
F o r m a l P r o b l e m

H.A. Partsch

Fakults ffir Informatik
Universits Ulm
D-89069 Ulm
Germany

S p e c i f i c a t i o n on an A l g e b r a i c B a s i s

A b s t r a c t

When aiming at developing correct software, formal problem specification is nowadays
considered an important intermediate stage in the software development process. An
algebraically based formalism for problem specification is introduced with the emphasis
both on how to use such a formalism for the specification of concrete problems and
on the methodological aspects of formalization. The formalism used is essentially the
one developed in the project CIP which may be considered as a representative of the
state-of-the-art in algebraic specification.

1 Introduction: Why Formal Specification?

The major difficulty in software development is caused by the fact that an original prob-
lem description usually consists of an unstructured bunch of half-baked wishes which
are neither precise, detailed, nor even complete, whereas a program, by nature, has to
be precisely defined and fully detailed up to each single instruction. It is obvious that
an at tempt to bridge the huge gap between these extreme positions in one large step is
doomed to fail, i.e., the resulting software will most likely not work as expected.

E x a m p l e
A simple, though typical example to illustrate this situation is given by the
request to write a program to solve the "cube problem". This problem deals with
a commercially available puzzle consisting of 6 pieces of (maybe) different shape.
The puzzle's goal is to build, if possible, a cube with the 6 pieces as its faces. The
problem to be solved is immediately clear when seeing the pieces of the puzzle.
However, it is not as easy to give a verbal description of the problem.
Each of the pieces of the puzzle is "roughly quadratic" and has a thickness of
1 unit and a fixed "kernel" of size 3 x 3 square units. Additionally, each of the
sides of a piece may have upto 5 quadratic "teeth" of size 1 square unit. The
following are typical pieces:

184 H.A. Partsch

There are two basic reasons why software does not work as intended:

- Either the original problem was misunderstood or misinterpreted, and thus the pro-
gram solves a "different" problem; or

- The problem was well understood, but the program does not solve this very problem.

In order to cope with the first source of trouble, it is widely accepted today that the
process of software development should be broken into smaller, manageable steps. A
minimum requirement is a decomposition into two steps (frequently called 'requirements
engineering' and 'program construction') with a precise, preferably formal statement of
the problem as an intermediate stage (cf. also [Balzer et al. 83], [Agresti 86], [Bauer et al.
89]). How to formally describe the above-mentioned "cube problem" will be dealt with
in section 5.2.

In order to cope with the second source of trouble, various approaches have been sug-
gested on how to construct an efficient program that satisfies a given formal specification.
All these approaches have correctness as their central goal, irrespective of whether they
are based on program transformations (for overviews, see [Feather 86], [Goldberg 86], or
[Partsch 90]), on assertional techniques (e.g., [Dijkstra 86], [Gries 81], [Backhouse 86]),
or another conceptual basis.

A problem specification is a description of the problem to be solved. Ideally, it should
describe what the problem is without giving the solution or even the details about its
implementation. In such a case, a specification is said to be descriptive. Otherwise, i.e. if
the specification describes how to solve the problem, we call it operational.

In software engineering, a problem specification is called a requirements specification
and there are numerous traditional approaches (for overviews, see, e.g., [IEEE 77], [IEEE
85], [Partsch 91]) to providing suitable formalisms. All of them use formal concepts only
to an extent that is still manageable by a non-expert user, and provide but simple lin-
guistic means for formulating requirements specifications, mainly relying on an intuitive
understanding of the semantics. Additionally, some of them are even backed by method-
ological principles to ensure a systematic conversion of an informal problem statement
into the respective formalism. Nearly all of them, however, leave open how to obtain
programs that solve the specified problem, and, furthermore, how to verify that these
programs indeed meet the specification.

In order to overcome the fundamental deficiencies of the traditional approaches, viz.
semantic imprecision and lack of an integrated methodology, there are various new ap-
proaches that focus on formal problem specification.

A specification is called a fo rma l speci f ica t ion if it is formulated in a formal lan-
guage, i.e. a language whose syntax and semantics are explicitly established prior to its
use; otherwise, we call a specification informal . Thus, in particular, specifications in
natural language are informal.

Formal Problem Specification on an Algebraic Basis 185

All of the new approaches assume a rigorous formal basis for an initial problem
specification which is, e.g.,

- relational (e.g., Gist [Balzer 81], EREA [Dubois et al. 88]),
- functional (e.g.[Henderson 80], [Bird, Wadler 88], VDM [Bjcrner 82], [Jones 86]),
- predicative (e.g., [Hehner et al. 86], [Broy 87]),
- set theoretical (e.g., Z [Spivey 88]),
- assertional (e.g., [Dijkstra 76], [Gries 81], [Backhouse 86]), or
- algebraic (e.g. ACT TWO [Fey 86], ASF [Bergstra et al, 89], ASL [Wirsing 83],

CLEAR [Burstall, Goguen 80], COLD [Feijs et al. 87], LARCH [Guttag, Homing 83],
OBJ [Futatsugi et al. 85], PLUSS [Gaudel 85]).

Additionally, all these new approaches also aim at an integrated methodical support
for (formally) constructing programs from a given formal specification. For solving the
problem of building a specification, however, in all these formal approaches, essentially the
same difficulties as in traditional requirements engineering have to be faced. Therefore,
we suggest an approach to formalization which basically builds on experiences gained
there, but also takes our envisaged specification formalism into account. This will be t h e

topic of the following section.

2 T h e P r o c e s s o f F o r m a l i z a t i o n

Formalization deals with the problem of how to proceed in order to build a formal
specification in a systematic way. A rough guideline is given in [Rzepka, Ohno 85] where
at least three essential sub-activities are identified, viz.

- identification of the problem,
- formal description of the problem, and
- analysis of the formal problem description.

2 . 1 P r o b l e m I d e n t i f i c a t i o n

Problem identification means finding out what the problem is. The difficulties here mainly
originate in the ambiguities and sources of misunderstanding inherent to the communi-
cation of different people by means of natural language. Usually, the person who gives
the problem is not the one who is to describe it formally; additionally, due to different
educational and professional backgrounds, they usually do not speak the same (technical)
language. Therefore, problem identification involves a "translation" between universes of
discourse, and the essential part of problem identification has to concentrate on finding
this translation.

Usually a problem statement (implicitly) assumes basic knowledge about the context
of the problem, frequently called the problem domain. For truly identifying the problem it
is essential to make these implicit assumptions explicit, i.e. to first identify the respective
problem domain. Having done so, further steps in finding the above-mentioned translation
a r e

186 H.A. Partsch

- choosing a concept of the problem domain,
- representing the concept, and
- associating the constituents of the problem with the representation of the concept.

Following [Webster 74], we use the notion concept for "an idea or thought, especially
a generalized idea of a class of objects; abstract notion". Hence, a concept of a (given)
problem domain is an abstract view of the problem domain, free from irrelevant details,
but suited to reflect its essential characteristics. As we are concentrating on software
systems, rather than on more general ones, we can further rule out arbitrary technical
concepts and focus our attention onto concepts from mathematics.

E x a m p l e
In order to illustrate our notion of a (mathematical) concept, we consider the
problem of building software for a traffic control system for a particular city. The
problem domain here comprises, among others, the topology of the respective city,
i.e., a street map, which has to be reflected as part of a concept of our sample
problem domain. In a simplified view, a street map is a structure consisting of
streets and intersections, and one straightforward concept for modelling a street
map is a finite graph. �9

Further examples of mathematical concepts are

- sets, relations, mappings, functions, orderings and lattice structures,
- algebraic structures (e.g., groups, rings, fields, sequences, bags, trees),
- relational structures (e.g., graphs, Petri nets),
- formal systems (e.g., equational systems, grammars, automata, rewrite systems, de-

duction systems, systems of concurrent processes).

The choice of a suitable concept already entails a tremendous gain with respect to
precision, as potential sources of misunderstanding are ruled out. Frequently, in addition,
the choice of a concept even amounts to a solution of the problem, as certain tasks for
certain concepts are already formalized and solved in generality. Examples of this kind
are

- minima and maxima in orderings;
- construction and modification of particular algebraic structures;
- paths, cycles, or closures in relational structures;
- languages generated by grammars or accepted by automata; or
- deadlock or starvation in systems of concurrent processes.

There is a lot of freedom in choosing a concept for a particular problem domain. Only
in rare cases a suitable concept is obvious or straightforward because of concrete hints
that can be found in the informal problem description.

However, generally no such hints are available. Therefore, the choice of an adequate
concept requires decisions. These decisions have far-reaching consequences, since they
not only affect the level of abstraction and the complexity of the formalization of the
problem, but also available solutions to the problem. Consequently, choosing an adequate
concept requires intuition and experience, and should be done very carefully.

In general, a concept consists of

Formal Problem Specification on an Algebraic Basis 187

- objects associated with certain object classes;
- operations on the object classes; and
- relations between objects and/or object classes.

A concept is either primitive or composed of other concepts. Representing a (non-
primitive) concept has to deal with the refinement and the detailing of its consti tuents and
their description on the basis of simpler concepts. As there may be several representations
of the same concept, again, a lot of freedom is available here which involves further
decisions.

E x a m p l e
The concept "finite directed graph", which we used in connection with our sample
problem admits several (equivalent) descriptions, e.g.,

a . a set of nodes and a set of edges (represented by pairs of nodes); (2.1.1)
b . a set of nodes and a pair of incidence functions which associate

with each node the set of its predecessors and successors; (2.1.2)
c. an adjacency matr ix where component (i, j) has the value 1, if

there is an edge from i to j, and 0 otherwise. (2.1.3)

Having decided on a concept of the problem domain and a suitable representation
of the chosen concept, it remains to associate the constituents of the problem with the
representation of the concept, which, again, entails decision making.

E x a m p l e
If, for our city map, we, for example, decided on description (2.1.1), we still
would have to decide on the association of streets and intersections with nodes
and edges. One obvious possibility is to associate intersections with nodes, and
streets with edges. However, we also might associate streets with nodes that are
connected by an edge if they intersect. �9

Which of several possible associations to choose, of course depends on further details
of the problem to be solved. Thus, e.g., in the first association (i.e., intersections as nodes,
streets as edges), it is easy to check how many streets are involved in an intersection, but
more difficult to trace an entire street. The second association, on the other hand, gives
easy access to individual streets, but, for example, expressing that a street admits only
one-way traffic is more difficult.

2 . 2 P r o b l e m D e s c r i p t i o n

If a problem has been identified properly, its (formal) description amounts to t ransla t ing
the result of the identification process into constructs available in the formal specification
language. In part icular, this means

- mapping the (representation of the) concept of the problem domain onto available
constructs; and

188 H,A. Partsch

- "glueing" together the constituents of the problem by giving an expression in the
formal specification language that describes the task to be fulfilled in terms of the
image of the representation of the concept.

Similarly to other sub-activities of formalization, decisions are necessary here, too,
depending on the particular specification language. Whereas translation of the represen-
tation of the concept into available language constructs in most cases will be straight-
forward, the formulation of the problem proper as an expression in the specification
language usually again leaves a lot of freedom.

None of the decisions to be taken during the formalization process is unique, as
we tried to illustrate by the simple examples above. Therefore a prime concern of any
formalism for formal specification of problems is the provision of as much flexibility as
possible in order to allow the adequate formulation of all possible representations of a
variety of different concepts.

At least, however, any formalism for the formal specification of some task has to offer
constructs that allow the representation of the constituents of a concept, i.e., objects and
object classes, operations, and relations, and the formulation of expressions that reflect
that task.

2 . 3 A n a l y s i s o f t h e P r o b l e m D e s c r i p t i o n

Since the problem specification is the basis for a subsequent program development, it is
important that it is "correct". Analysis of a problem specification should comprise checks
o n

- syntactic aspects;
- semantic properties; and
- the relationship to the originally given problem.

Obviously, formal specifications entail the usual problems to be encountered in using
a formal language, viz. correctness with respect to syntax and context conditions that
have to be checked.

The "meaning" of a formal specification is defined by the semantics of the specification
language used. Usually this is a partial mapping from syntactic constructs to (sets of)
semantic values. On this basis additional practically important semantic properties of
formal specifications can be introduced such as

- A formal specification is called defined (also consistent or satisfiable) if it has a "non-
empty meaning", i.e., if there is at least one semantic value associated with the
specified problem; otherwise it is called undefined (or inconsistent).

- A formal specification is called determinate if there exists at most one semantic value
associated with the specified problem; otherwise it is called ambiguous.

- A formal specification is called redundant if there exists a semantically equivalent
specification which is "simpler".

Except for redundancy, these properties can be formally checked on the basis of the
semantics of the specification language. There are, however, additional properties that

Formal Problem Specification on an Algebraic Basis 189

are not formally verifiable. These properties characterize the relationship between the
meaning of the formal specification and the originally intended problem. Examples of
such properties are

- A formal specification is called adequate, if its meaning coincides exactly with the
original problem.

- A formal specification is overspeeified, if its meaning comprises not all of the solutions
to the original problem.

- A formal specification is underspecified, ff its meaning comprises all solutions to the
original problem, but also additional ones.

Obviously, these properties are not independent of each other: an adequate specifica-
tion is neither over- nor underspecifed, but inadequacy does not necessarily imply over-
or underspecification.

Analysis of a formal specification is an essential part of the formalization process.
The process of formalizing a problem may be considered finished only, when the formal
specification is syntactically correct, and its adequacy with respect to the originally given
problem is ensured. For practical reasons, an analysis with respect to redundancy seems
worthwhile, too.

Before dealing with adequacy itself, however, a semantic analysis with respect to the
semantic properties seems worthwhile, because it gives valuable information. Thus, for
example, recognizing a formal specification to be undefined usually indicates a defect in
the formalization process rather than unsolvability of the originally given problem. Like-
wise, an ambiguous formal specification of a problem which is known to have a unique
solution implies inadequacy. Also, an examination of the specification with respect to
overspecification and underspecification provides insight with respect to adequacy. Very
often, underspecifcation can be removed by simply adding further conditions. Similarly,
overspecification frequently can be eliminated by weakening certain restrictions. How-
ever, checking these properties is not sufficient. Further considerations with respect to
adequacy are necessary, which may lead to redoing (parts of) the formalization pro-
cess. Examples of such considerations are (formal) derivations of logical consequences of
the formal specification to be validated against the original problem, or derivations of
acceptable answers to questions concerning certain scenarios.

3 A l g e b r a i c T y p e s

In section 2.2, we came to the conclusion that any formalism for the formal specification
of problems should at least provide constructs that allow the representation of the con-
stituents of a concept, i.e. objects and object classes, operations, and relations. Moreover,
we found that the formalism should provide as much flexibility as possible. In section 2.3
we pinpointed the importance of analyzing a formal problem description which in turn
implies that these kinds of analysis activities should be supported by a suitable specifi-
cation formalism. A formalism that satisfes all these requirements is given by algebraic
types.

An algebraic type provides a rather powerful formalism for defining objects, object
kinds, and their characteristic operations in an abstract, implementation-independent,

190 H.A. Partsch

and thus non-operational way. Object classes can be defined by (systems of) algebraic
type declarations. Objects are characterized implicitly by their construction, modifica-
tion, and access operations, rather than explicitly by exhibiting their internal structure;
operations are defined by properties describing their mutual relationship.

In the following subsections we are going to introduce systems of type declarations in
a step-by-step fashion by start ing with a nearly trivial case and extending the formalism
by gradually adding new concepts.

3.1 S i g n a t u r e s a n d T e r m s

To s tar t with, we consider a simple example:

t y p e NAT0
s o r t s na t ;
f u n c t s 0: --* n a t ,

s u c c : nat---* n a t
e n d o f t y p e

This t y p e d e c l a r a t i o n (marked by the keywords t y p e - e n d o f t y p e) introduces

- a sort symbol (here na t) ; and
- two function symbols 0 and s u c c together with their functionality. The functionality of

0 is --, n a t , i.e., 0 is a symbol for a constant. The functionality of s u c c is n a t --, n a t .

As to the notation of typed symbols, we use the convention introduced by Pascal where
a (possibly singleton) list of identifiers or symbols (separated by ", ') is followed by ":"
and their type.

The pair L ~ = (S, F), where S and F denote the sets of all sort and operation symbols
(inclusive of their respective functionalities) defined in a type, is also referred to as the
s i g n a t u r e of that type.

E x a m p l e
In case of NAT0, we have

~NATo ~--- ({nat} , {0: --* na t , s u c c : n a t --+ n a t })

Thus, in this part icular example, type definition and signature coincide. In gen-
eral, of course, this will not be the case. �9

The signature 2Y = (S, F) of a type defines the w e l l - f o r m e d t e r m s of sort s, for
each s E S, with free variables from an s-sorted family {Xs}s~s (inductively) as follows:

- every variable of sort s is a well-formed term of sort s;
- if Q , . . . , t , are well-formed terms of sorts S l , . . . , s,~ and f is an operation symbol

with functionality (sl • . . . x sn) ~ s, then f(Q, tn) is a well-formed term of sort
s. Hence, as a special case, nullary functions are well-formed terms;

- there are no other well-formed terms of sort s.

Formal Problem Specification on an Algebraic Basis 191

For a type T with signature ,U, any well-formed term (of sort s E S) is called a ,U-
t e r m (of sort s). A ,U-term that is built from operation symbols only, is called a g r o u n d
t e r m . Ground terms may be used to denote objects of some sort.

E x a m p l e
According to the above definitions, obviously, succ(succ(x)) is a well-formed term
of sort n a t provided x is a variable of sort nat . An example of a ground term of
sort n a t is succ(succ(succ(O))). �9

3.2 A x i o m s a n d S e m a n t i c s

The example NAT0 given above is but a special case of a type, since it coincides with
its signature. In general, a type T is completely characterized by a pair (,U, E) where E
denotes a signature, and E is a collection of axioms. An a x i o m (or law) is an arbitrary
closed, well-formed first-order formula over equations (with symbol: " - - ') and inequalities
(with symbol: "5") between E-terms.

Due to this (syntactic) definition of axioms, parentheses are only necessary for for-
mulating complex terms or for disambiguating first-order formulas over equations and
inequalities.

The simplest form of a law is an equation or an inequality between ,U-terms of the
same sort, which is preceded by a universal quantification of its variables. In order to
avoid notational overhead, a quantification (following the keyword a x i o m s) may extend
over several formulas separated by the symbol " , ' , which then means logical conjunction.

A simple example of an algebraic type with axioms is the following one (see also
[Bauer et al. 85]) that defines the truth values t r u e and false, as well as the operations
-~ (negation), A (conjunction), and V (disjunction):

t y p e BOOL
sor t s bool ;
f u n c t s t r u e , false: --, bool;

.-~.: boo l -* bool , (negation)

.A., .V.: (bool • bool) -* bool ; (conjunction, disjunction)
a x i o m s V boo l x, y:

t r u e ~ false , (1)
-- t r u e ---- false , (2)
-~ fa lse -- t rue , (3)
t r u e A x ---- x, (4)
false A x =-- false, (5)

v ~ = - (- ~ ^ ~u) (6)
e n d o f t y p e

The dots next to operation symbols such as -~, A, or V indicate the positions of their
arguments, the number of dots reflects the number of arguments. Thus -~. is a monadic
prefix operator and .A. and .V. are dyadic infix operators. The parenthesized texts to
the right of some of the lines in the above definition (such as (negation) or (1)) are

192 H.A. Partsch

comments, being irrelevant for the type definition. They will be used to convey some
intuition with operation symbols or to be able to refer to individual axioms. The symbol
"11" as in "V x, y: bool]l" is used to separate the quantified variables from the equations
and inqualities.

The axioms of a type are not required to be minimal. In fact, adding properties, that
are provable (of. below) from the axioms, as additional laws, often helps in understand-
ing a type definition. Thus, we could have added the usual properties of conjunction and
disjunction, such as commutativity, associativity, and distributivity, which are provable
from the given axioms. Note, however, that the law

t r u e ~ f a l s e ,

which guarantees that these symbols denote different constants, is necessary here, since
it cannot be proved from the other axioms.

The well-formed terms of a type denote abstract objects. The axioms "equate" certain
terms, i.e. they define a q u o t i e n t s t r u c t u r e on the set of well-formed terms.

In order to define the semantics of an algebraic type T = (,U, E) with signature `U =
(S, F) and laws E, we first introduce the notion of a (partial) ,U-algebra:

A (partial) E - a l g e b r a A = ((sA)ses, (f~) fer) consists of

-- a family (sA)seS of carrier sets (one for each sort);
- a family (fA)j~F of (partial) functions f~: (sl A • x s A) ~ s A, if the symbol f

has the functionality (sl • . . . • s,,) ~ s.

As is known, the result of applying a partial operation may be undefined. In order to
propagate undefinedness, we require that every operation f~ of an algebra A is s t r ic t ,
meaning that its application is undefined whenever one of its arguments is undefined.

E x a m p l e
As an example of a 2~-algebra we consider the algebra

FSET = (P(11), {11, $, C, D, U}), (3.2.1)

where 1l denotes an arbitrary singleton set, P(II) denotes the set of all subsets of
11, and C, N, U denote complement, union, and intersection, respectively. FSET
is a `uBOOL-algebra with

b o o l FSET = ~o(11), t r u e FsET = 11, fa l se FSET = ~,
_~FSET _~ C , A F S E T -- N , V F S E T -~ I.J.

Another `uBOOL-algebra is

RNAT = ((0, 1), {0, 1, (.+1) m o d 2, .x., ((.+ .)+(.x .)) r o o d 2}) (3.2.2)

where 0 and 1 are supposed to be natural numbers and where +, x, and m o d
denote the usual operations on natural numbers. �9

Formal Problem Specification on an Algebraic Basis 193

In order to be able to relate different `u-algebras, we introduce the notion of E-homo-
morphisms, i.e. structure-preserving mappings between E-algebras:

A weak (resp. strong) ,~-homomorphlsm ~: A ---+ B from a E-algebra A to a
E-algebra B is a family of partial (resp. total) functions (q~$ s A ~ sB)seS such that for
a l l~ .s l x s2 • s n - - + s i n F a n d a l l a i E s ~ (f o r i = 1 , . . . , n)

~s(/A(al , a .)) -----/S(~S,(~I),.. . ,r

A bijective `u-homomorphism is called a E-isomorphism.

Example
As an example we consider the `uBOOL-algebras FSET and RNAT from (3.2.1)
and (3.2.2). Obviously,

~bool : 7~(11) "" {0, 1} and g'bool : {0, 1} --* 7~(11),

defined by

~bool(O) =def 0, 41bool(ll) =clef 1, and ~bool(0) ~-~-def r ~bool(1) =def]l,

are (strong) `uBOoL-homomorphisms. Since both are bijective, they are also
`u BOO L-isomorphisms. �9

For every signature E there exists a special `u-algebra, the t e r m a l g e b r a (or w o r d
a lgebra) , denoted by W(E), which consists of all ground .U-terms as carrier sets and
term-forming operations according to the respective operation symbols. Any other `u-al-
gebra A can be related to W(E) by a particular weak S-homomorphism i:W(`U) ~ A.
This `u-homomorphism i, called the interpretation of W(`U) in A, is defined by

i (f (a l , . . . , an)) =d~f fA(i(al),..., i(a,))

for any term f (ah . . . , an) from W(E). The interpretation of an arbitrary term t (in A)
will be abbreviated by t A.

An equation tl = t2 between closed E-terms tl and t2 (of the same sort) is val id in a
E-algebra A iff their interpretations t r and t r are both undefined, or both defined and
equal (" s t r o n g equa l i ty") . The validity of laws that are arbitrary first-order formulas
is then defined as usual.

Example
For FSET as defined in (3.2.1) we have, e.g.,

i(false FSET A FSET x) =clef ($ CI x) ~ ~ =def i(falseFSET),

and, hence, (false A z) = false is valid in FSET. In the same way it can be
shown that the other laws of BOOL are valid in FSET, too. �9

A S-algebra A is called t e r m - g e n e r a t e d , if every element of any of the carrier sets
s A can be obtained by finitely many applications of functions f a .

194 H.A. Partsch

Example
Obviously, the ~U-algebra FSET from (3.2.1) is term-generated. However, it would
not be term-generated, if II was an arbitrary (non-empty) set instead of a singleton
set. �9

A 2~-algebra A is called a m o d e l of a type T = (2~, E) if it is term-generated and all
laws of T are valid in A. A type T is called cons i s t en t (or sat isf iable) , if it has at least
one model; otherwise it is called incons is ten t . A type is called m o n o m o r p h i c if all its
models are isomorphic.

Example
According to the latter definition, FSET is a model of BOOL. Another model
for BOOL is provided by RNAT. Both models are obviously isomorphic. In fact,
BOOL, as defined above, can be proved to be monomorphic. Moreover, obviously,
BOOL is consistent. �9

The s eman t i c s of a type T is defined to be the family of all isomorphism classes of
models of T. In the following the semantics of T will be denoted by GEN(T).

There are various other approaches where the semantics of a type is defined as a dis-
tinguished model (e.g., an 'initial' or 'terminal' one, cf. [Wirsing e t al. 83]). A comparison
of these different semantic definitions can be found in [Wirsing 89]. We prefer the above
definition, as it is closer to our intuitive understanding of a formal specification: each
of these models of a type definition characterizes a possible solution of the task that is
formally specified by the type definition. Because of the restriction of the semantics of
a type to term-generated models, proofs by term induction and structural induction are
possible (for details, cf. [Wirsing et al. 83]).

3.3 H ie ra rch i ca l Types

In order to be able to define object classes in a structured way, we extend our formalism
for types and allow to build up (hierarchical) s y s t e m s o f t y p e dec l a r a t i ons where
types may use other types as primitives. If a type T uses a type T ' as primitive, this is
indicated by

based on T'

in the definition of T; T ' is then called a p r i m i t i v e t y p e of T. If T ' is primitive to
T, all entities defined by T ' may be used in the specification of T. As an example of a
hierarchical type we consider a simple definition of natural numbers which uses BOOL
as primitive type:

Formal Problem Specification on an Algebraic Basis

t y p e NAT1
b a s e d o n
s o r t s
f u n c t s

195

BOOL;
n a t ;
O: --~ n a t , (zero)
succ: n a t -* n a t , (successor)
. : 0 : n a t -~ b o o l ; (is-zero)

a x i o m s V z: n a t I[
0 = 0 ---- t r u e ,
succ(x) = 0 -- f a l s e

e n d o f t y p e

The signature of a hierarchical type is simply defined as the union of the newly
introduced sort and function symbols with the signatures of the primitive types.

So far, we have tacitly assumed that a hierarchical type may use anything that is in
the signature of its primitives. For practical reasons, however, it is important that certain
entities defined by some type are hidden to the "outside world". Also, in particular with
hierarchical types, we probably do not want to make available everything which is in
the signature of its primitives. Therefore, we introduce the (syntactic) notion of (visible)
c o n s t i t u e n t s of a type as a list of entities in its signature that are made available to
other types. These constituents are marked by the keyword e x p o r t s .

Thus, for the example NAT1, e.g., we might prefer to write

t y p e NAT1
e x p o r t s nat , O, succ, . : 0 ;
b a s e d on BOOL;

e n d o f t y p e

in order to state that any type that uses NAT1 may only refer to the sort n a t and
the operations 0, succ, .=0, although the signature of NAT1 comprises the signature of
BOOL.

Rather than just referring to a primitive type by its name, one also could be more
specific by listing explicitly those sorts, constants, and operations that are used from the
constituents of the primitive type (cf. [Bauer et al. 87]). Additionally, (partial) r e n a m i n g
of the constituents of the primitive type is possible.

Through the notions of primitive type and constituents a relation between the types of
a type system is defined. This relation is obviously not reflexive and symmetric. Moreover,
it is also not transitive: if T is based on T ' and T ' is based on T", the constituents of
T" may be used in T only if they are included in the constituents of T ' or if T" is also
indicated as primitive in T. Of course, within a system of type declarations, primitives
leading to a cyclic relationship make no sense and, therefore, are forbidden.

A (hierarchical) type T is characterized by a tuple (~?, E, P1, . . . , Pn) where, for
1< i < n, the Pi = (,Ui, Ei) denote the primitive types of T with ,Ui C_ ~U and Ei C_ E.
As to the semantics of a hierarchical type, we do not simply take GEN(T), but rather
would like to have "hierarchical models", i.e., models in which the hierarchical structure
of the type definition is reflected. To this end further properties are needed.

196 H.A, Partsch

For a hierarchical type T we require that it is h ie ra rchy-prese rv ing , i.e. that for
all its models A and for every primitive type Pi of T the restriction of A to the signature
of Pi is a model of Pi, and thus, in particular, is generated by the operations of A that
correspond to the operation symbols of Pi.

Another important property for a hierarchical type T is pe r s i s t ency which means
that all combinations of models of the primitive types Pi can be extended to a model
of T. This guarantees that types may be implemented independent of other types which
are based on them. If the primitive types are monomorphic then the type T is either
persistent or inconsistent.

The s e m a n t i c s of a hierarchy-preserving and persistent (hierarchical) type T then is
the family of all isomorphism classes of models of T. According to this definition, "sound-
ness" of a hierarchical type requires proofs on hierarchy-preservatlon and persistency.
Fortunately, however, these semantic properties are implied by the (simpler) syntactic
properties of "sufficient completeness" (cf. section 3.4) and "hierarchy-conservativity',
resp. For a comprehensive and more elaborate discussion on this topic, cf. [Wirsing 89].

3.4 I n s t an t i a t i on

Looking again at the definition of NAT1, we realize that this type contains all of the
type NAT0. This purely syntactic relationship can be made explicit by the mechanism
of instantiation. I n s t an t i a t i on is a syntactic means (differently from hierarchical bas-
ing which is defined semantically) for structuring that may appear in a type definition.
It is indicated by the keyword include and defined by textual substitution (similar to
'macro expansion') of the type body without the list of visible constituents. Using this
mechanism in the definition of NAT1, would result in the definition:

t y p e NAT2
e x p o r t s
b a s e d on
include
functs

nat , 0, succ, .----0;
BOOL;
NAT0;
.=0: na t --. b o o l ;

a x i o m s V x : nat II
0 -- 0 - t r u e , (I)
succ(~) = 0 --- false (2)

e n d o f t y p e

As for hierarchical basing, instantiation may be coupled with renaming, too. Rather
than keeping with the names as defined by NAT0, we also could have used

include NAT0 as (natural , zero, .+1),

in order to rename all occurences of nat , 0, succ within NAT2 into na tu ra l , zero, .+1,
respectively. For renaming coupled with instantiation, we also allow abbreviations, e.g.,

include NATo as (n a t u r a l , . . .)

for renaming just the sort identifier.

Formal Problem Specification on an Algebraic Basis 197

3.5 P a r t i a l F u n c t i o n s

So far, all functions within our sample type definitions were total. Under certain cir-
cumstances, however, one might wish to make clear that certain terms denote erroneous
situations or are simply not defined. A simple example is given by the following type

t y p e NAT3
e x p o r t s nat , 0, succ, Fred, .=0;
i n c l u d e NAT2;
f u n c t s Fred: n a t ~ nat ; (predecessor)
a x i o m s V x: n a t 1[

defined(Fred(x)) =~ (x : 0) - fa l se , (3)
pred(succ(x)) ~ x (4) -

e n d o f t y p e

which introduces natural numbers with a predecessor operation pred. In this example,
pred is a partial operation which can only have a defined value for arguments x which are
not equal to 0. In the type definition this is formalized by means of a special (semantic)
predicate def ined in law (3).

Note, that allowing partial operations in our type definitions does not involve any
changes in the semantic definition, since we already introduced the concept of partial
Z-algebras.

When using partial operations in type definitions, some care has to be taken in order
not to introduce inconsistencies. For example, adding the axiom

succ(pred()) _= (3.5.1)

to the definition of NAT3 would result in an inconsistency. On the one hand, accord-
ing to axiom (3.5.1), we would have succ(Frcd(O)) =_ O. On the other hand, due to the
definedness axiom on pved, pred(O) is undefined and thus, due to the strictness of oper-
ations, succ(Fred(O)) is undefined, too. In order to avoid inconsistencies in connection
with a partial operation f, it has to be ensured that either f is applied only to arguments
that fulfil the definedness axiom, as in the example NAT3 above, or applications of f are
safe-guarded by means of cond i t iona l ax ioms. Thus, for example, adding

(x =0-false) (succ(Fr d(x)) (3.5.2)

to NAT3 above would do no harm, in particular, as it is a property that is provable for
NAT3. As an alternative, semantically equivalent notation for conditional axioms such
as (3.5.2) we allow to write

succ(pred(x)) - x p r o v i d e d -,(x =0). (3.5.3)

In a hierarchical type T = (Z, E, P) with primitive type P = (r p , Ep) terms may
be distinguished with respect to their sort: A S- term t is o f p r i m i t i v e sor t , if it is
of a sort from Sp ; otherwise, it is o f n o n - p r l m i t l v e sort . Thus, for NAT3, the term
succ(succ(O))=O is of primitive sort, whereas succ(succ(O)) is of non-primitive sort.

198 H.A. Partsch

A hierarchical type T = (,U, E, P) with P = (Zp, Ep) is called sufficiently com-
plete, if for every ground term t E W(2~) of primitive sort either -- def ined(t) or t = p
for some term p E W(Ep) is provable in T. A sufficiently complete type is hierarchy-
preserving [Wirsing et hi. 83]. A (syntactic) criterion that guarantees sufficient complete-
ness is given in [Guttag, Homing 78].

For a sufficiently complete type the axioms may be used for "evaluating" ground
terms of primitive sort. Thus, any question about the behaviour of some specification
can be expressed by an appropriate (possibly large) ground term which is then reduced
to a primitive term (the "answer" to the question) by a term-rewriting process using the
axioms of the type as rewrite rules. In this sense algebraic types may be used for "rapid
prototyping" (for details, cf., e.g., [Geser, HuBmann 86]).

Example
Obviously, the example NAT3 is sufficiently complete: all (visible) ground terms
t of primitive sort (here: bool) are of the form x =0 where x is a ground term
of non-primitive sort; if x is 0 or of the form succ(...), t may be reduced to the
term t rue , respectively false, according to axioms (1) and (2) of NAT3; if x is
of the form pred(...), then either x is undefined (according to axiom (3)) and so
is t, or ~: may be reduced to a term of the form 0 or succ(...), using the axiom
(4) of NAT3. �9

The use of partial operations (semantically captured by partial ,U-algebras) is but one
possibility of coping with the problem of terms denoting erroneous situations. Another
possibility is, e.g., error algebras. An elaborate discussion on these various possibilities
and their mutual relationships can be found in [Wirsing 89].

3.6 Type Schemes

Types, as introduced above, can be used not only for defining elementary object kinds
such as numbers, truth values, characters, but can be used also for specifying composite
object kinds.

As an example we consider sequences of natural numbers. A sequence (sometimes also
called a list) is a sequential structure consisting of an arbitrary number of elements (which
are natural numbers). A sequence containing no elements is called empty; otherwise, it
is called non-empty. A sequence can be extended by adding elements to it. The elements
in a non-empty sequence can be accessed sequentially: an operation first yields the first
element of the sequence; an operation rest yields the sequence without the first element.

On closer inspection of this informal description we realize that, for an axiomatic
definition, only the sort symbol of the element type has to be known. This means that
specifications of sequences of objects other than natural numbers will follow the same
pattern. Since a similar phenomenon can be observed with other composite object kinds,
it seems appropriate to extend our type mechanism further to allow parametrized types.

Parametrized types are also called t y p e schemes . For indicating the parameters in
the definition of a parametrized type the keyword p a r a m s is used. In contrast to types,
type schemes allow us to express certain structural principles for composite object kinds.

Formal Problem Specification on an Algebraic Basis 199

Thus, a type scheme SEQU which gives the essential properties of the sequential com-
position of objects into a new (composed) object can be formally defined as follows:

t y p e SEQU(m)
params m: sort;
e x p o r t s sequ, < > , . - -<> , . 5 < > , first., rest. , .+4
b a s e d on BOOL;
sorts sequ;
functs < > : ~ sequ; (empty sequence)

�9 ----<>, . 5 < > : sequ --* bool , (tes t on empty sequence)
first.: sequ --* m, (first element)
rest.: sequ --* sequ, (remainder)
.+.: (m x sequ) ---* sequ; (addition of an element)

a x i o m s V ~: m; s: sequ [[
< > = < > - true,
(x + s) = < > - false,
s 5 < > = -,(s = < >) ,
defined(f irst s) =~ (s 5 < >) -- true,
f irst(x + s) = x,
def ined(rest s) =~ (s 5 < >) =- true,
rest (x + s) -- s

e n d o f t y p e

The (formal) parameter m of SEQU is just a sort symbol. In general, arbitrary col-
lections of constituents, i.e. sorts and operations, are allowed. Additionally, these may be
constrained by predicates or appropriate degenerate types (cf. below).

As discussed earlier, type schemes may be used in the definition of other types through
instantiation. Of course, in the case of a parametrized type, actual parameters have to
be supplied which consistently replace the formal ones within an instantiation. Using
instantiation, e.g., sequences of natural numbers can be defined by

t y p e NATSEQU
e x p o r t s natsequ , < > , . = < > , - 5 < > , first., rest . , .+.;
based on NAT3;
inc lude SEQU(nat) as (n a t s e q u , . . .)

e n d o f t y p e

Type schemes do not have an independent semantics. Using a type scheme in the
definition of another type, however, is well-defined through the instantiation mechanism.

3.7 " D e g e n e r a t e " T y p e s

In general, types (and type schemes) define new object kinds and operations. However,
there are also "degenerate" forms of types which define just operations (and no new
object kind). Of course, such a type has to be based on some other type T (via b a s e d
on, instantiation, or parametrization). Therefore, it is called an e x t e n s i o n of T. A simple
example of an extension was already provided with the definition of NAT2.

200 H.A. Partsch

When using an extension, one might want to clearly indicate which constituents are
added through the extension and which are simply taken over from the included type. For
this purpose we allow to use (within a list of constituents) e x p o r t s T as an abbreviation
of the list of constituents of T. Using this abbreviation, an extension of the type NAT3
can be given as

t y p e NAT4
e x p o r t s
i n c l u d e
func t s
ax ioms V x,

NAT3, .=., . < .;
NAT3;
.=., . < .: (nat x na t) --* bool ;
y: nat II
x : O - - x : O ,
x : y - - y : x ,
, , , ~ c (~) = sur -- ~ = y,
x < 0 = false,
0 < succ(x) -- t rue ,
, ~ c c (~) < s~cc (y) - �9 < y

e n d o f t y p e

In this way, any operation over some type T can be defined via an appropriate extension
of T.

Another instance of degeneration is given by types which define neither new object
kinds nor new operations, but only additional properties. A typical example of such a
type is the type scheme [Bauer et al. 85]:

t y p e EQUIV(m, eq)
p a r a m s m: sort,

eq: (m • m) ---* bool ;
b a s e d on BOOL;
ax ioms V z , y, z:. m II

eq(x, y) - t r u e V eq(x, y) :_ false, (totality)
eq(x, x) =_ t rue , (reflexivity)
eq(x, y) - eq(y, x), (symmetry)
(eq(~ , y) = t r u e ^ ~q(y, z) _---- t r u e)

(eq(x, z) - t rue) (transitivity)
e n d o f t y p e

which states that a total binary predicate eq on m is an equivalence relation. For nat
and "=" defined by NAT4, obviously EQUIV(nat , =) is provable.

Since type definitions of this degenerate kind can be viewed as abbreviations for
collections of axioms, they can conveniently be used for restrictions on the parameters
of some type or for a compact formulation of laws.

4 M o r e o n A l g e b r a i c T y p e s

So far we have introduced all the basic concepts of algebraic types. For the formal spec-
ification of problems, however, it is convenient to have more basic types and also some
additional syntactic sugar. This will be the topic of this section.

Formal Problem Specification on an Algebraic Basis 201

4.1 Further E x a m p l e s o f Basic Algebraic T y p e s

Like sequences, other composite structures can be defined by algebraic types. Examples
are finite sets, bags, and finite mappings. Further examples can be found in the literature
(e.g. [Bauer et al. 81, 85], [Partsch 901).

F in i t e sets . Many problems can be specified in a straightforward way using the concept
of finite sets. Finite sets differ from sequences in two respects. They do not have multiple
occurrences of elements and the ordering of elements is irrelevant. Finite sets can be
specified by the (monomorphic) type scheme

t y p e SET(m, eq)
params m: sor t ,

eq: (m • m) ~ boo l
constrained by EQUIV(m, eq);

e x p o r t s set, 0, {.}, .U., . - . , .E., .4.;
based on BOOL;
sorts set;
f u n c t s 0: ~ set, (empty set)

{.}: m --+ set, (singleton set former)
.U.: (set x set) --* set, (set union)
. - . : (set x m) --* bool , (deletion of an element)
�9 e., .~.: (m • set) --* bool ; (membership, non-membership)

ax ioms V x,y: m; s,t ,u: set H
s U O = s, (neutrality ofO w.r.t. U)
s Ut = t U s, (commutativity of U)
(s U t) U u -- s U (t U u), (assoeiativity of U)
s U s -- s, (idempotency)
y E 0 =-- false,
y E {x} -- cq(x, y),
y~ (sut) -(y~s)v(y~t),
x ~ s ___ - , (x ~ s) ,
(0 - x) - 0,
z - y = if eq(x, y) t h e n 0 else {z} fi
(s u t) - y = (s - y) u (t - ~)

e n d o f t y p e

Parameters are here an object kind m and a binary predicate eq on m, which is
constrained to have the properties of an equivalence relation.

A parameter constraint (indicated by the keyword c o n s t r a i n e d by) is a closed,
well-formed first-order formula over the parameter symbols and/or instantiations of de-
generate types abbreviating collections of axioms.

Also, some "syntactic sugar" is used in the definition of SET. For example, an axiom
such as

202

{x} - y -- i f eq(x, y) t h e n ~ else{x} fl

is jus t shorthand for the pair of axioms

H.A. Partsch

eq(x, y) -- t r u e ::~ {x} -- y -- $,

eq(x, y) -- fa lse ==~ {x} - y -- {x}.

Bags. Many problems conveniently can be specified on the basis of bags. Bags, some-
t imes also called 'multisets ' , can he defined by the type scheme

t y p e BAG(m, eq)
params m: so r t ,

eq: (m • m) --+ b o o l
constra ined b y EQUIV(m, eq);

e x p o r t s bag , 0, .+., . �9 . ~., . - . , ~oees;
based o n BOOL, NAT4;
sorts bag;
functs 0: --* bag ,

.+., . - . : (bag x m) -+ bag,

. �9 .~.: (m x bag) --+ bool ,
~oecs: (m x bag) --+ nat;

ax ioms Vz, y:m; b:bag [I

e n d o ~ y p e

(empty bag)
(addition, deletion of elements)
(membership, non-membership)

(number of oee~en~es)

y E 0 - fa lse ,
y �9 (b -t- x) -- i f eq(x, y) t h e n t r u e e lse y �9 b fi,
z ~ b = - ~ (~ e b),
0 - x - 0 ,
(b + x) - y =_ i f eq(x, y) t h e n b else (b - y) + x fi,
~occs(z, O) = O,
~occs(y, b + x) - i f eq(x, y) t h e n succ(~occs(y, b)) else ~occs(y, b) fi

An alternative definition of bags with the operations 0, {.}, and .U. analogous to the
definition of SET is obvious and left as an exercise to the interested reader.

Note, however, that in contrast to SET, BAG is not monomorphic. If a definition
is wanted where for all models addition of an element to a bag is commutat ive and/or
associative, appropriate laws have to be added.

F i n i t e M a p p i n g s . Finite mappings associate finitely many elements of an index set
with values. They can be defined by the following type scheme:

Formal Problem Specification on an Algebraic Basis 203

t y p e M A P (i n d , m, eq);
p a r a m s ind , m: sort,

eq: (i nd x i nd) ~ b o o l
c o n s t r a i n e d b y EQUIV(ind, eq);

e x p o r t s m a p , [~, .[.]~-., isdef, .[.];
b a s e d on BOOL;
sorts map;
functs [~: --~ map, (empty map)

.[.]~-.: (m a p x i n d x m) --* m a p , ("updating")
isdefl (m a p x i nd) --, b o o l , (definedness-test)
.[.]: (m a p x i nd) -* m; (indexed access)

a x i o m s V i, j: ind ; m: m a p ; x:. m II
isdeJ(R, i) - false,
isdef(m[i]~x, j) = i f eq(i, j) t h e n true e lse isdeJ(m, j) fi,
denned(m[/]) ~ i s d e f (m , i) - true,
(mO]*--x)[,] = i f eq(i, j) t h e n x e lse m[i] fi

e n d o f t y p e

Parameters are here two object kinds i n d and m, as well as a binary predicate eq on
ind , having the properties of an equivalence relation.

Rather than checking definedness explicitly, as is done by the operat ion isdef in the
type MAP, it is sometimes convenient to have "total maps", which are finite maps with a
pre-defined value for each index. Further variants for finite mappings, e.g. with more than
one index, are obvious. As an example, we give a definition of "total square matrices":

t y p e MATRIX(ind , m, eq)
p a r a m s i nd , m: so r t ,

eq: (ind • i nd) --* b o o l
c o n s t r a i n e d b y EQUIV(ind, eq);

e x p o r t s m a t r i x , init, .[., .]~--., .[., .];
b a s e d on BOOL;
s o r t s m a t r i x ;
f u n c t s init: m --* m a t r i x ,

.[., .]~--.: (m a t r i x • i n d x i n d x m) --* m a t r i x ,

.[., .]: (m a t r i x • i n d • i nd) --~ m;
a x i o m s V i, j, k, I: ind; m: m a t r i x ; x: m tl

init(x)[i, j] - x,

(initialization)
("updating")

(indexed access)

(m[i,j]*---x)[k, ~ = i f eq(i, k) A eq(j, l) t h e n x e lse m[k, l] fi
e n d o ~ y p e

4.2 E x t e n s i o n s o f Bas ic T y p e s

The types as defined in the examples above contain only a few operations. For pract ical
purposes, however, a richer set of operations often allows a much more flexible and
adequate formalization. Such a richer set simply may be defined as an extension (cf.
section 3.7) of an existing basic type using the instantiat ion mechanism.

204 H.A. Partseh

A typical example is the following definition of indexed sequences as an extension of
the type SEQU:

t y p e INDSEQU(m)
p a r a m s m: sor t ;
e x p o r t s SEQU, I.I, .[.], .[.: .], .-1;
b a s e d o n NAT3 as (nat , 0, .+1, . -1 , .=0);
i nc lude SEQU(m);
f unc t s 1.1: sequ ~ nat ,

.[.]: (sequ x nat) -+ m,

.[.: .]: (sequ • nat x nat) ~ sequ,

.-1: sequ --~ sequ;
a x i o m s V ~.. m; r, s, t: sequ; i, ~. n a t I]

I<>1-0,
Ix + sl - Isl +1,
s[1] -- f i rs t s,
s[i] =- (res t s) [i - 1] p r o v i d e d 1 < i ,

(length)
(indezed access)

("slicing")
(re~crsaO

s[i : k] =_ i f i > k t h e n < > e l se s[i] + s[i + 1: k] fi
p r o v i d e d 1 < i, k < Isl,

S - 1 ---~ i f s ---~<~> t h e n < > e l se s[l'l] + (s [l : I'1- 1]) -1 fi
e n d o f t y p e

Of course, INDSEQU again could be extended by further operations. Also extensions
of SEQU by other operations are obvious, as are extensions of other basic data types
such as sets, bags, or maps. For examples, cf. [Partsch 90].

If we extended our type formalism to also allow 'higher-order types ' [M611er 87], we
also could define an extension of SEQU that comprises the (higher-order) operations and
predicates from [Bird 87]. Thus, within the algebraic formalism, we could also profit from
the well-known advantages of using higher-order operations and predicates to express
commonalities and generic aspects in a concise, abstract way. However, such an extension
to higher-order types would also require a (slightly) more complicated theory. Therefore,
a detailed treatment is not included in this tutorial text.

4.3 M o d e s

Certain types and type schemes, such as Cartesian product and direct sum, occur so
frequently that it is reasonable to introduce particular shorthand notations called m o d e s
[Bauer et al. 85]. Syntactically, modes are introduced by a m o d e d e c l a r a t i o n . Their
semantics is defined via instantiations of the associated type schemes.

A p r o d u c t specifies objects that are composed of a finite number k>0 of other
objects, called c o m p o n e n t s , together with operations for construction and selection.

A special case of products are pairs. Arbitrary object kinds m and m I can be com-
bined into pairs by using the type scheme

Formal Problem Specification on an Algebraic Basis 205

t y p e PAIR(m, m') ;
p a r a m s m , m~: sort;
e x p o r t s pair , ink, sel, sei'
sort pair ;
f u n c t s ink: (m x m ') --* pair ,

seh pair --+ m,
sei': pa i r ---+ m '

a x i o m s V x: m; x': m' II
sel(mk(x, z') = x,
sel '(mk(z, x')) = x'

e n d o f t y p e

(pairing)
(selection of first component)

(selection of second component)

The type scheme PAIR is monomorphic relative to its parameter sorts. The constructor
operation m p - like all operations defined by types - is strict in its arguments. As an
abbreviation for the above type definition and its use in

inc lude PAIR(m, m ') as (pair, mp, s, s') (4.3.1)

we now introduce the mode declaration

m o d e p a i r = rap(s: m, s': m') . (4.3.2)

The generalization of (4.3.1) and (4.3.2) to an arbitrary product PRODUCTk is obvious.
The pairs as introduced by (4.3.2) provide, except for construction and selection, no

further operations. Frequently, however, at least the induced equality, i.e. componentwise
equality, is wanted, provided equalities eq and eq' on the component types are available.
In order to define pairs with induced equality, we simply extend the type scheme PAIR
by an operation

cqu: (pai r x pai r) ---* boo l

defined by (V z, y: m; x', ~f: m ')

equ(mp(x, ~'), mp(y, y')) = eq(x, y) A eq'(x', y~)

and use

- m o d e palr(equ) = rap(s: m(eq), s': m'(cq'))

as a shorthand notation for the instantiation of the extended definition of pairs (cf. [Bauer
et al. 87]).

The (direct) s u m specifies the disjoint union of a finite number k > 0 of carrier sets,
which are called va r i an t s of the sum. In addition to injection and (partially defined)
projection operations, which are analogous to the constructor and selector operations in
products, one also needs discriminating predicates.

The sum of 2 carriers is introduced by

m o d e m = v(p: m) [v'(p': m ') (4.3.3)

206 H.A. Partsch

which is defined to be an abbreviation for

inc lude SUM2(m, m ~) as (sum, v, .is v,p, C, .is C, f)

where SUMz(m, m I) is defined as follows:

t y p e SUM2(m, m I)
p a r a m s m, m~: sort;
e x p o r t s s, ink, i smk , pr, m k I, i smkl , pC;
sorts s;
f u n c t s m k : m --* s ,

mkl: m I ---+ s,
i smk , i smk ' : s --+ bool ,
pr: s --* m ,
pC: s --* m ~

a x i o m s V x : m; z': m' [[
def ined(pr(x)) ~ ismk(x) - t rue ,
i s m k (m k (x)) =_ t rue ,
ismk'(mk()) = f a l s e ,

-

def ined(pr ' (z ')) =~ i s m k ' (x ') - t rue ,
i s m k ' (m k ' (z ')) = t rue ,
i s m k (m k ' (z ')) = false,

=

e n d o f t y p e

(4.3.4)

(injection)

(discriminat ion)
(projection)

Again, the generalization of (4.3.3) and (4.3.4) to an arbitrary number of variants is
obvious. As PRODUCTk, the scheme SUMk is monomorphic relative to the parameter
sorts.

E x a m p l e
A typical example for a sum mode declaration is

m o d e resu l t = error(message: s t r ing) [correct(res: int) . �9

In connection with the sum mode it is also allowed to have nullary variants (without
projections), which are variants which define new constant symbols.

E x a m p l e
A typical example of this kind is

m o d e color = red I blue I green

that introduces a new object kind color consisting of the constants red, blue, and
green, resp. �9

Formal Problem Specification on an Algebraic Basis 207

Furthermore, sums may also be quasi-ordered such that all elements of one variant are
preceded in the quasi-ordering by all elements of another variant. For details see [Bauer
et al. 85].

Similar to products, sums can be formally extended by an equality in a straightforward
way. Since, however, this equality simply coincides with the equality on the variants of
the sum, we do not introduce a particular notation.

The combined use of product and sum also gives meaning to r e c u r s i v e m o d e dec-
larat ions.

E x a m p l e
By the above definitions,

m o d e nat ---- 0 [suce(pred: na t)

is equivalent to the definition of NAT3 as given in section 3.5 (with .is 0 for . = 0) i

As a further notational device in connection with modes, s u b m o d e s may be used as
a convenient shorthand notation for expressing restrictions on objects. The meaning of
submode declarations such as

m o d e m o n t h = (x: na t II 1 < x < 12)

is intuitively clear. For a formal definition see again [Bauer et al. 85].
In contrast to [Bauer et al. 85], we will also use modes for abbreviating type instan-

tiations. Thus,

m o d e m = T(n) (4.3.5)

is defined to be an abbreviation for

inc lude T(n) as (m , . . .) . (4.3.6)

E x a m p l e
Using (4.3.5) and (4.3.6), sequences of natural numbers thus could have been
defined simply by

m o d e na t = NAT4;
m o d e n a t s e q u = SEQU(nat , =).

4.4 F o r m u l a t i o n o f C o n c e p t s by Algebra i c Types and M o d e s

In the following we are going to exemplify how the basic types and their extensions may
be used for the representation of (mathematical) concepts (cf. section 2.1). We will confine
ourselves to the concepts "finite directed graph" and "cube". From these examples the
representation of other concepts as (systems of) algebraic types and/or modes should be
straightforward.

208 H.A. Partsch

F in i te D i rec t ed Graphs . Assuming a type NODE with sort n o d e and equality test
--, a basic constructive definition for finite directed graphs can be given as follows (cf.
[Bauer et al. 89]):

t y p e DGRAPH
e x p o r t s dgraph , eg, ine, isarc;
b a s e d on NODE, BOOL;
sor t dgraph;
f u n c t s eg: --~ dgraph ,

inc: (dgraph x node • node) --* dgraph ,

isare: (dgraph • node x node)--* bool;
a x i o m s V g: dgraph; z, y, u, v: node II

isarc(eg, x, y) - false,

e n d o ~ y p e

(empty graph)
(addition of

connected nodes)
(test on edges)

isarc(inc(g, x, y), u, v) = (((x = u) A (y = v)) V isarc(g, u, v))

This specification of DGRAPH is based on a fixed set of nodes (defined by NODE).
A specification of finite directed graphs for different kinds of nodes as well as various
extensions can be found in [Partsch 90].

Based on DGRAPH, it is possible to give definitions of the representations of graphs
as exemplified in section 2.1. Thus, e.g., a representation of finite directed graphs accord-
ing to (2.1.2) is as follows:

t y p e DGRAPH'
expo r t s DGRAPH, nodeset , in, out;
include DGRAPH,

SET(node, =) as (nodeset , . . .);
f tmcts in, out: (node x dgraph) --* nodese t ;
a x i o m s V 9~ dgraph; z, y, z: node II

in(x, eg) = 0,

e n d o ~ y p e

(predecessors, successors)

in(x, inc(g, y, z)) = if x = z t hen in(x, g) t3 {y} else in(x, g) fi,
out(x, eg) =. 0,
out(x, inc(g, y, z)) = if x = y t h e n out(x, g) U {z} else out(x, g) fi

Similarly, definitions for the other two representations could be given. Thus, e.g., a
definition for the representation (2.1.3) might use an appropriate instantiation of the
type MATRIX:

Formal Problem Specification on an Algebraic Basis 209

t y p e DGRAPH"
e x p o r t s d g r a p h , eg, inc, isarc;
b a s e d o n NODE, BOOL;
inc lude MATRIX(node, bool , =) as (dg raph , . . .);
f u n c t s e~ --* d g r a p h , (empty graph)

inc: (d g r a p h x n o d e x n o d e) --* d g r a p h , (addition of
connected nodes)

isarc: (d g r a p h x n o d e x n o d e) --* bool ; (test on edges)
a x i o m s V g: dgraph; z, y: n o d e II

eg - init(false),
inc(g, ~, y) ~ g[x, y]~--true,
isarc(g, z, y) =_ g[x, y]

e n d o f t y p e

A definition for the representation (2.1.1) can be given simply using mode declara-
tions:

m o d e n o d e s e t = SET(node , =);
m o d e e d g e (=) = me(in: node (=) , out: node(=)) ;
m o d e e d g e s e t = SET(edge, =),
m o d e g r a p h = rag(nodes: nodese t , edges: edgese t II

V e: edge II e ~ edges ~ in(e) e nodes A out(e) E nodes)

In all these definitions, only few operations (on graphs) are defined. Of course, it is
possible to extend these definitions by arbitrary operations. Examples can again be found
in [Partsch 90].

C u b e s . As another example for illustrating the formalization of concepts as algebraic
types, we consider (the combinatoric properties of) the notion "cube".

Intuitively, with respect to the notion of a cube, three different kinds of entities are
involved: faces, edges, and vertices. Accordingly, depending on whether we consider faces,
edges, or vertices as primitive entities, different representations of the concept cube will
emerge from relating the respective primitives. The obvious possibilities are

- 6-tuples of related faces
- 12-tuples of related edges
- 8-tuples of related vertices.

In the sequel we will concentrate on the first possibility. Specifications based on the
other ones follow similar patterns.

Assuming the availability of a type FACE which defines a sort f (for "face") and an
equality = on objects of sort f, the combinatoric properties of cubes can be axiomatically
defined by 6-tuples of related faces as follows:

210 H.A. Partsch

t y p e F-CUBE
e x p o r t s FACE, iscube;
b a s e d on BOOL;
inc lude FACE;
f u n c t s .H.: (f • f) "-* b o o l ,

._L.: (f x f) --* bool ,
iscube: (f • f x f x f x f • f) --* b o o l ;

ax ioms V a, b, c, d, e, ~. f I]
include EQUIV(f, .11.),
a _L b - -~(a II b),
(a / b A a _L cA b l c - - t r ue) =~

(d II a v d II b v d II c = t r u e) ,
(a = b = t r u e) ~ (a II b -- t r u e) ,
iscube(a, b, c, d, e, f) =

-.(~ = b) A - . (c = d) A - . (e = f) A

(paralle 0
(perpendicular to)

(1)
(e)

(3)
(4)

all bAcll dAe l l fAa-LeAa-LeAe le
e n d o f t y p e

The sufficient completness of this definition is obvious: By the axioms of EQUIV, any
subterm of the form a [] b can be reduced to either t r u e or false. Since, moreover, any
subterm of the form a .I_ b can be reduced to a term over (a]] b), the axioms of BOOL
guarantee that arbitrary terms (over .]]. a n d , I .) are reducible to either t r u e or false.

Whether this formalization really captures the intuitive notion of (the combinatoric
properties of) a cube is a different question which cannot be answered formally, but only
made plausible. To this end, from this definition additional properties can be derived
which profitably can be used either for checking the adequacy of the formal specification
or in program development. Examples are:

L e m m a 1
For faces a, b, c, d, e, fwe have:
a. (a II b A a _L c = t r u e) :~ (b .L c = t rue) ;
b. i scube(a ,b , c ,d , e , f) ~ I { a , b , c , d , e , f } I = 6;
c. iscube(a, b, c, d, e, f) - iscube(c, d, a, b, e, f);
d. iscube(a, b, c, d, e, f) - iscube(b, a, c, d, e, f);
e. iscube(a, b, c, d, e, f) - iscube(c, d, e, f , a, b).

Proo f : Straightforward from the axioms and basic rules of logic. �9

L e m m a 2
For elements a, b, c, d, e, f o f type f there are exactly 15 equivalence classes with
respect to iscube.

Proo f :
First we show that all possible tuples of arguments for iscube can be represented
by at most 15 tuples formed out of a, b, e , d, e, .ft.
From lemma 1 it follows that for all tuples starting with an element different
from a there is an equivalent one (with respect to iscnbe) starting with a. Thus,

Formal Problem Specification on an Algebraic Basis 211

it is sufficient to consider tuples start ing with ab, ac, ad, ae, a]. Likewise it
follows that for all tuples start ing with abd, abe, abf there is an equivalent one
s tar t ing with abc. By analogous reasoning we conclude that for all tuples there
are equivalent ones start ing with abe, acb, adb, aeb, afb. Once more using the
same reasoning we finally find out that the tuples

a, b, c, d, e , l a, c, b, d, e , I a, d, b, c, e , l a, e, b, c, d , l a ,] , b, c, d, e
a, b, c, e, d , l a, c, b, e, d , l a, d, b, e, c , I a, e, b, d, c , I a , I , b, d, c, e
a, b, c , I , d, e a, c, b,], d, e a, d, b,], c, e a, e, b,], c, d a , I , b, e, e, d

are sufficient to represent all possible argument tuples to iscube. Finally, it is easy
to see that none of these tuples is equivalent to another (with respect to iscube),
which concludes the proofi �9

L e m m a 3
For foxes a, b, c, d, e,]which are mutually different w.r.t. =, we have:

iscube(a, b, e, d, e, f)r
a l c A a l e A c . L e A b . l _ c A b l e A d l e A
a_l_ d A a J _ f A c_L f A b_L d A b_L f A d_L f

P r o o f : Straightforward from the definition of iscube and lemma 1.

5 E x a m p l e s

In this section we would like to illustrate how to use the specification formalism intro-
duced in the previous sections by means of somewhat more complex examples.

5.1 T h e B o u n d e d Buf fe r

As part of a simple system of communicating agents, we consider the problem of specifying
the behaviour of a "bounded buffer". The problem is as follows:

There is a buffer of restricted length. Information can be sent to the buffer for
storing. I f the buffer is not full, the information is stored and an OK-message
is given. Information can also be retrieved from the buffer according to priorities
tagged to the information. Storing (retrieval) results in issuing an error message,
if the buffer is full (empty).

In order to formally specify the problem, we assume to have available a type INFO
which defines an object kind info (of information) and an operat ion pry: in fo --* n a t
which assigns a priority to an information. Disregarding the problem of boundedness, the
intended buffer obviously behaves like a priority queue (of objects of type info) which
may be specified by

212 H.A. Partsch

t y p e PQUEUE
e x p o r t s p q u e u e , put, max, rest, init, [.[;
b a s e d on INFO, NAT4 as (nat , 0, .+1, .-1,.,.,.);
so r t s pqueue ,
func t s init: ---, p q u e u e ,

put: (pqueue • info) ~ pque ue ,
r a a x - p q u e u e ---* info,
rest: p q u e u e --+ pqueue ,
I.l: p q u e u e ---, na t ;

ax ioms V q: pque ue ; i: info It
l initl = O,

Iput(q,i)l = Iql +1,
d e f i n e d (m a x (q)) =~ (0 < lql) = t rue ,
m a x (~ t (i n i t , i)) = i,
max(put(q , i)) -- i f pry(max(q)) < pry(i) t h e n / e l s e max(q) fi

p r o v i d e d 0 < Iql,
de f ined(res t (q)) ~ (0 < Iql) = t rue ,
rest(put(init, i)) ==. init,
rest(put(q, i)) --- i f p ty(rnaz(q)) < pty(i) t h e n q else put(res t (q) , i) fi

p r o v i d e d 0 < Iql
e n d o ~ y p e

Taking boundedness into account, the intended buffer can be specified in terms of
priority queues as follows:

m o d e buf fe r = (q: p q u e u e I1 Iql < N V [ql = N);

According to the informal description, input to the buffer is either information to be
stored or an attempt to retrieve stored information. Thus, a single piece of input to the
buffer can be specified by

m o d e i ne l em = sto(infl info) I retr.

Likewise, a single piece of output from the buffer is either an OK-message, an error
message or an information. This can be formalized by

m o d e o u t e l e m = OK I s-error I r-error I mk-res(in~. info).

The behaviour of the intended buffer is completely characterized by specifying a func-
tion buffer which maps an arbitrary sequence of input elements onto a sequence of output
elements. Thus, altogether, we have the following specification:

Formal Problem Specification on an Algebraic Basis

t y p e BUFFER(N)
params N: nat;
expor t s input , o u t p u t , buffer;
based on INFO, PQUEUE, SEQU, NAT4;
m o d e ine lem = sto(infi info) [retr;,
m o d e input = SEQU(inelem);
m o d e o u t e l e m -- O K [s-error [r-error I mk-res (in f : info);
m o d e o u t p u t = SEQU(outelem);
m o d e buffer -- (q: pqueue II Iql < N v Iql = N) ;
functs buffe~, input -~ output ,

buff. (inpu t x buffer) -+ output ;
a x i o m s V in: input; b: buffer; i: info [[

buffer(in) - buff(in, init),
b u f f (< > , b) - <> ,
buff(sto(i) + in, b) =- if Ib] < N t h e n O K + buff(in, put(b, i))

else s-error + buff(in, b) fi,
buf f (re tr + in, b) - if Ibl > 0 t h e n mk-res (max(b))

+ buff(in, rest(b))
else r-error + bu1~in, b) fl

e n d o ~ y p e

213

5.2 T h e " C u b e P r o b l e m "

An informal statement of the problem was given in section 1. Following the method-
ological guidelines from section 2, formalizing the problem requires formalization of the
problem domain, i.e., input, output, and constituents of the problem, as well as formal-
izing the problem proper as an expression in terms of the formalization of the problem
domain. Each of these aspects will be separately looked at in turn, assuming the availabil-
ity of basic concepts such as bags, indexed sequences or tuples, for which an intuitively
obvious notation will be used as long as we are reasoning on the conceptual level. In
our subsequent treatment of the problem, in particular, the influence of various design
decisions during formalization will be commented on.

I n p u t . In our attempt to formalize the input to the problem, we follow a top-down
approach. We start from a first rough approximation of the conceptual data structures
involved and then gradually refine them until we reach a sufficiently detailed and ade-
quate description.

Input
In a most general view, according to the informal description given in section 1, the
"input" to the problem consists of a bag of 6 pieces, i.e.

pbag =def (B: hag o f piece II IBI = 6),

assuming the availability of a primitive type piece that formally specifies the individual
pieces of the puzzle. Additionally, we know that the surface area covered by all pieces

214 H.A. Partsch

when arranged in a cube has to be 6x5 z = 150:

~p~B area-covered-by(p) = 150.

Thus, together, as a first approximation, we specify the input to the problem by

p b a g '~def (B" bag of piece II IBI = 6 A EpeB area-covered-by(p) = 150).

For a further, more adequate refinement, a detailed specification of p iece is needed.

Individual pieces
In order to formally describe the pieces, there are obviously different possibilities. Ir-
respective of these, however, all pieces have common characteristics which need not be
specified explicitly and may be considered invariants. Each piece has:

- 4 sides, perpendicular to each other;
- a fixed "kernel" of size 32 = 9 square units;
- a thickness of i unit; and
- upto 5 "teeth" per side, each of size 1 square unit.

According to these common characteristics, the area covered by a single piece p is
composed of the size of the kernel and the areas covered by the teeth. With respect to
the latter, we further have to distinguish between "middle teeth" (which contribute to
the total area of the cube in two dimensions) and "corner teeth" (contributing to three
dimensions). Assuming the availability of appropriate auxiliary operations, the area cov-
ered by a single piece thus can be defined by

area-covered.by(p) =def 9 + 2 • middle-teeth(p) + 3 • corner-teeth(p).

The individual "geometry" of each piece is given by the presence, resp. absence, of
"teeth" at its sides. Thus, a straightforward formalization of pieces might be given by

s i d e =def (s: i ndexe dse qu o f boo l II Isl = 5), (5.2.1)
p i e c e =def rap(s1: side, s2: side, s3: side, s4: s i d e)

(or, equivalently: p iece = (p: i n d e x e d s e q u o f side II Ipl = 4), implicitly assuming a
fixed orientation of the sides, e.g. clockwise).

However, this straightforward formalization does not take into account that two con-
secutive sides share a common corner, i.e., for each side si of a piece p

$/[5] : S(i m o d 4)+1[1] (5.2,2)

has to be required. Furthermore, in order to be mechanically stable, there must not be
"isolated teeth" at the corners, i.e., for each side si of a piece p

8/[5] ~ 8/[4] ~/ $(i i o n 4)+1[2] (5,2.3)

has to be required, too.
Thus, rather than using pieces as defined in (5.2.1), we need

Formal Problem Specification on an Algebraic Basis 215

r p l e c e = d e f (P: p i e c e II isagp(p)) where (5.2.4)
isagp(p) =def

Vl<i<4 (p.s~[5] = p.s(~ rood 4)+111]) ^ (p.s~[5] =~ p.si[4] V p.s(~ r o o d 4)+112]) �9

Here, the well-known dot notation is used to denote the selection of the components of
a tuple. If selection is used in conjunction with indexing or slicing, it is assumed that
selection has higher priority.

The simple closed forms of the properties (5.2.2) and (5.2.3) are obviously a conse-
quence of our decision to assume a fixed orientation of the sides of a piece. Otherwise,
explicit conditions on all pairs of adjacent sides would have been needed. On the ba-
sis of this definition we are now also in a position to formalize the auxiliary functions
middle-teeth and corner-teeth, e.g. by

middle-teeth(p) =def ~i=1..4 (btn(p.si[2]) -4- btn(p.si[3]) + btn(p.si[4])),
corner-teeth(p) =def L'i=L4 btn(p.si[1]),
bin(b) =def i f b t h e n 1 e l se 0 ft.

Furthermore, definitions of functions to access side i (1 < i < 4) of a piece or its left
corner, its middle part , and its right corner, which will be needed to formalize tha t two
sides fit together, are straightforward:

full-side(i, p) =def p.si,
left-cornea(i, p) =def p.s~[1],
middle-part(i, p) =def p.si[2 : 4],
right-corner(i, P) =aef p.si[5].

Summing up, in order to formally describe the input to our problem, we may use

pbag =def (B: b a g o r r p l e c e IIIBI = 6 A sveB area-covered-by(p) = 150) (5.2.5)

with definitions of r p i e c e and the auxiliary functions as given above.

Other definitions .for individual pieces
Of course, there are alternative representations of pieces. Examples are:

- representation by corners (of unit size) and (the middle parts of) sides (of size 3).
Here, due to considering corners as individual entities, an equivalent of requirement
(5.2.2) is not explicitly needed. However, access to a side or its parts has to be
changed.

- representation by sides (of size 4), assuming that each corner (of unit size) is uniquely
at tached to one of its adjacent sides. Here too, an explicit equivalent of requirement
(5.2.2) is not needed, but again access to a side and its constituents has to be changed.

- representation by (the very middle tooth of) sides (of unit size) and corners (of
size 3). Again, an explicit equivalent of requirement (5.2.2) is not needed. Moreover,
requirement (5.2.3) is already given in the definition of corner. However, accessing a
side or its parts becomes somewhat more difficult.

216 H.A. Partsch

"View8"
So far we did not pay attention to the fact that the description of a piece depends on
the way we look at it. Obviously, by rotating a piece (clockwise or anti-clockwise) by
90 degrees it remains the same, although its description changes - irrespective of which
formalization is used. Similarly, flipping a piece (vertically or horizontally) changes its
representation, but, of course, not the piece itself.

As a straightforward approach to formally describe all these various RviewsS of a
piece, we may use generating functions id ("identity"), r ("rotate"), f ("flip"), each of
functionality

rp ieee ~ rp iece ,

which are described by the following properties (with o denoting function composition
and assuming that no other equalities hold than those explicitly stated):

r o r o r o r = id,

f o f = id,
r o id = id o r = r,

f o i d = i d o f = f ,
~ o f = / o ~ o ~ o , - .

(5.2.6)

Obviously, {id, r, f}, together with the axioms (5.2.6) generates a group with the
elements

{id, r, r 2, r 3, f , I t , f r 2, fr3}. (5.2.7)

The different views, generated by {id, r, r 2, r 3,], fr, f r 2, fr~), of piece 1 from the
example given in the beginning may be visualized as follows:

Constructive definitions of the generating functions of the various "views" of a piece
are also obvious. Assuming, e.g., definition (5.2.4) for pieces, we have

id(p) ~-~ p,
~(p) ~ mp(p.s~, p .~ , , . ~ , p.~) ,
f(p) ~ ~T~p([p.s3] -1, [~.s2] -1, [p.Sl] -1, [p.84] -1)

where verifying that these definitions preserve the essential properties (5.2.2) and (5.2.3)
is straightforward.

Formal Problem Specification on an Algebraic Basis 217

From these definitions, deriving explicit definitions for the remaining elements of the
group (5.2.7) is straightforward, e.g.

r~(p) = r(r(p))= ~(mp(p.s~, p.s3,p.s,, p.s i))= mp(p.s3, p.s,, P.Sl, p.s2).

In order to formally define the aspect of "views", we may use

v iewid ~-~def { id, r, r 2, r 3, f, It, fr ~, fr 3}

and a function view of functionality (viewid • rpiece) --* rplece, that "applies" the
"view function" denoted by an object of type v iewid to a piece.

Since view is a finite mapping, there are, of course, obvious alternative representations
by appropriate data structures, such as maps, arrays, 8-tuples, etc.

O u tp ut . For an adequate formalization of the output of our initially given problem,
F-CUBE (cf. section 4.4.2) seems to be a reasonable candidate, since the elements of type
f obviously can be interpreted by (views of) the pieces of the puzzle and the relation J_
by "has a common side with". Thus, as a first approximation for formally specifying the
output of our problem, we choose a tuple (a, b, c, d, e, f) of (views of) pieces which forms
a cube, i.e., for which iscube(a, b, c, d, e, f) holds where iscube is defined as in F-CUBE
or as in lemma 3 (cf. section 4.4.2).

This first approximation, however, is not yet satisfactory. Since the puzzle ultimately
aims at building a cube (provided it exists), an adequate formalization of the output
should also give sufficient information on how to actually construct the cube from the
pieces.

One possibility for giving this information is by arranging the pieces in a two-dimen-
sional way such that common sides of pieces immediately can be recognized. Thus, e.g.,
for a tuple (a, b, c, d, e, f) , which is known to form a cube, the following representation
could be used (where lines indicate common sides):

E
C

S S

218 H.A. Partsch

Finally, for a suitable definition of iscube, we also have to take into account that two
pieces are only allowed to form one common edge of the intended cube, if the teeth of
adjacent sides fit together. This has two implications with respect to the formalization
of output:

- rather than just interpreting elements of type f by (views of) pieces, we have to use
a stronger relation (instead of .l_) within the definition of iscube which reflects the
idea of "fitting together"; and

- instead of just requiring that two pieces have a common side, we also have to be more
precise on which side of the one piece has to fit which side of the other one.

One possibility for dealing with the latter problem is by assuming a fixed representa-
tion for each view of a piece, e.g.,

In order to cope with the former problem, we use an appropriately defined predicate
fits which assumes such a fixed representation of the pieces. With these modifications,
output to our original problem now can be formally specified even in linear form, viz. by
a sequence <a, b, c, d, e, f > of views of the original pieces which satisfies the predicate
iscube defined (following lemma 3) by

iseube(a, b, c, d, e, f) = d e f

fits(a, 2, c, 4) A fits(a, 3, e, 4) A fits(c, 3, e, 1) A fits(b, 3, c, 2) A fits(b, 2, e, 2) A
fits(d, 1, e, 3) ^ fits(a, 4, d, 4) ^ fits(a, 1, f, 4) h fits(c, 1, y, 3) A fits(b, 1, d, 2) h
fits(b, 4, f, 2) ^ fits(d, 3, f, 1).

In order to give a formal definition of fits, we recall the properties of the pieces of the
puzzle: Two sides of two pieces fit together, if their respective teeth are complementary
with the exception that facing corner teeth of both pieces may not be present. Thus, an
obvious specification for fits is the following one (assuming a fixed orientation of the sides
of a piece):

fits(p, i, q, j) =def
Vl<k<3 -~(middle-part(i, p)[k] r middle-part(j, q)[3 - k + 1]) A
-,(left-corner(i, p) ^ right-corner(j, q)) ^ -~(right-corner(i, p) ^ left-corner(j, q)).

Formal Problem Specification on an Algebraic Basis 219

F o r m u l a t i o n of t he P r o b l e m P r o p e r . Having now available formal specifications of
input and output to the problem, it remains to formally specify the problem proper. This,
however, is straightforward from the informal description: Given a bag b of 6 pieces, we
want to know if a cube can be built from these pieces, and if so, how. Formally, this is
specified by

if formseube(b) t h e n somecube(b) else false fi w h e r e
psequ =def sequ o f rplece;
for~nscube(b) :-deE 3 8: p s e q u I] isperm(b, s) A iscube(s);
somecube(b) :de f s o m e s: p s e q u 11 isperm(b, s) A iscube(s);

Here we have used an existential quantifier and a "comprehensive choice" (denoted by
some) to formulate specification expressions. Intuitively, the meaning of these operators
is obvious, for a formal definition we refer the reader to [Bauer et al. 85]. The symbol
"A" is used to denote sequential conjunction.

I t remains to give a formal specification of isperm, i.e., to formally specify what it
means that a sequence s of the above kind is an arrangement of a given bag b of pieces.
But this is obvious: both have to consist of the same pieces, however, maybe in a different
view. Thus, the formal relationship between the input bag and the output sequence may
be described by

isperm(b, s) =def
Ibl = Isl A S p: r p i ece , v: v i e w i d I]

p E b A view(v, p) -- f i r s t s A isperm(b - p, r e s t s).

A C o m p l e t e F o r m a l Spec i f i c a t i on . A complete formal specification of our initial
problem now is immediately obtained by collecting the various parts developed so far
and translat ing them into our specification formalism. However, we have to take some
design decisions, e.g. with respect to the representation of the pieces of the puzzle, which
will also have consequences for some of the auxiliary functions. Furthermore, we will
still use certain obvious abbreviations such as universal quantification over a restricted
domain or i terated sums.

For the formalization of pieces we use

t y p e PIECE;
e x p o r t s s ide , s, r p l ece ;
b a s e d on BOOL, NAT, INDSEQU;
m o d e s = INDSEQU(bool) ;
m o d e s ide = (s: s H Isl = 5);
m o d e p i e c e = INDSEQU(side) ;
m o d e r p i e c e - (p: p i e c e II li~ -- 4 A isagp(p));
f u n c t s isagp: p i e c e --~ boo l ;
a x i o m s V p: p i e c e II

isagp(p) -- Y1_<,_<4 (Pill[5] = p[(i r o o d 4)-t-1][1]) A
(p[i][5] :~ p[i][4] V p[(i r o o d 4)+1][2])

e n d o f t y p e

220 H.A. Partsch

Based on the definition of pieces, the input to the problem can be formalized by

t y p e PBAG
e x p o r t s pbag;
ba sed on PIECE, BOOL, NAT, BAG;
m o d e r p b a g = BAG(rpiece);
m o d e p b a g = (B: r p b a g I] [B[= 6 A ~peB area-covered-by(p) = 150);
func t s area-covered-by: rp iece --* nat ,

middle-teeth: rp iece --+ na t ,
corner-teeth: rp iece -~ na t ,
btn: boo l ~ nat ;

ax ioms V p: rpiece; b: boo l 11
area-covered-by(p) - 9 + 2 • middle-teeth(p) + 3 • corner-teeth(p),
middle-teeth(p) =__ Si=1..4 (btn(p[~q[2]) + btn(p[i][3]) + btn(p[i][4])),
corner-teeth(p) - ~7i=1..4 btn(p[i][1]),
btn(b) - if b t h e n 1 else 0 fi

e n d o ~ y p e

For the formalization of views we use the idea of "view identifiers" as introduced
above, as well as generating functions rot (for "rotate") and flip. Thus we obtain:

t y p e VIEW
e x p o r t s v i e w i d , view;
based on PIECE;
m o d e v iewid : id I r] r 2 I r3 I l l f r l f r~ I f r a;
func t s view: (viewid • rp iece) --, rp iece ,

rot: rp iece --~ rp iece ,
flip: rp iece - , rp iece ;

ax ioms V i: viewid; p: rp iece; s: side II
view(i, p} =

if i is id t h e n p
elsf i is r t h e n rot(p)
elsf i is r 2 t h e n rot(rot(p))
elsf i is r a t h e n rot(rot(rot(p)))
elsf i is f t h e n flip(p)
elsf i is fr t h e n flip(rot(p))
elsf i is fr 2 t h e n flip(rot(rot(p)))
elsf i is fr 3 t h e n f l ip(rot(rot(rot(p)))) fi,

rot(p) -- p[4] + p [l : 3],
f l i p (p) - [p[3]] -x + ([p[2]] -1 + ([p[1]]-I + ([p[4]] -~ + <>)))

e n d o f t y p e

Based on the definition of pieces, the output of the problem can be forma|ized by

Formal Problem Specification on an Algebraic Basis 221

t y p e PSEQU
e x p o r t s p s e q u , iscube;
b a s e d o n RPIECE, BOOL, NAT, INDSEQU;
m o d e p s e q u = INDSEQU(rp iece) ;
m o d e m s i d e = (m: s II Iml = 3);
f u n c t s iscnbe: p s e q u --* b o o l ,

fits: (r p i e c e x n a t • r p i e c e x n a t) -~ b o o l ,
left-corner: (na t x r p i e c e) --~ b o o l ,
middle-part: (n a t x r p i e c e) --~ m s i d e ,
ri#ht-eorner. (nat x r p i e c e) --* b o o l ;

a x i o m s V s: p s e q u ; p, q: rp iece ; i, j: n a t II
defined(iscube(s)) r Isl = 6,
iscube(s) -

,fits(s[1], 2, s[3], 4) A ,fits(s[1], 3, s[5], 4) A ,fits(s[3], 3, s[5], 1) A
.fits(s[2], 3, s[3], 2) A .fits(s[2], 2, s[5], 2) A ,fits(s[4], 1, s[5], 3) A
,fits(s[1], 4, 8141, 4) A .fits(s[1], 1, s[6], 4) A ,fits(s[3], 1, s[6], 3) A
,fits(s[2], l , s[4], 2) ^ ,fits(s[2], 4, s[6], 2) A ,fits(s[4], 3, s[6], 1);

,fits(p, i, q, j) --
V 1<k<3 -,(middle-part(i, p)[k] ~ middle-part(j , q)[3- k + 1]) A
-.(te/t-co.,e,(i, p) ^ ~ight-co, 'ne,% q)) ^
-.(,'ight-co,'ne~(i, p) ^ left-co,',,e~(j, q)),

left-corner(i, p) - p[i][1],
middle-part(i , p) - p[i][2 : 4],
right-corner(i, p) =_ p[i][5]

e n d o f t y p e

Based on these definitions, the problem proper can be formalized as given above.
This specification has been successfully used as a starting point for a (rather straight-

forward) transformational development which ended in a (fairly efficient) backtrack pro-
gram to solve the "cube problem" (as was requested in section 1). In this program (the
transformed versions of) the definitions of isagp and p b a g are profitably used to check
the validity of the input (represented by boolean arrays). Efficiency of the resulting pro-
gram as compared with a naive backtrack program is obtained by exploiting lemma 3
from section 4.4 during the development.

6 C o n c l u d i n g R e m a r k s

In this paper we have introduced algebraic specifications as a means for fomally specifying
problems - or at least as a solid basis on which a comprehensive specification formalism
can be built. Concepts, theoretical background, and abstract syntax have been borrowed
from the language CIP-L (cf. [Bauer et al. 85]) on purpose. Of course, there are many
other algebraically based specification languages, some of which are mentioned in section
1. Although these languages may differ quite substantially with respect to notation or
the particular theoretical basis, most of them basically comprise more or less the same
concepts which justifies our inital claim to view CIP-L as a typical representative for an
algebraic specification language. A more detailed synoptical treatment of several algebraic

222 H.A. Partsch

specification languages can be found in [Wirsing 89]. There, in particular, also lots of
interesting apsects with respect to theory are surveyed and discussed.

Within our paper the advantage of formal specifications over informal ones was taken
for granted. In fac L although formal specification can be argued to be an additional cost
factor for software development, it is rather to be seen as an investment that essentially
pays afterwards during implementation and "maintenance". Detailed experiences in this
respect are reported in [MSller, Partseh 86].

The advantages of algebraic specification over conventional (semi-formal) approaches
to requirements engineering are also obvious. Algebraic specifications have a precise
(formal) semantics, and thus provide the mandatory prerequisite for reasoning about
completeness and consistency. They fit nicely into the paradigm of "transformational
programming" (cf. [Partsch 90]) and thus make a substantial part of a conceptually
integrated methodology for software development. And last, but not least, algebraic
specifications also contribute to solving the important problem of adequacy of a for-
mal specification (cf. section 2.3). In this respect not only the expressive power with
respect to formulating axioms has to be mentioned, but, above all, the various possibili-
ties of "checking" adequacy, i.e. checking how far a formal problem description coincides
with the original problem. It is obvious that adequacy cannot be proved: the best to be
achieved is making it plausible. In this respect, algebraic specifications provide several
possibilities all of which are based on redundancy:

- It is in principle possible to give different, independent formalizations of the same
problem, and then to (formally) prove their equivalence;

- It is possible to derive additional (redundant) properties ("theorems") from the ax-
iomatization, and to examine these for adequacy;

- Certain restricted algebraic specifications are "executable" (of. section 3.5) and pro-
vide a means for "rapid prototyping".

In order to illustrate the use of algebraic specifications, we had to restrict ourselves
to relatively small examples for obvious reasons. More comprehensive examples can be
found elsewhere, among them a line-oriented text editor [Partsch 90], the kernel of a
transformation system [Bauer et al. 87], a screen-oriented editor [Feijs 90], part of the
Macintosh Toolbox Event Manager [Burton et al. 89], or (substantial parts of) Microsoft
Word [Wijshoff 92]. In addition, several companies have started the experimental use of
algebraic specification languages in their daily work.

Algebraic specifications are an appropriate approach to problem specification and
a reasonable basis for a suitable formalism for requirements engineering, because they
meet nearly all properties desired of such a formalism (cf. [Partsch 91]). Nevertheless, for
practical work, extensions of the pure formalism will be needed to enhance expressive-
ness, such as higher-order functions (cf. [MSller 87]), specification-building operations
(like those in ASL [Wirsing 83]), and relations to formulate indeterminism and certain
non-functional requirements. Furthermore, extensions by modal and temporal logic (for
real-time and other behavioural aspects) or traces (for parallel and distributed systems)
can be thought of. Experiments with these and similar kinds of extensions are on the way.

Formal Problem Specification on an Algebraic Basis 223

Acknowledgement

Constructive criticism and valuable remarks by J. Boyle, M. Geerling, C. Morgan, and
D. Tui jnman on earlier versions of this paper are herewith gratefully acknowledged.

References

Agresti, W.M. (ed.): New paradigms for software development. Washington, D.C.: IEEE Com-
puter Society Press 1986

Backhouse, R.C.: Program construction and verification. London: Prentice-Hall 1986
Balzer, R.: Final report on GIST. USC/ISI, Marina del Rey, Technical Report 1981
Balzer, R., Cheatham, T.E.Jr , Green, C.: Software technology in the 1990's: using a new

paradigm. IEEE Computer 16:11, 39-45 (1983)
Bauer, F.L., Berghammer, R., Broy, M., Dosch, W:, Geiselbrechtinger, F., Gnatz, R., Hangel,

E., Hesse, W., Krieg-Brfickner, B., Laut, A., Matzuer, T., MSller, B., Nick], F., Partsch, H:,
Pepper, P., Samelson, K., Wirsing, M., WSssner, H.: The Munich project CIP. Volume I: The
wide spectrum language CIP-L. Lecture Notes in Computer Science 183, Berlin: Springer
1985

Bauer, F.L., Ehler, H., Horsch, A., MSller, B., Partseh, H., Paukner, O., Pepper, P.: The Munich
project CIP. Volume II: The transformation system CIP-S. Lecture Notes in Computer
Science 292, Berlin: Springer 1987

Bauer, F.L., MSller, B., Partsch, H., Pepper, P.: Programming by formal reasoning - computer-
aided int uition-guided programming. IEEE Transactions on Software Engineering, 15:2, 165-
180 (1989)

Bergstra, J.A., Heering, J., Klint, P. (eds.): Algebraic specification. ACM Press Frontier Series.
New York: Addison-Wesley 1989

Bird, R.S.: An introduction to the theory of lists. In: Broy, M. (ed.): Logic of programming and
calculi of discrete design. NATO ASI Series, Series F: Computer and System Sciences, vol.
36. Berlin: Springer 1987, pp. 5-42

Bird, R.S., Wadler, P.L.: Introduction to functional programming. Hemel Hempstead: Prentice
Hall International 1988

Bj0rner, D., Jones, C.B.: FormM specification and software development. Englewood Cliffs, N.J.:
Prentice-Hall 1982

Broy, M.: Predicative specifications for functional programs describing communicating networks.
Information Processing Letters 25, 93-101 (1987)

BurstM1, R.M., Goguen, J.A.: Semantics of CLEAR, a specification language. In: Bjcrner,
D. (ed.): Abstract software specifications. Lecture Notes in Computer Science 86, Berlin:
Springer 1980, pp. 292-332

Burton, C.T., Cook, S.J., Gikas, S., Rowson, J.R., Sommerville, S.T.: Specifying the Apple
MacintoshTM Toolbox Event Manager. Formal Aspects of Computing 1, 147-171 (1989)

Dijkstra, E.W.: A discipline of programming. Englewood Cliffs, N.J.: Prentice-Hall 1976
Dubois, E., Hagelstein, J., Rifaut, A.: Formal requirements engineering with EREA. Philips

Journal of Research 43:3/4, 393-414 (1988)
Feather, M.S.: A survey and classification of some program transformation approaches and

techniques. In: Meertens, L.G.L.T. (ed.): Proc. IFIP TC2 Working Conference on Program
Specification and Transformation, Bad TSlz, Germany, 1986. Amsterdam: North-Holland
1987, pp. 165-196

Feijs, L.M.G.: A formalization of design methods. A)~- calculus approach to system design with
an application to text editing. Technical University of Eindhoven, Ph.D. thesis, 1990

224 H.A. Partsch

Feijs, L.M.G., Jonkers, H.B.M., Obbink, J.H., Koymans, C.P.J., Renardel de Lavalette, G.R.,
Rodenburg, P.H.: A survey of the design language COLD. ESPRIT '86: Results and achieve-
ments. Amsterdam: North-Holland 1987, 631-644

Fey, W.: Introduction to algebraic specification in ACT TWO. TU Berlin, Fachbereich 20,
Technical Report 86-13, 1986

Futatsugi, K., Goguen, J.A., Jouannaud, J.P., Meseguer, J.: Principles of OBJ2. Proe. 12th Ann.
ACM Symp. on Principles of Programming Languages, New Orleans, Miss., 1985, pp. 52-66

Gaudel, M.C.: Toward structured algebraic specification. ESPRIT '85: Status report of contin-
uing work. Part I. Amsterdam: North-Holland 1986, pp. 493- 510

Goldberg, A.T.: Knowledge-based programming: a survey of program design and construction
techniques. IEEE Transactions on Software Engineering SE- 12:7, 752-768 (1986)

Geser, A., Huflmann, H.: Experiences with the RAP-system - a specification interpreter com-
bining term rewriting and resolution. In: Robinet, B., Wilhelm, R. (eds.): ESOP 86. Lecture
Notes in Computer Science 213, Berlin: Springer 1986, pp. 339-350.

Gries, D.: The science of programming. Berlin: Springer 1981
Guttag, J.V., Homing, J.J.: Preliminary Report on the LARCH shared language. Xerox Re-

search, Palo Alto, Technical Report CSL 83-6, 1983
Hehner, E.C.R., Gupta, L.E., Malton, A.J.: Predicative Methodology. Aeta Informatiea 23,

487-505 (1986)
Henderson, P.: Functional programming: application and implementation. Englewood Cliffs,

N.J.: Prentice-Hall 1980
Special Collection on Requirement Analysis. IEEE Transactions on Software Engineering SE-3:1,

2-84 (1977)
IEEE Computer, 18:4 (1985)
Jones, C.B.: Systematic software development using VDM. Englewood Cliffs, N.J.: Prentice-Hall

1986
MSller, B.: Higher-order algebraic specifications. Teehnisehe Universit~t M6nchen, Fakult~t ffir

Mathematik und Informatik, Habilitation thesis, 1987
MSller, B., Partsch, H.: Formal specification of large-scale software - objectives, design decisions

and experiences in a concrete software project. In: Meertens, L.G.L.T. (ed.): Proe. IFIP TC2
Working Conference on Program Specification and Transformation, Bad T61z, Germany,
1986. Amsterdam: North-Holland 1987, pp. 491-515

Partsch, H.: Specification and transformation of programs. Berlin: Springer 1990
Partsch, H.: Requirements Engineering. Mfinchen: Oldenbourg 1991
Rzepka, W., Ohno, Y.: Requirements Engineering environments: Software tools for modelling

user needs. IEEE Computer, 18:4, 9-12 (1985)
Spivey, J.M.: Understanding Z. A specification language and its formal semantics. Cambridge,

U.K.: Cambridge University Press 1988
Webster's New World Dictionary. Second College Edition. Cleveland: William Collings + World

Publishing 1974
Wijshoff, F.: Formal specification of existing software - - A case study: MsWord for the Macin-

tosh. University of Nijmegen, Diploma thesis, 1992
Wirsing, M.: A Specification Language. Technische Universit~t M/inchen, Fachbereich Mathe-

matik und Informatik, Habilitation thesis, 1983
Wirsing, M.: Algebraic specification. Universit~t Passau, Fakult~t ffir Mathematik und Infor-

matik, Technical Report MIP-8914, 1989. Also in: Van Leeuven, J. (ed.): Handbook for
theoretical Computer Science. Amsterdam: North-Holland 1990

Wirsing, M., Pepper, P., Partsch, H., Dosch, W., Broy, M.: On hierarchies of abstract data
types. Technische Universit~t Mfinchen, Institut ffir Informatik, Technical Report TUM-
I8007. Also: Acta Informatiea 20, 1-33 (1983)

