nevertheless, the progress that has been 
made is very promising. 

The principles listed above represent some kind of "requirements analysis" for a trans- 
formation systems. As a matter of fact, the transformation system CIP-S has been de- 
signed on the basis of the formal calculus given in [24]. This CIP-calculus resembles the 
one given here, but it is much more technical, oriented towards the needs of an au- 
tomated system. By contrast, our calculus in this paper is oriented at methodological 
considerations. 

5.3 Strategies 

The most challenging aspect of any methodology for program derivation is the formula- 
tion of strategies or at least tactics. Our examples have already indicated some instances 
of such principles, for example: 
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I> We always start by formulating the domain theory, that  is, the operations and prop- 
erties that  are relevant for the application area under consideration. 
Of course, we will usually not foresee all necessary aspects of the domain theory 
at the very beginning; therefore our development method allows us to extend the 
domain theory whenever the need for doing so arises. 

t> When dealing with a concrete function specification, we usually formulate subgoals 
by making appropriate case distinctions. Each of these subgoals then leads to a 
corresponding subdevelopment. 

I> Some of these subdevelopments aim at the formulation of suitable recurrence rela- 
tions. This is frequently guided by the structure of the underlying data types. Here 
the generation axioms play a central role. (Theoretically speaking, this amounts to 
some kind of "programming with homomorphisms'.)  

I> Finally we try to optimize the resulting algorithms by applying more technical trans- 
formations such as recursion removal and the like. Particularly helpful are rules known 
under buzzwords like "strength reduction" or "finite differencing", "fusion", "struc- 
ture sharing", and the like. 

The above techniques might be classified as tactics, by contrast to more encompassing 
and ambitious rules that might qualify as strategies. Typical instances are here: 

t> Divide and conquer. This is probably the most widespread technique in computer 
science. The formalization of this principle has been intensively studied by D. Smith 
[34]; this work also shows, how the method can be integrated in a system such as 
KIDS. [26] demonstrates the integration of this principle into a formal derivation 
calculus. 

t> Global search is another paradigm that has been integrated into the KIDS system; 
see [35]. 

t> Implementation of data types is another challenging task. Attempts to do this by 
means of abstraction and representation morphisms have been made in [8] and [26]. 

This list could be extended. However, these papers also illustrate a problem with these 
strategies: The more general they are the more useless they become for the programmer. 
At a certain point one can no longer really benefit from the guidelines provided by 
the strategy, because they just formalize noncommittal truisms. So one has to achieve a 
subtle balacing between useful generality and abstractness on the one side and overdrawn 
universality on the other side. 

5.4 A n  E x a m p l e :  " M a j o r i t y  V o t e "  

To illustrate the aforementioned principles we use another little example that recently has 
gained some popularity. We hope that the subsequent derivation will convey some of the 
potential elegance and clarity that can be achieved by adopting an algebraic deduction 
style. 

D e v e l o p m e n t  Majority Vote 

1. Informal paraphrasing of the problem. We are given a collection of coloured objects. 
We shall determine, whether more than 50% of the objects are equally coloured. 
Unfortunately, there exists an unlimited variety of possible colours. 
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2. The domain theory. As our first task we must establish the global context, that  is, 
the theory of the underlying object domain. In our case, we are only concerned with 
collections of colours, since the nature of the objects themselves is irrelevant. 

C o n t e x t (  Majorily Vole) = Colour O Bag[colour] 

To ease our subsequent specifications it will be helpful to provide a function that  
yields the share of a colour in a bag. 

Fun  share : colour x bag[colour] -* real 
A x m  share(c, B)  = ~c in B 

3. Problem specification. Within the given context we can now formalize the original 
problem. 

Fun  majori ty  : bag[colour] --* colour 
S p c  major i ty (B)  = c 

P r e  true 
P o s t  share(c,B) > 50% 

E x c e p t i o n  c = nil 

Remark: The notation E x c e p t i o n  c = nil is a shorthand for expressing the fact that  
the default value nil shall be taken as result, if there does not exist a value c that  
fulfills the rest of the posteondition. 

4. An important insight (eureka/). No formalism in the world can replace the need to 
think. So we will have to ponder over our problem. (There has to be a bet ter  way 
than the obvious O(n2)-algorithm, where we simply count the colours one after the 
other.) The following observations put  us on the right track: 

t> For any given "candidate" colour a simple linear scanning will determine, whether 
this candidate has the majori ty  or not. 

i> So it would be nice, if we could designate one colour as the only candidate (which 
then could or could not have the majori ty) .  

I> Now let us suppose that  in some given collection A no colour has the majority.  
This immediately has the following two consequences: 

�9 If we add a colour e to A, then c becomes the only candidate.  
�9 If we add two different colours c # d to A, then there still  is no majority.  

Now we have to turn this informal reasoning into a formal program derivation. 
5. Eztendin# the Domain theory. We need some auxiliary predicates to formulate our 

ideas. 

Fun  cand : colour • bag[colour] -* bool 
Fun  anarchic : bag[colour] --* bool 
FUn un i f o rm  : bag[colour] --* bool 

A x m  canal(c, B)  r (Vz E B , z  # c) share(z ,B)  <_ 50% 
A x m  anarchic(B) ~=~ (Vz e B) share(x, B)  < 50% 
A x m  un i fo rm(B)  r (Vz, y e B) x = y 

The properties that  have been stated informally above, now can be formalized as 
follows: 
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T h i n  anarchic(B) A c ~ d ~ anarchic(B @ c ~ d) 
T h i n  anarchic(B) ~ cand(c, B @ c) 

Since these theorems immediately follow from the properties of Bag and elementary 
ari thmetic,  we skip their proofs here. (In a transformation system they would be 
recorded as "unfulfilled proof obligations".) 

6. Introducing subgoals. Our main idea was to first find a candidate and then check, 
whether it  indeed has the majority.  Therefore, we split our original function into two 
functions. 

Fun  f indCandidate  : bag[colour] --~ colour 
Fun  dominant : colour x bag[colour] --~ bool 

A x m  f indCandidate(B)  = c ~ cand(c) 
A x m  dominant(c, B) ' r share(c, B) > 50% 

With  these specifications it is trivially demonstrated that  the following proper ty  
holds: 

T h m  major i ty (B)  = Le t  c = f indCandidate(B)  I n  
I f  dominant(c) T h e n  c E lse  nil F i  

This theorem yields a definition for the function major i ty  as soon as we have suitable 
implementat ions for the functions dominant and candidate. 
The function dominant is no problem, because it is only based on elementary func- 
tions from Bag. Hence, the rule 21 converts the above axiom into the declaration. 

D e f  dominant(c, B) = share(c, B) > 50%. 

7. Implementing the function findCandidate. After all these preparatory steps we can 
now concentrate on the real challenge of our development, viz. the finding of the 
candidate.  To this end we introduce another auxiliary function that  splits a given 
bag into two bags, an ararchic one and a uniform one. 

Fun  spli t:  bag[colour] --* bag[colour ] x bag[colour] 
Spc split(B) = (A,V)  

P o s t  A t C U =  B 
anarchic(A) 
un i form(U)  

In order to find an implementation for this specification we consider the possible 
cases for bags. 

(a) Termination case: For empty bags the choice 
A x m  split(O) = (O,O) 
immediately fulfills the postcondition of split. 

(b) Establishing recurrence relations. For nonempty bags, which are of the form BOx,  
we can perform the following deductions: 
Assumption: L e t  split(B) = ( A',  U'). 
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Case1 : U I = 
Assumption: split(B @ x) = (A', {z}) 
I- A ' ~ { ~ } =  B @ z  
~- Anarchic(A') 
~- un i form({z} )  

Case2 : x E U' 
Assumption: split(B ~ x) = (A', U' ~ z) 
k- A ' t ~ U ' ~ x = B ~ x  
k- anarchic(A') 
}-- uni form(U'  ~ x) 

Case3 : x ~ U' A y E U' 
Assumption: split(B @ x) = (A' ~ z ~ y, 
l- A ' @ x ~ y ~ U l ~ y = B $ x  
~- anarchic(A' @ z @ y) 
k- uni form(U I 0 x) 

Peter Pepper 

U' O y) 

This is an instance of (a variant of) the rule 19, because the case distinctions are 
complete and disjoint, and each case fulfills the postcondition. Together with the 
rules 21 and 25 this leads to the final definition 

Let (A', U') = spTit(B @ z ) W h e r e  z E B 
In  
I f  U' -- 0 T h e n  A', {x} 
I f x E U '  T h e n  A ', U ~ $ z  
I f z f L U '  AU'  ~ O T h e n  A ' ~ z @ y ,  U ' O y  

W h e r e  y E U ~ 

De f  sp l i t (B)= 
If B=O T h e n  

Else 

Fi 
Fi 

Now it remains to perform some optimizations for the data representation. For exam- 
ple, the uniform bags can be efficiently represented by one data element and the number 
of its occurrences. But this kind of cleaning up is quite straightforward and mechanical. 
Therefore we refrain from doing this here explicitly. What is important  is the fact that 
we have succeeded to systematically develop an O(n) algorithm. 

6 Conclus ion  

We have tried to demonstrate that programs can be formally developped on the basis 
of a very rigorous and simple calculus. In this framework the two seemingly irriconsi- 
lable paradigms of verification-oriented and transformation-oriented programming are 
naturally integrated. 

The foundation of the approach is a strictly algebraic view, in which programs and 
specifications are unified. This algebraic treatment allows us in particular to deal with 
the development of data structures and algorithms simultaneously. 
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It is, however, evident that some assistance by a semi-automatic system is necessary 
in order to make this very stringent way of proceeding feasible in practice. But even if 
no such system is available, the general paradigm is still very helpful as an organization 
principle. The only difference will then be that many proofs are not carried out to the 
last detail but  rather are only sketched - very much in the style of classical mathematical  
proofs. 
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