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When aiming at developing correct software, formal problem specification is nowadays 
considered an important intermediate stage in the software development process. An 
algebraically based formalism for problem specification is introduced with the emphasis 
both on how to use such a formalism for the specification of concrete problems and 
on the methodological aspects of formalization. The formalism used is essentially the 
one developed in the project CIP which may be considered as a representative of the 
state-of-the-art in algebraic specification. 

1 Introduction: Why Formal Specification? 

The major difficulty in software development is caused by the fact that  an original prob- 
lem description usually consists of an unstructured bunch of half-baked wishes which 
are neither precise, detailed, nor even complete, whereas a program, by nature, has to 
be precisely defined and fully detailed up to each single instruction. It is obvious that 
an at tempt to bridge the huge gap between these extreme positions in one large step is 
doomed to fail, i.e., the resulting software will most likely not work as expected. 

E x a m p l e  
A simple, though typical example to illustrate this situation is given by the 
request to write a program to solve the "cube problem". This problem deals with 
a commercially available puzzle consisting of 6 pieces of (maybe) different shape. 
The puzzle's goal is to build, if possible, a cube with the 6 pieces as its faces. The 
problem to be solved is immediately clear when seeing the pieces of the puzzle. 
However, it is not as easy to give a verbal description of the problem. 
Each of the pieces of the puzzle is "roughly quadratic" and has a thickness of 
1 unit and a fixed "kernel" of size 3 x 3 square units. Additionally, each of the 
sides of a piece may have upto 5 quadratic "teeth" of size 1 square unit. The 
following are typical pieces: 
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There are two basic reasons why software does not work as intended: 

- Either the original problem was misunderstood or misinterpreted, and thus the pro- 
gram solves a "different" problem; or 

- The problem was well understood, but the program does not solve this very problem. 

In order to cope with the first source of trouble, it is widely accepted today that the 
process of software development should be broken into smaller, manageable steps. A 
minimum requirement is a decomposition into two steps (frequently called 'requirements 
engineering' and 'program construction') with a precise, preferably formal statement of 
the problem as an intermediate stage (cf. also [Balzer et al. 83], [Agresti 86], [Bauer et al. 
89]). How to formally describe the above-mentioned "cube problem" will be dealt with 
in section 5.2. 

In order to cope with the second source of trouble, various approaches have been sug- 
gested on how to construct an efficient program that satisfies a given formal specification. 
All these approaches have correctness as their central goal, irrespective of whether they 
are based on program transformations (for overviews, see [Feather 86], [Goldberg 86], or 
[Partsch 90]), on assertional techniques (e.g., [Dijkstra 86], [Gries 81], [Backhouse 86]), 
or another conceptual basis. 

A problem specification is a description of the problem to be solved. Ideally, it should 
describe what the problem is without giving the solution or even the details about its 
implementation. In such a case, a specification is said to be descriptive. Otherwise, i.e. if 
the specification describes how to solve the problem, we call it operational. 

In software engineering, a problem specification is called a requirements specification 
and there are numerous traditional approaches (for overviews, see, e.g., [IEEE 77], [IEEE 
85], [Partsch 91]) to providing suitable formalisms. All of them use formal concepts only 
to an extent that  is still manageable by a non-expert user, and provide but simple lin- 
guistic means for formulating requirements specifications, mainly relying on an intuitive 
understanding of the semantics. Additionally, some of them are even backed by method- 
ological principles to ensure a systematic conversion of an informal problem statement 
into the respective formalism. Nearly all of them, however, leave open how to obtain 
programs that  solve the specified problem, and, furthermore, how to verify that these 
programs indeed meet the specification. 

In order to overcome the fundamental deficiencies of the traditional approaches, viz. 
semantic imprecision and lack of an integrated methodology, there are various new ap- 
proaches that focus on formal problem specification. 

A specification is called a fo rma l  speci f ica t ion  if it is formulated in a formal lan- 
guage, i.e. a language whose syntax and semantics are explicitly established prior to its 
use; otherwise, we call a specification informal .  Thus, in particular, specifications in 
natural language are informal. 
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All of the new approaches assume a rigorous formal basis for an initial problem 
specification which is, e.g., 

- relational (e.g., Gist [Balzer 81], EREA [Dubois et al. 88]), 
- functional (e.g.[Henderson 80], [Bird, Wadler 88], VDM [Bjcrner 82], [Jones 86]), 
- predicative (e.g., [Hehner et al. 86], [Broy 87]), 
- set theoretical (e.g., Z [Spivey 88]), 
- assertional (e.g., [Dijkstra 76], [Gries 81], [Backhouse 86]), or 
- algebraic (e.g. ACT TWO [Fey 86], ASF [Bergstra et al, 89], ASL [Wirsing 83], 

CLEAR [Burstall, Goguen 80], COLD [Feijs et al. 87], LARCH [Guttag, Homing 83], 
OBJ [Futatsugi et al. 85], PLUSS [Gaudel 85]). 

Additionally, all these new approaches also aim at an integrated methodical support  
for (formally) constructing programs from a given formal specification. For solving the 
problem of building a specification, however, in all these formal approaches, essentially the 
same difficulties as in traditional requirements engineering have to be faced. Therefore, 
we suggest an approach to formalization which basically builds on experiences gained 
there, but also takes our envisaged specification formalism into account. This will be t h e  

topic of  the following section. 

2 T h e  P r o c e s s  o f  F o r m a l i z a t i o n  

Formalization deals with the problem of how to proceed in order to build a formal 
specification in a systematic way. A rough guideline is given in [Rzepka, Ohno 85] where 
at least three essential sub-activities are identified, viz. 

- identification of the problem, 
- formal description of the problem, and 
- analysis of the formal problem description. 

2 . 1  P r o b l e m  I d e n t i f i c a t i o n  

Problem identification means finding out what the problem is. The difficulties here mainly 
originate in the ambiguities and sources of misunderstanding inherent to the communi-  
cation of different people by means of natural language. Usually, the person who gives 
the problem is not the one who is to describe it formally; additionally, due to different 
educational and professional backgrounds, they usually do not speak the same (technical) 
language. Therefore, problem identification involves a "translation" between universes of 
discourse, and the essential part  of problem identification has to concentrate on finding 
this translation. 

Usually a problem statement (implicitly) assumes basic knowledge about the context 
of the problem, frequently called the problem domain. For truly identifying the problem it 
is essential to make these implicit assumptions explicit, i.e. to first identify the respective 
problem domain. Having done so, further steps in finding the above-mentioned translation 
a r e  
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- choosing a concept of the problem domain, 
- representing the concept, and 
- associating the constituents of the problem with the representation of the concept. 

Following [Webster 74], we use the notion concept for "an idea or thought, especially 
a generalized idea of a class of objects; abstract notion". Hence, a concept of a (given) 
problem domain is an abstract view of the problem domain, free from irrelevant details, 
but suited to reflect its essential characteristics. As we are concentrating on software 
systems, rather than on more general ones, we can further rule out arbitrary technical 
concepts and focus our attention onto concepts from mathematics. 

E x a m p l e  
In order to illustrate our notion of a (mathematical) concept, we consider the 
problem of building software for a traffic control system for a particular city. The 
problem domain here comprises, among others, the topology of the respective city, 
i.e., a street map, which has to be reflected as part of a concept of our sample 
problem domain. In a simplified view, a street map is a structure consisting of 
streets and intersections, and one straightforward concept for modelling a street 
map is a finite graph. �9 

Further examples of mathematical concepts are 

- sets, relations, mappings, functions, orderings and lattice structures, 
- algebraic structures (e.g., groups, rings, fields, sequences, bags, trees), 
- relational structures (e.g., graphs, Petri nets), 
- formal systems (e.g., equational systems, grammars, automata, rewrite systems, de- 

duction systems, systems of concurrent processes). 

The choice of a suitable concept already entails a tremendous gain with respect to 
precision, as potential sources of misunderstanding are ruled out. Frequently, in addition, 
the choice of a concept even amounts to a solution of the problem, as certain tasks for 
certain concepts are already formalized and solved in generality. Examples of this kind 
are 

- minima and maxima in orderings; 
- construction and modification of particular algebraic structures; 
- paths, cycles, or closures in relational structures; 
- languages generated by grammars or accepted by automata; or 
- deadlock or starvation in systems of concurrent processes. 

There is a lot of freedom in choosing a concept for a particular problem domain. Only 
in rare cases a suitable concept is obvious or straightforward because of concrete hints 
that  can be found in the informal problem description. 

However, generally no such hints are available. Therefore, the choice of an adequate 
concept requires decisions. These decisions have far-reaching consequences, since they 
not only affect the level of abstraction and the complexity of the formalization of the 
problem, but also available solutions to the problem. Consequently, choosing an adequate 
concept requires intuition and experience, and should be done very carefully. 

In general, a concept consists of 
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- objects associated with certain object classes; 
- operations on the object classes; and 
- relations between objects and/or  object  classes. 

A concept is either primitive or composed of other concepts. Representing a (non- 
primitive) concept has to deal with the refinement and the detailing of its consti tuents and 
their  description on the basis of simpler concepts. As there may be several representations 
of the same concept, again, a lot of freedom is available here which involves further 
decisions. 

E x a m p l e  
The concept "finite directed graph", which we used in connection with our sample 
problem admits  several (equivalent) descriptions, e.g., 

a .  a set of nodes and a set of edges (represented by pairs of nodes); (2.1.1) 
b .  a set of nodes and a pair of incidence functions which associate 

with each node the set of its predecessors and successors; (2.1.2) 
c. an adjacency matr ix where component (i, j) has the value 1, if 

there is an edge from i to j, and 0 otherwise. (2.1.3) 

Having decided on a concept of the problem domain and a suitable representation 
of the chosen concept, it remains to associate the constituents of the problem with the 
representation of the concept, which, again, entails decision making. 

E x a m p l e  
If, for our city map, we, for example, decided on description (2.1.1), we still 
would have to decide on the association of streets and intersections with nodes 
and edges. One obvious possibility is to associate intersections with nodes, and 
streets with edges. However, we also might associate streets with nodes that  are 
connected by an edge if they intersect. �9 

Which of several possible associations to choose, of course depends on further details 
of the problem to be solved. Thus, e.g., in the first association (i.e., intersections as nodes, 
streets as edges), it is easy to check how many streets are involved in an intersection, but  
more difficult to trace an entire street. The second association, on the other hand, gives 
easy access to individual streets, but, for example, expressing that  a street  admits  only 
one-way traffic is more difficult. 

2 . 2  P r o b l e m  D e s c r i p t i o n  

If a problem has been identified properly, its (formal) description amounts  to t ransla t ing 
the result of the identification process into constructs available in the formal specification 
language. In part icular,  this means 

- mapping the (representation of the) concept of the problem domain onto available 
constructs; and 
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- "glueing" together the constituents of the problem by giving an expression in the 
formal specification language that describes the task to be fulfilled in terms of the 
image of the representation of the concept. 

Similarly to other sub-activities of formalization, decisions are necessary here, too, 
depending on the particular specification language. Whereas translation of the represen- 
tation of the concept into available language constructs in most cases will be straight- 
forward, the formulation of the problem proper as an expression in the specification 
language usually again leaves a lot of freedom. 

None of the decisions to be taken during the formalization process is unique, as 
we tried to illustrate by the simple examples above. Therefore a prime concern of any 
formalism for formal specification of problems is the provision of as much flexibility as 
possible in order to allow the adequate formulation of all possible representations of a 
variety of different concepts. 

At least, however, any formalism for the formal specification of some task has to offer 
constructs that  allow the representation of the constituents of a concept, i.e., objects and 
object classes, operations, and relations, and the formulation of expressions that reflect 
that  task. 

2 . 3  A n a l y s i s  o f  t h e  P r o b l e m  D e s c r i p t i o n  

Since the problem specification is the basis for a subsequent program development, it is 
important that it is "correct". Analysis of a problem specification should comprise checks 
o n  

- syntactic aspects; 
- semantic properties; and 
- the relationship to the originally given problem. 

Obviously, formal specifications entail the usual problems to be encountered in using 
a formal language, viz. correctness with respect to syntax and context conditions that 
have to be checked. 

The "meaning" of a formal specification is defined by the semantics of the specification 
language used. Usually this is a partial mapping from syntactic constructs to (sets of) 
semantic values. On this basis additional practically important semantic properties of 
formal specifications can be introduced such as 

- A formal specification is called defined (also consistent or satisfiable) if it has a "non- 
empty meaning", i.e., if there is at least one semantic value associated with the 
specified problem; otherwise it is called undefined (or inconsistent). 

- A formal specification is called determinate if there exists at most one semantic value 
associated with the specified problem; otherwise it is called ambiguous. 

- A formal specification is called redundant if there exists a semantically equivalent 
specification which is "simpler". 

Except for redundancy, these properties can be formally checked on the basis of the 
semantics of the specification language. There are, however, additional properties that 
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are not formally verifiable. These properties characterize the relationship between the 
meaning of the formal specification and the originally intended problem. Examples of 
such properties are 

- A formal specification is called adequate, if its meaning coincides exactly with the 
original problem. 

- A formal specification is overspeeified, if its meaning comprises not all of the solutions 
to the original problem. 

- A formal specification is underspecified, ff its meaning comprises all solutions to the 
original problem, but also additional ones. 

Obviously, these properties are not independent of each other: an adequate specifica- 
tion is neither over- nor underspecifed, but inadequacy does not necessarily imply over- 
or underspecification. 

Analysis of a formal specification is an essential part of the formalization process. 
The process of formalizing a problem may be considered finished only, when the formal 
specification is syntactically correct, and its adequacy with respect to the originally given 
problem is ensured. For practical reasons, an analysis with respect to redundancy seems 
worthwhile, too. 

Before dealing with adequacy itself, however, a semantic analysis with respect to the 
semantic properties seems worthwhile, because it gives valuable information. Thus, for 
example, recognizing a formal specification to be undefined usually indicates a defect in 
the formalization process rather than unsolvability of the originally given problem. Like- 
wise, an ambiguous formal specification of a problem which is known to have a unique 
solution implies inadequacy. Also, an examination of the specification with respect to 
overspecification and underspecification provides insight with respect to adequacy. Very 
often, underspecifcation can be removed by simply adding further conditions. Similarly, 
overspecification frequently can be eliminated by weakening certain restrictions. How- 
ever, checking these properties is not sufficient. Further considerations with respect to 
adequacy are necessary, which may lead to redoing (parts of) the formalization pro- 
cess. Examples of such considerations are (formal) derivations of logical consequences of 
the formal specification to be validated against the original problem, or derivations of 
acceptable answers to questions concerning certain scenarios. 

3 A l g e b r a i c  T y p e s  

In section 2.2, we came to the conclusion that any formalism for the formal specification 
of problems should at least provide constructs that allow the representation of the con- 
stituents of a concept, i.e. objects and object classes, operations, and relations. Moreover, 
we found that the formalism should provide as much flexibility as possible. In section 2.3 
we pinpointed the importance of analyzing a formal problem description which in turn 
implies that these kinds of analysis activities should be supported by a suitable specifi- 
cation formalism. A formalism that satisfes all these requirements is given by algebraic 
types. 

An algebraic type provides a rather powerful formalism for defining objects, object 
kinds, and their characteristic operations in an abstract, implementation-independent, 
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and thus non-operational way. Object classes can be defined by (systems of) algebraic 
type declarations. Objects are characterized implicitly by their construction, modifica- 
tion, and access operations, rather than explicitly by exhibiting their internal structure; 
operations are defined by properties describing their mutual  relationship. 

In the following subsections we are going to introduce systems of type declarations in 
a step-by-step fashion by start ing with a nearly trivial case and extending the formalism 
by gradually adding new concepts. 

3.1 S i g n a t u r e s  a n d  T e r m s  

To s tar t  with, we consider a simple example: 

t y p e  NAT0 
s o r t s  na t ;  
f u n c t s  0: --* n a t ,  

s u c c :  nat---* n a t  
e n d o f t y p e  

This t y p e  d e c l a r a t i o n  (marked by the keywords t y p e  - e n d o f t y p e )  introduces 

- a sort symbol (here na t ) ;  and 
- two function symbols 0 and s u c c  together with their functionality. The functionality of 

0 is --, n a t ,  i.e., 0 is a symbol for a constant. The functionality of s u c c  is n a t  --, n a t .  

As to the notation of typed symbols, we use the convention introduced by Pascal where 
a (possibly singleton) list of identifiers or symbols (separated by ", ' )  is followed by ":" 
and their type. 

The pair L ~ = (S, F), where S and F denote the sets of all sort and operation symbols 
(inclusive of their respective functionalities) defined in a type, is also referred to as the 
s i g n a t u r e  of that  type. 

E x a m p l e  
In case of NAT0, we have 

~NATo ~--- ({nat} ,  {0: --* na t ,  s u c c :  n a t  --+ n a t } )  

Thus, in this part icular  example, type definition and signature coincide. In gen- 
eral, of course, this will not be the case. �9 

The signature 2Y = (S, F) of a type defines the w e l l - f o r m e d  t e r m s  of sort s, for 
each s E S, with free variables from an s-sorted family {Xs}s~s  (inductively) as follows: 

- every variable of sort s is a well-formed term of sort s; 
- if Q , . . . , t ,  are well-formed terms of sorts S l , . . . ,  s,~ and f is an operation symbol 

with functionality (sl  • . . .  x sn) ~ s, then f(Q, . . . .  tn) is a well-formed term of sort 
s. Hence, as a special case, nullary functions are well-formed terms; 

- there are no other well-formed terms of sort s. 
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For a type T with signature ,U, any well-formed term (of sort s E S) is called a ,U- 
t e r m  (of sort s). A ,U-term that is built from operation symbols only, is called a g r o u n d  
t e r m .  Ground terms may be used to denote objects of some sort. 

E x a m p l e  
According to the above definitions, obviously, succ(succ(x)) is a well-formed term 
of sort n a t  provided x is a variable of sort nat .  An example of a ground term of 
sort n a t  is succ(succ(succ(O))). �9 

3.2 A x i o m s  a n d  S e m a n t i c s  

The example NAT0 given above is but a special case of a type, since it coincides with 
its signature. In general, a type T is completely characterized by a pair (,U, E) where E 
denotes a signature, and E is a collection of axioms. An a x i o m  (or law) is an arbitrary 
closed, well-formed first-order formula over equations (with symbol: " - - ' )  and inequalities 
(with symbol: "5")  between E-terms. 

Due to this (syntactic) definition of axioms, parentheses are only necessary for for- 
mulating complex terms or for disambiguating first-order formulas over equations and 
inequalities. 

The simplest form of a law is an equation or an inequality between ,U-terms of the 
same sort, which is preceded by a universal quantification of its variables. In order to 
avoid notational overhead, a quantification (following the keyword a x i o m s )  may extend 
over several formulas separated by the symbol " , ' ,  which then means logical conjunction. 

A simple example of an algebraic type with axioms is the following one (see also 
[Bauer et al. 85]) that defines the truth values t r u e  and false, as well as the operations 
-~ (negation), A (conjunction), and V (disjunction): 

t y p e  BOOL 
sor t s  bool ;  
f u n c t s  t r u e ,  false: --, bool;  

.-~.: boo l  -* bool ,  (negation) 

.A., .V.: (bool  • bool)  -* bool ;  (conjunction, disjunction) 
a x i o m s  V boo l  x, y: 

t r u e  ~ false ,  (1) 
-- t r u e  ---- false ,  (2) 
-~ fa lse  -- t rue ,  (3) 
t r u e  A x ---- x, (4) 
false  A x =-- false, (5) 

v ~ = - ( - ~  ^ ~u) (6) 
e n d o f t y p e  

The dots next to operation symbols such as -~, A, or V indicate the positions of their 
arguments, the number of dots reflects the number of arguments. Thus -~. is a monadic 
prefix operator and .A. and .V. are dyadic infix operators. The parenthesized texts to 
the right of some of the lines in the above definition (such as (negation) or (1)) are 



192 H.A. Partsch 

comments, being irrelevant for the type definition. They will be used to convey some 
intuition with operation symbols or to be able to refer to individual axioms. The symbol 
"11" as in "V x, y: bool ]l" is used to separate the quantified variables from the equations 
and inqualities. 

The axioms of a type are not required to be minimal. In fact, adding properties, that  
are provable (of. below) from the axioms, as additional laws, often helps in understand- 
ing a type definition. Thus, we could have added the usual properties of conjunction and 
disjunction, such as commutativity, associativity, and distributivity, which are provable 
from the given axioms. Note, however, that the law 

t r u e  ~ f a l s e ,  

which guarantees that these symbols denote different constants, is necessary here, since 
it cannot be proved from the other axioms. 

The well-formed terms of a type denote abstract objects. The axioms "equate" certain 
terms, i.e. they define a q u o t i e n t  s t r u c t u r e  on the set of well-formed terms. 

In order to define the semantics of an algebraic type T = (,U, E) with signature `U = 
(S, F) and laws E, we first introduce the notion of a (partial) ,U-algebra: 

A (partial) E - a l g e b r a  A = ((sA)ses, ( f~) fer )  consists of 

-- a family (sA)seS of carrier sets (one for each sort); 
- a family (fA)j~F of (partial) functions f~: (sl A •  x s A )  ~ s A, if the symbol f 

has the functionality (sl • . . .  • s,,) ~ s. 

As is known, the result of applying a partial operation may be undefined. In order to 
propagate undefinedness, we require that every operation f~ of an algebra A is s t r ic t ,  
meaning that its application is undefined whenever one of its arguments is undefined. 

E x a m p l e  
As an example of a 2~-algebra we consider the algebra 

FSET = (P(11), {11, $, C, D, U}), (3.2.1) 

where 1l denotes an arbitrary singleton set, P(II) denotes the set of all subsets of 
11, and C, N, U denote complement, union, and intersection, respectively. FSET 
is a `uBOOL-algebra with 

b o o l  FSET = ~o(11), t r u e  FsET = 11, fa l se  FSET = ~, 
_~FSET  _~ C ,  A F S E T  --  N ,  V F S E T  -~ I.J. 

Another `uBOOL-algebra is 

RNAT = ((0, 1), {0, 1, (.+1) m o d  2, .x., ( ( .+ . )+( .x . ) )  r o o d  2}) (3.2.2) 

where 0 and 1 are supposed to be natural numbers and where +,  x, and m o d  
denote the usual operations on natural numbers. �9 
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In order to be able to relate different `u-algebras, we introduce the notion of E-homo- 
morphisms, i.e. structure-preserving mappings between E-algebras: 

A weak  (resp. strong) ,~-homomorphlsm ~: A ---+ B from a E-algebra A to a 
E-algebra B is a family of partial (resp. total) functions (q~$ s A ~ sB)seS such that  for 
a l l~ .s l  x s2 •  s n - - + s i n F a n d a l l a i E s ~ ( f o r i =  1 , . . . , n )  

~s( /A(al ,  . . . .  a . ) )  -----/S(~S,(~I),.. . ,r 

A bijective `u-homomorphism is called a E-isomorphism. 

Example 
As an example we consider the `uBOOL-algebras FSET and RNAT from (3.2.1) 
and (3.2.2). Obviously, 

~bool : 7~(11) "" {0, 1} and g'bool : {0, 1} --* 7~(11), 

defined by 

~bool(O) =def 0, 41bool(ll ) =clef 1, and ~bool(0)  ~-~-def r ~bool(1)  =def  ]l, 

are (strong) `uBOoL-homomorphisms. Since both are bijective, they are also 
`u BOO L-isomorphisms. �9 

For every signature E there exists a special `u-algebra, the t e r m  a l g e b r a  (or w o r d  
a lgebra) ,  denoted by W(E),  which consists of all ground .U-terms as carrier sets and 
term-forming operations according to the respective operation symbols. Any other `u-al- 
gebra A can be related to W(E)  by a particular weak S-homomorphism i:W(`U) ~ A. 
This `u-homomorphism i, called the interpretation of W(`U) in A, is defined by 

i ( f ( a l , . . . ,  an)) =d~f fA(i(al),..., i(a,)) 

for any term f (ah . . . ,  an) from W(E).  The interpretation of an arbitrary term t (in A) 
will be abbreviated by t A. 

An equation tl = t2 between closed E-terms tl and t2 (of the same sort) is val id  in a 
E-algebra A iff their interpretations t r and t r are both undefined, or both defined and 
equal ( " s t r o n g  equa l i ty" ) .  The validity of laws that are arbitrary first-order formulas 
is then defined as usual. 

Example 
For FSET as defined in (3.2.1) we have, e.g., 

i(false FSET A FSET x) =clef ($ CI x)  ~ ~ =def i(falseFSET), 

and, hence, (false A z) = false is valid in FSET. In the same way it can be 
shown that  the other laws of BOOL are valid in FSET, too. �9 

A S-algebra A is called t e r m - g e n e r a t e d ,  if every element of any of the carrier sets 
s A can be obtained by finitely many applications of functions f a .  
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Example 
Obviously, the ~U-algebra FSET from (3.2.1) is term-generated. However, it would 
not be term-generated, if II was an arbitrary (non-empty) set instead of a singleton 
set. �9 

A 2~-algebra A is called a m o d e l  of a type T = (2~, E) if it is term-generated and all 
laws of T are valid in A. A type T is called cons i s t en t  (or sat isf iable) ,  if it has at least 
one model; otherwise it is called incons is ten t .  A type is called m o n o m o r p h i c  if all its 
models are isomorphic. 

Example 
According to the latter definition, FSET is a model of BOOL. Another model 
for BOOL is provided by RNAT. Both models are obviously isomorphic. In fact, 
BOOL, as defined above, can be proved to be monomorphic. Moreover, obviously, 
BOOL is consistent. �9 

The s eman t i c s  of a type T is defined to be the family of all isomorphism classes of 
models of T. In the following the semantics of T will be denoted by GEN(T).  

There are various other approaches where the semantics of a type is defined as a dis- 
tinguished model (e.g., an 'initial' or 'terminal' one, cf. [Wirsing e t al. 83]). A comparison 
of these different semantic definitions can be found in [Wirsing 89]. We prefer the above 
definition, as it is closer to our intuitive understanding of a formal specification: each 
of these models of a type definition characterizes a possible solution of the task that  is 
formally specified by the type definition. Because of the restriction of the semantics of 
a type to term-generated models, proofs by term induction and structural induction are 
possible (for details, cf. [Wirsing et al. 83]). 

3.3 H ie ra rch i ca l  Types 

In order to be able to define object classes in a structured way, we extend our formalism 
for types and allow to build up (hierarchical) s y s t e m s  o f  t y p e  dec l a r a t i ons  where 
types may use other types as primitives. If a type T uses a type T '  as primitive, this is 
indicated by 

based on T' 

in the definition of  T; T '  is then called a p r i m i t i v e  t y p e  of T. If T '  is primitive to 
T, all entities defined by T '  may be used in the specification of T. As an example of a 
hierarchical type we consider a simple definition of natural numbers which uses BOOL 
as primitive type: 
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t y p e  NAT1 
b a s e d  o n  
s o r t s  
f u n c t s  
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BOOL; 
n a t ;  
O: --~ n a t ,  (zero) 
succ: n a t  -*  n a t ,  (successor) 
. : 0 :  n a t  -~  b o o l ;  (is-zero) 

a x i o m s  V z: n a t  I[ 
0 = 0  ---- t r u e ,  
succ(x) = 0  -- f a l s e  

e n d o f t y p e  

The signature of a hierarchical type is simply defined as the union of the newly 
introduced sort and function symbols with the signatures of the primitive types. 

So far, we have tacitly assumed that a hierarchical type may use anything that  is in 
the signature of its primitives. For practical reasons, however, it is important that  certain 
entities defined by some type are hidden to the "outside world". Also, in particular with 
hierarchical types, we probably do not want to make available everything which is in 
the signature of its primitives. Therefore, we introduce the (syntactic) notion of (visible) 
c o n s t i t u e n t s  of a type as a list of entities in its signature that are made available to 
other types. These constituents are marked by the keyword e x p o r t s .  

Thus, for the example NAT1, e.g., we might prefer to write 

t y p e  NAT1 
e x p o r t s  nat ,  O, succ, . : 0 ;  
b a s e d  on  BOOL; 

e n d o f t y p e  

in order to state that any type that uses NAT1 may only refer to the sort n a t  and 
the operations 0, succ, .=0, although the signature of NAT1 comprises the signature of 
BOOL. 

Rather than just referring to a primitive type by its name, one also could be more 
specific by listing explicitly those sorts, constants, and operations that are used from the 
constituents of the primitive type (cf. [Bauer et al. 87]). Additionally, (partial) r e n a m i n g  
of the constituents of the primitive type is possible. 

Through the notions of primitive type and constituents a relation between the types of 
a type system is defined. This relation is obviously not reflexive and symmetric. Moreover, 
it is also not transitive: if T is based on T '  and T '  is based on T", the constituents of 
T" may be used in T only if they are included in the constituents of T '  or if T" is also 
indicated as primitive in T. Of course, within a system of type declarations, primitives 
leading to a cyclic relationship make no sense and, therefore, are forbidden. 

A (hierarchical) type T is characterized by a tuple (~?, E, P1, . . . ,  Pn) where, for 
1< i < n, the Pi = (,Ui, Ei) denote the primitive types of T with ,Ui C_ ~U and Ei C_ E. 
As to the semantics of a hierarchical type, we do not simply take GEN(T), but rather 
would like to have "hierarchical models", i.e., models in which the hierarchical structure 
of the type definition is reflected. To this end further properties are needed. 
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For a hierarchical type T we require that it is h ie ra rchy-prese rv ing ,  i.e. that for 
all its models A and for every primitive type Pi of T the restriction of A to the signature 
of Pi is a model of Pi, and thus, in particular, is generated by the operations of A that 
correspond to the operation symbols of Pi. 

Another important property for a hierarchical type T is pe r s i s t ency  which means 
that all combinations of models of the primitive types Pi can be extended to a model 
of T. This guarantees that types may be implemented independent of other types which 
are based on them. If the primitive types are monomorphic then the type T is either 
persistent or inconsistent. 

The s e m a n t i c s  of a hierarchy-preserving and persistent (hierarchical) type T then is 
the family of all isomorphism classes of models of T. According to this definition, "sound- 
ness" of a hierarchical type requires proofs on hierarchy-preservatlon and persistency. 
Fortunately, however, these semantic properties are implied by the (simpler) syntactic 
properties of "sufficient completeness" (cf. section 3.4) and "hierarchy-conservativity', 
resp. For a comprehensive and more elaborate discussion on this topic, cf. [Wirsing 89]. 

3.4 I n s t an t i a t i on  

Looking again at the definition of NAT1, we realize that this type contains all of the 
type NAT0. This purely syntactic relationship can be made explicit by the mechanism 
of instantiation. I n s t an t i a t i on  is a syntactic means (differently from hierarchical bas- 
ing which is defined semantically) for structuring that may appear in a type definition. 
It is indicated by the keyword include and defined by textual substitution (similar to 
'macro expansion') of the type body without the list of visible constituents. Using this 
mechanism in the definition of NAT1, would result in the definition: 

t y p e  NAT2 
e x p o r t s  
b a s e d  on 
include 
functs  

nat ,  0, succ, .----0; 
BOOL; 
NAT0; 
.=0: na t  --. b o o l ;  

a x i o m s  V x : nat  II 
0 -- 0 - t r u e ,  (I) 
succ(~) = 0 --- false (2) 

e n d o f t y p e  

As for hierarchical basing, instantiation may be coupled with renaming, too. Rather 
than keeping with the names as defined by NAT0, we also could have used 

include NAT0 as (natural ,  zero, .+1), 

in order to rename all occurences of nat ,  0, succ within NAT2 into na tu ra l ,  zero, .+1, 
respectively. For renaming coupled with instantiation, we also allow abbreviations, e.g., 

include NATo as ( n a t u r a l , . . . )  

for renaming just the sort identifier. 
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3.5  P a r t i a l  F u n c t i o n s  

So far, all functions within our sample type definitions were total. Under certain cir- 
cumstances, however, one might wish to make clear that certain terms denote erroneous 
situations or are simply not defined. A simple example is given by the following type 

t y p e  NAT3 
e x p o r t s  nat ,  0, succ, Fred, .=0; 
i n c l u d e  NAT2; 
f u n c t s  Fred: n a t  ~ nat ;  (predecessor) 
a x i o m s  V x: n a t  1[ 

defined(Fred(x)) =~ (x : 0 )  - fa l se ,  (3) 
pred(succ(x)) ~ x (4) - 

e n d o f t y p e  

which introduces natural numbers with a predecessor operation pred. In this example, 
pred is a partial operation which can only have a defined value for arguments x which are 
not equal to 0. In the type definition this is formalized by means of a special (semantic) 
predicate def ined  in law (3). 

Note, that  allowing partial operations in our type definitions does not involve any 
changes in the semantic definition, since we already introduced the concept of partial 
Z-algebras. 

When using partial operations in type definitions, some care has to be taken in order 
not to introduce inconsistencies. For example, adding the axiom 

succ(pred( )) _= (3.5.1) 

to the definition of NAT3 would result in an inconsistency. On the one hand, accord- 
ing to axiom (3.5.1), we would have succ(Frcd(O)) =_ O. On the other hand, due to the 
definedness axiom on pved, pred(O) is undefined and thus, due to the strictness of oper- 
ations, succ(Fred(O)) is undefined, too. In order to avoid inconsistencies in connection 
with a partial operation f,  it has to be ensured that either f is applied only to arguments 
that fulfil the definedness axiom, as in the example NAT3 above, or applications of f are 
safe-guarded by means of cond i t iona l  ax ioms.  Thus, for example, adding 

(x =0-false) (succ(Fr d(x)) (3.5.2) 

to NAT3 above would do no harm, in particular, as it is a property that  is provable for 
NAT3. As an alternative, semantically equivalent notation for conditional axioms such 
as (3.5.2) we allow to write 

succ(pred(x)) - x p r o v i d e d  -,(x =0). (3.5.3) 

In a hierarchical type T = (Z, E, P) with primitive type P = ( r p ,  Ep) terms may 
be distinguished with respect to their sort: A S- term t is o f  p r i m i t i v e  sor t ,  if it is 
of a sort from Sp ;  otherwise, it is o f  n o n - p r l m i t l v e  sort .  Thus, for NAT3, the term 
succ(succ(O))=O is of primitive sort, whereas succ(succ(O)) is of non-primitive sort. 
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A hierarchical type T = (,U, E, P) with P = (Zp,  Ep) is called sufficiently com- 
plete, if for every ground term t E W(2~) of primitive sort either -- def ined( t )  or t = p 
for some term p E W(Ep)  is provable in T. A sufficiently complete type is hierarchy- 
preserving [Wirsing et hi. 83]. A (syntactic) criterion that guarantees sufficient complete- 
ness is given in [Guttag, Homing 78]. 

For a sufficiently complete type the axioms may be used for "evaluating" ground 
terms of primitive sort. Thus, any question about the behaviour of some specification 
can be expressed by an appropriate (possibly large) ground term which is then reduced 
to a primitive term (the "answer" to the question) by a term-rewriting process using the 
axioms of the type as rewrite rules. In this sense algebraic types may be used for "rapid 
prototyping" (for details, cf., e.g., [Geser, HuBmann 86]). 

Example 
Obviously, the example NAT3 is sufficiently complete: all (visible) ground terms 
t of primitive sort (here: bool)  are of the form x =0 where x is a ground term 
of non-primitive sort; if x is 0 or of the form succ(...), t may be reduced to the 
term t rue ,  respectively false, according to axioms (1) and (2) of NAT3; if x is 
of the form pred(...), then either x is undefined (according to axiom (3)) and so 
is t, or ~: may be reduced to a term of the form 0 or succ(...), using the axiom 
(4) of NAT3. �9 

The use of partial operations (semantically captured by partial ,U-algebras) is but one 
possibility of coping with the problem of terms denoting erroneous situations. Another 
possibility is, e.g., error algebras. An elaborate discussion on these various possibilities 
and their mutual relationships can be found in [Wirsing 89]. 

3.6 Type Schemes 

Types, as introduced above, can be used not only for defining elementary object kinds 
such as numbers, truth values, characters, but can be used also for specifying composite 
object kinds. 

As an example we consider sequences of natural numbers. A sequence (sometimes also 
called a list) is a sequential structure consisting of an arbitrary number of elements (which 
are natural numbers). A sequence containing no elements is called empty; otherwise, it 
is called non-empty. A sequence can be extended by adding elements to it. The elements 
in a non-empty sequence can be accessed sequentially: an operation first  yields the first 
element of the sequence; an operation rest  yields the sequence without the first element. 

On closer inspection of this informal description we realize that, for an axiomatic 
definition, only the sort symbol of the element type has to be known. This means that 
specifications of sequences of objects other than natural numbers will follow the same 
pattern. Since a similar phenomenon can be observed with other composite object kinds, 
it seems appropriate to extend our type mechanism further to allow parametrized types. 

Parametrized types are also called t y p e  schemes .  For indicating the parameters in 
the definition of a parametrized type the keyword p a r a m s  is used. In contrast to types, 
type schemes allow us to express certain structural principles for composite object kinds. 
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Thus, a type scheme SEQU which gives the essential properties of the sequential com- 
position of objects into a new (composed) object can be formally defined as follows: 

t y p e  SEQU(m) 
params  m: sort; 
e x p o r t s  sequ,  < > , .  - -<> ,  . 5 < > ,  first., rest. ,  .+4 
b a s e d  on  BOOL; 
sorts  sequ; 
functs  < > :  ~ sequ; (empty sequence) 

�9 ----<>, . 5 < > :  sequ --* bool ,  ( tes t  on empty sequence) 
first.: sequ --* m, (first element) 
rest.: sequ --* sequ,  (remainder) 
.+.: (m x sequ) ---* sequ; (addition of an element) 

a x i o m s  V ~: m; s: sequ [[ 
< >  = < >  - true,  
(x + s) = < >  - false, 
s 5 < >  = -,(s = < > ) ,  
defined(f irst  s) =~ (s 5 < > )  -- true,  
f irst(x + s) = x, 
def ined(rest  s) =~ (s 5 < > )  =- true,  
rest (x  + s) -- s 

e n d o f t y p e  

The (formal) parameter m of SEQU is just a sort symbol. In general, arbitrary col- 
lections of constituents, i.e. sorts and operations, are allowed. Additionally, these may be 
constrained by predicates or appropriate degenerate types (cf. below). 

As discussed earlier, type schemes may be used in the definition of other types through 
instantiation. Of course, in the case of a parametrized type, actual parameters have to 
be supplied which consistently replace the formal ones within an instantiation. Using 
instantiation, e.g., sequences of natural numbers can be defined by 

t y p e  NATSEQU 
e x p o r t s  natsequ ,  < > ,  . = < > ,  - 5 < > ,  first.,  rest . ,  .+.; 
based  on  NAT3; 
inc lude  SEQU(nat)  as ( n a t s e q u , . . . )  

e n d o f t y p e  

Type schemes do not have an independent semantics. Using a type scheme in the 
definition of another type, however, is well-defined through the instantiation mechanism. 

3.7 " D e g e n e r a t e "  T y p e s  

In general, types (and type schemes) define new object kinds and operations. However, 
there are also "degenerate" forms of types which define just operations (and no new 
object kind). Of course, such a type has to be based on some other type T (via b a s e d  
on,  instantiation, or parametrization). Therefore, it is called an e x t e n s i o n  of T. A simple 
example of an extension was already provided with the definition of NAT2. 
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When using an extension, one might want to clearly indicate which constituents are 
added through the extension and which are simply taken over from the included type. For 
this purpose we allow to use (within a list of constituents) e x p o r t s  T as an abbreviation 
of the list of constituents of T. Using this abbreviation, an extension of the type NAT3 
can be given as 

t y p e  NAT4 
e x p o r t s  
i n c l u d e  
func t s  
ax ioms  V x, 

NAT3, .=., . < .; 
NAT3; 
.=., . < .: (nat  x na t )  --* bool ;  
y: nat  II 
x : O - - x : O ,  
x : y - - y : x ,  
, , , ~ c ( ~ )  = sur  -- ~ = y, 
x < 0 = false, 
0 < succ(x) -- t rue ,  
, ~ c c ( ~ )  < s~cc (y )  - �9 < y 

e n d o f t y p e  

In this way, any operation over some type T can be defined via an appropriate extension 
of T. 

Another instance of degeneration is given by types which define neither new object 
kinds nor new operations, but only additional properties. A typical example of such a 
type is the type scheme [Bauer et al. 85]: 

t y p e  EQUIV(m, eq) 
p a r a m s  m: sort,  

eq: (m • m)  ---* bool ;  
b a s e d  on  BOOL; 
ax ioms  V z ,  y, z:. m II 

eq(x, y) - t r u e  V eq(x, y) :_ false, (totality) 
eq( x, x) =_ t rue ,  (reflexivity) 
eq(x, y) - eq(y, x), (symmetry)  
(eq(~ ,  y) = t r u e  ^ ~q(y,  z )  _---- t r u e )  

( eq( x, z) - t rue )  (transitivity) 
e n d o f t y p e  

which states that a total binary predicate eq on m is an equivalence relation. For nat  
and "=" defined by NAT4, obviously EQUIV(nat ,  =)  is provable. 

Since type definitions of this degenerate kind can be viewed as abbreviations for  
collections of axioms, they can conveniently be used for restrictions on the parameters 
of some type or for a compact formulation of laws. 

4 M o r e  o n  A l g e b r a i c  T y p e s  

So far we have introduced all the basic concepts of algebraic types. For the formal spec- 
ification of problems, however, it is convenient to have more basic types and also some 
additional syntactic sugar. This will be the topic of this section. 
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4.1 Further E x a m p l e s  o f  Basic  Algebraic  T y p e s  

Like sequences, other composite structures can be defined by algebraic types. Examples 
are finite sets, bags, and finite mappings. Further examples can be found in the literature 
(e.g. [Bauer et al. 81, 85], [Partsch 901). 

F in i t e  sets .  Many problems can be specified in a straightforward way using the concept 
of finite sets. Finite sets differ from sequences in two respects. They do not have multiple 
occurrences of elements and the ordering of elements is irrelevant. Finite sets can be 
specified by the (monomorphic) type scheme 

t y p e  SET(m,  eq) 
params  m: sor t ,  

eq: (m • m) ~ boo l  
constrained by  EQUIV(m, eq); 

e x p o r t s  set,  0, {.}, .U., . - . ,  .E., .4.; 
based on BOOL; 
sorts  set;  
f u n c t s  0: ~ set, (empty set) 

{.}: m --+ set, (singleton set former) 
.U.: (set x set) --* set, (set union) 
. - . :  (set x m) --* bool ,  (deletion of an element) 
�9 e., .~.: (m • set) --* bool ;  (membership, non-membership) 

ax ioms  V x,y: m; s,t ,u: set H 
s U O = s, (neutrality ofO w.r.t. U) 
s Ut = t U s, (commutativity of U) 
(s U t) U u -- s U (t U u), (assoeiativity of U) 
s U s -- s, (idempotency) 
y E 0 =-- false, 
y E {x} -- cq(x, y), 
y~ (sut) -(y~s)v(y~t), 
x ~ s ___ - , ( x  ~ s ) ,  
(0  - x )  - 0,  
z - y = if  eq(x, y) t h e n  0 else {z} fi 
( s  u t )  - y = ( s  - y )  u (t  - ~) 

e n d o f t y p e  

Parameters are here an object kind m and a binary predicate eq on m, which is 
constrained to have the properties of an equivalence relation. 

A parameter constraint (indicated by the keyword c o n s t r a i n e d  by)  is a closed, 
well-formed first-order formula over the parameter symbols and/or  instantiations of de- 
generate types abbreviating collections of axioms. 

Also, some "syntactic sugar" is used in the definition of SET. For example, an axiom 
such as 
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{x} - y -- i f  eq(x, y) t h e n  ~ else{x} fl 

is jus t  shorthand for the pair of axioms 
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eq(x, y) -- t r u e  ::~ {x} -- y -- $, 

eq(x, y) -- fa lse  ==~ {x} - y -- {x}. 

Bags.  Many problems conveniently can be specified on the basis of bags. Bags, some- 
t imes also called 'multisets ' ,  can he defined by the type scheme 

t y p e  BAG(m,  eq) 
params  m: so r t ,  

eq: (m • m)  --+ b o o l  
constra ined  b y  EQUIV(m, eq); 

e x p o r t s  bag ,  0, .+., . �9  . ~., . - . ,  ~oees; 
based o n  BOOL, NAT4; 
sorts  bag; 
functs  0: --* bag ,  

.+., . - . :  (bag x m) -+ bag, 

. �9 .~.: (m x bag) --+ bool ,  
~oecs: (m x bag) --+ nat; 

ax ioms  Vz,  y:m;  b:bag [I 

e n d o ~ y p e  

(empty bag) 
(addition, deletion of elements) 
(membership, non-membership) 

(number of oee~en~es) 

y E 0 - fa lse ,  
y �9 (b -t- x) -- i f  eq(x, y) t h e n  t r u e  e lse  y �9 b fi, 
z ~ b = - ~ ( ~  e b), 
0 - x - 0 ,  
(b + x) - y =_ i f  eq(x, y) t h e n  b else (b - y) + x fi, 
~occs(z, O) = O, 
~occs(y, b + x) - i f  eq(x, y) t h e n  succ(~occs(y, b)) else  ~occs(y, b) fi 

An alternative definition of bags with the operations 0, {.}, and .U. analogous to the 
definition of SET is obvious and left as an exercise to the interested reader. 

Note, however, that  in contrast to SET, BAG is not monomorphic.  If a definition 
is wanted where for all models addition of an element to a bag is commutat ive and/or  
associative, appropriate  laws have to be added. 

F i n i t e  M a p p i n g s .  Finite mappings associate finitely many elements of an index set 
with values. They can be defined by the following type scheme: 
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t y p e  M A P ( i n d ,  m,  eq); 
p a r a m s  ind ,  m:  sort,  

eq: ( i nd  x i nd )  ~ b o o l  
c o n s t r a i n e d  b y  EQUIV(ind,  eq); 

e x p o r t s  m a p ,  [~, .[.]~-., isdef, .[.]; 
b a s e d  on  BOOL; 
sorts  map;  
functs  [~: --~ map,  (empty map) 

.[.]~-.: ( m a p  x i n d  x m)  --* m a p ,  ("updating") 
isdefl ( m a p  x i nd )  --, b o o l ,  (definedness-test) 
.[.]: ( m a p  x i nd )  -* m; (indexed access) 

a x i o m s  V i, j: ind ;  m: m a p ;  x:. m II 
isdeJ(R, i) - false, 
isdef(m[i]~x, j) = i f  eq(i, j) t h e n  true  e lse  isdeJ(m, j) fi, 
denned(m[/]) ~ i s d e f ( m ,  i )  - true, 
(mO]*--x)[, ] = i f  eq(i, j)  t h e n  x e lse  m[i] fi 

e n d o f t y p e  

Parameters  are here two object kinds i n d  and m,  as well as a binary predicate eq on 
ind ,  having the properties of an equivalence relation. 

Rather than checking definedness explicitly, as is done by the operat ion isdef in the 
type MAP, it is sometimes convenient to have "total  maps",  which are finite maps with a 
pre-defined value for each index. Further variants for finite mappings, e.g. with more than 
one index, are obvious. As an example, we give a definition of "total  square matrices":  

t y p e  MATRIX( ind ,  m,  eq) 
p a r a m s  i nd ,  m:  so r t ,  

eq: ( ind  • i nd )  --* b o o l  
c o n s t r a i n e d  b y  EQUIV(ind,  eq); 

e x p o r t s  m a t r i x ,  init, .[., .]~--., .[., .]; 
b a s e d  on  BOOL; 
s o r t s  m a t r i x ;  
f u n c t s  init: m --* m a t r i x ,  

.[., .]~--.: ( m a t r i x  • i n d  x i n d  x m)  --* m a t r i x ,  

.[., .]: ( m a t r i x  • i n d  • i nd )  --~ m; 
a x i o m s  V i, j, k, I: ind;  m: m a t r i x ;  x: m tl 

init(x)[i, j] - x, 

(initialization) 
("updating") 

(indexed access) 

(m[i,j]*---x)[k, ~ = i f  eq(i, k) A eq(j, l) t h e n  x e lse  m[k, l] fi 
e n d o ~ y p e  

4.2 E x t e n s i o n s  o f  Bas ic  T y p e s  

The types as defined in the examples above contain only a few operations. For pract ical  
purposes, however, a richer set of operations often allows a much more flexible and 
adequate formalization. Such a richer set simply may be defined as an extension (cf. 
section 3.7) of an existing basic type using the instantiat ion mechanism. 
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A typical example is the following definition of indexed sequences as an extension of 
the type SEQU: 

t y p e  INDSEQU(m) 
p a r a m s  m:  sor t ;  
e x p o r t s  SEQU, I.I, .[.], .[.: .], .-1; 
b a s e d  o n  NAT3 as (nat ,  0, .+1, . -1 ,  .=0); 
i nc lude  SEQU(m);  
f unc t s  1.1: sequ  ~ nat ,  

.[.]: ( sequ x nat) -+ m,  

.[.: .]: ( sequ • nat  x nat )  ~ sequ,  

.-1: sequ  --~ sequ; 
a x i o m s  V ~.. m;  r, s, t: sequ;  i, ~. n a t  I] 

I<>1-0, 
Ix + sl - Isl +1, 
s[1] -- f i rs t  s, 
s[i] =- ( res t  s ) [ i -  1] p r o v i d e d  1 < i ,  

(length) 
( indezed access) 

("slicing") 
(re~crsaO 

s[i : k] =_ i f  i > k t h e n  < >  e l se  s[i] + s[i + 1: k] fi 
p r o v i d e d  1 < i, k < Isl, 

S - 1  ---~ i f s  ---~<~> t h e n  < >  e l se  s[l'l] + ( s [ l :  I'1- 1]) -1 fi 
e n d o f t y p e  

Of course, INDSEQU again could be extended by further operations. Also extensions 
of SEQU by other operations are obvious, as are extensions of other basic data  types 
such as sets, bags, or maps. For examples, cf. [Partsch 90]. 

If we extended our type formalism to also allow 'higher-order types '  [M611er 87], we 
also could define an extension of SEQU that comprises the (higher-order) operations and 
predicates from [Bird 87]. Thus, within the algebraic formalism, we could also profit from 
the well-known advantages of using higher-order operations and predicates to express 
commonalities and generic aspects in a concise, abstract  way. However, such an extension 
to higher-order types would also require a (slightly) more complicated theory. Therefore, 
a detailed treatment is not included in this tutorial text. 

4.3 M o d e s  

Certain types and type schemes, such as Cartesian product and direct sum, occur so 
frequently that  it is reasonable to introduce particular shorthand notations called m o d e s  
[Bauer et al. 85]. Syntactically, modes are introduced by a m o d e  d e c l a r a t i o n .  Their 
semantics is defined via instantiations of the associated type schemes. 

A p r o d u c t  specifies objects that  are composed of a finite number k>0 of other 
objects, called c o m p o n e n t s ,  together with operations for construction and selection. 

A special case of products are pairs. Arbitrary object kinds m and m I can be com- 
bined into pairs by using the type scheme 
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t y p e  PAIR(m,  m') ;  
p a r a m s  m ,  m~: sort; 
e x p o r t s  pair ,  ink, sel, sei' 
sort  pair ;  
f u n c t s  ink: (m x m ' )  --* pair ,  

seh pair --+ m,  
sei': pa i r  ---+ m '  

a x i o m s  V x: m; x': m'  II 
sel(mk(x, z') = x, 
sel '(mk(z,  x')) = x' 

e n d o f t y p e  

(pairing) 
(selection of first component) 

(selection of second component) 

The type scheme PAIR is monomorphic relative to its parameter sorts. The constructor 
operation m p -  like all operations defined by types - is strict in its arguments. As an 
abbreviation for the above type definition and its use in 

inc lude  PAIR(m, m ' )  as (pair,  mp, s, s') (4.3.1) 

we now introduce the mode declaration 

m o d e  p a i r  = rap(s: m, s': m') .  (4.3.2) 

The generalization of (4.3.1) and (4.3.2) to an arbitrary product PRODUCTk is obvious. 
The pairs as introduced by (4.3.2) provide, except for construction and selection, no 

further operations. Frequently, however, at least the induced equality, i.e. componentwise 
equality, is wanted, provided equalities eq and eq' on the component types are available. 
In order to define pairs with induced equality, we simply extend the type scheme PAIR 
by an operation 

cqu: (pai r  x pai r )  ---* boo l  

defined by (V z, y: m; x', ~f: m ' )  

equ(mp(x, ~'), mp(y, y') ) = eq(x, y) A eq'(x', y~) 

and use 

- m o d e  palr(equ) = rap(s: m(eq), s': m'(cq'))  

as a shorthand notation for the instantiation of the extended definition of pairs (cf. [Bauer 
et al. 87]). 

The (direct) s u m  specifies the disjoint union of a finite number k > 0 of carrier sets, 
which are called va r i an t s  of the sum. In addition to injection and (partially defined) 
projection operations, which are analogous to the constructor and selector operations in 
products, one also needs discriminating predicates. 

The sum of 2 carriers is introduced by 

m o d e  m = v(p: m) [ v'(p': m ' )  (4.3.3) 
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which is defined to be an abbreviation for 

inc lude  SUM2(m, m ~) as (sum, v, .is v,p,  C, .is C, f )  

where SUMz(m, m I) is defined as follows: 

t y p e  SUM2(m, m I) 
p a r a m s  m, m~: sort; 
e x p o r t s  s, ink,  i smk ,  pr, m k  I, i smkl ,  pC; 
sorts  s; 
f u n c t s  m k :  m --* s ,  

mkl: m I ---+ s, 
i smk ,  i smk ' :  s --+ bool ,  
pr: s --* m ,  
pC: s --* m ~ 

a x i o m s  V x : m; z': m'  [[ 
def ined(pr(x))  ~ ismk(x) - t rue ,  
i s m k ( m k ( x ) )  =_ t rue ,  
ismk'(mk( )) = f a l s e ,  

- 

def ined(pr ' (z ' ) )  =~ i s m k ' ( x ' )  - t rue ,  
i s m k ' ( m k ' ( z ' ) )  = t rue ,  
i s m k (  m k '  ( z ' )  ) = false, 

= 

e n d o f t y p e  

(4.3.4) 

(injection) 

(discriminat ion)  
(projection) 

Again, the generalization of (4.3.3) and (4.3.4) to an arbitrary number of variants is 
obvious. As PRODUCTk, the scheme SUMk is monomorphic relative to the parameter 
sorts. 

E x a m p l e  
A typical example for a sum mode declaration is 

m o d e  resu l t  = error(message:  s t r ing)  [ correct(res:  int) .  �9 

In connection with the sum mode it is also allowed to have nullary variants (without 
projections), which are variants which define new constant symbols. 

E x a m p l e  
A typical example of this kind is 

m o d e  color  = red I blue I green 

that  introduces a new object kind color  consisting of the constants red, blue, and 
green, resp. �9 
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Furthermore, sums may also be quasi-ordered such that all elements of one variant are 
preceded in the quasi-ordering by all elements of another variant. For details see [Bauer 
et al. 85]. 

Similar to products, sums can be formally extended by an equality in a straightforward 
way. Since, however, this equality simply coincides with the equality on the variants of 
the sum, we do not introduce a particular notation. 

The combined use of product and sum also gives meaning to r e c u r s i v e  m o d e  dec-  
larat ions.  

E x a m p l e  
By the above definitions, 

m o d e  nat  ---- 0 [ suce(pred: na t )  

is equivalent to the definition of NAT3 as given in section 3.5 (with .is 0 for . = 0 ) i  

As a further notational device in connection with modes, s u b m o d e s  may be used as 
a convenient shorthand notation for expressing restrictions on objects. The meaning of 
submode declarations such as 

m o d e  m o n t h  = (x: na t  II 1 < x < 12) 

is intuitively clear. For a formal definition see again [Bauer et al. 85]. 
In contrast to [Bauer et al. 85], we will also use modes for abbreviating type instan- 

tiations. Thus, 

m o d e  m = T(n) (4.3.5) 

is defined to be an abbreviation for 

inc lude  T(n) as ( m , . . . ) .  (4.3.6) 

E x a m p l e  
Using (4.3.5) and (4.3.6), sequences of natural numbers thus could have been 
defined simply by 

m o d e  na t  = NAT4; 
m o d e  n a t s e q u  = SEQU(nat ,  =). 

4.4 F o r m u l a t i o n  o f  C o n c e p t s  by  Algebra i c  Types  and M o d e s  

In the following we are going to exemplify how the basic types and their extensions may 
be used for the representation of (mathematical) concepts (cf. section 2.1). We will confine 
ourselves to the concepts "finite directed graph" and "cube". From these examples the 
representation of other concepts as (systems of) algebraic types and/or  modes should be 
straightforward. 
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F in i te  D i rec t ed  Graphs .  Assuming a type NODE with sort n o d e  and equality test 
--, a basic constructive definition for finite directed graphs can be given as follows (cf. 
[Bauer et al. 89]): 

t y p e  DGRAPH 
e x p o r t s  dgraph ,  eg, ine, isarc; 
b a s e d  on NODE, BOOL; 
sor t  dgraph;  
f u n c t s  eg: --~ dgraph ,  

inc: (dgraph  x node  • node)  --* dgraph ,  

isare: (dgraph  • node  x node)--* bool; 
a x i o m s  V g: dgraph;  z, y, u, v: node II 

isarc(eg, x, y) - false, 

e n d o ~ y p e  

(empty graph) 
(addition of 

connected nodes) 
(test on edges) 

isarc(inc(g, x, y), u, v) = (((x = u) A (y = v)) V isarc(g, u, v)) 

This specification of DGRAPH is based on a fixed set of nodes (defined by NODE). 
A specification of finite directed graphs for different kinds of nodes as well as various 
extensions can be found in [Partsch 90]. 

Based on DGRAPH, it is possible to give definitions of the representations of graphs 
as exemplified in section 2.1. Thus, e.g., a representation of finite directed graphs accord- 
ing to (2.1.2) is as follows: 

t y p e  DGRAPH' 
expo r t s  DGRAPH, nodeset ,  in, out; 
include DGRAPH, 

SET(node, =) as (nodeset ,  . . .);  
f tmcts  in, out: (node  x dgraph)  --* nodese t ;  
a x i o m s  V 9~ dgraph;  z, y, z: node II 

in(x, eg) = 0, 

e n d o ~ y p e  

(predecessors, successors) 

in(x, inc(g, y, z)) = if  x = z t hen  in(x, g) t3 {y} else in(x, g) fi, 
out(x, eg) =. 0, 
out(x, inc(g, y, z)) = if x = y t h e n  out(x, g) U {z} else out(x, g) fi 

Similarly, definitions for the other two representations could be given. Thus, e.g., a 
definition for the representation (2.1.3) might use an appropriate instantiation of the 
type MATRIX: 
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t y p e  DGRAPH" 
e x p o r t s  d g r a p h ,  eg, inc, isarc; 
b a s e d  o n  NODE, BOOL; 
inc lude  MATRIX(node,  bool ,  =)  as (dg raph ,  . . .);  
f u n c t s  e~ --* d g r a p h ,  (empty graph) 

inc: ( d g r a p h  x n o d e  x n o d e )  --* d g r a p h ,  (addition of 
connected nodes) 

isarc: ( d g r a p h  x n o d e  x n o d e )  --* bool ;  (test on edges) 
a x i o m s  V g: dgraph;  z, y: n o d e  II 

eg - init(false), 
inc(g, ~, y) ~ g[x, y]~--true, 
isarc(g, z, y) =_ g[x, y] 

e n d o f t y p e  

A definition for the representation (2.1.1) can be given simply using mode declara- 
tions: 

m o d e  n o d e s e t  = SET(node ,  =); 
m o d e  e d g e ( = )  = me(in: node (= ) ,  out: node(=) ) ;  
m o d e  e d g e s e t  = SET(edge,  =), 
m o d e  g r a p h  = rag(nodes: nodese t ,  edges: edgese t  II 

V e: edge  II e ~ edges ~ in(e) e nodes A out(e) E nodes) 

In all these definitions, only few operations (on graphs) are defined. Of course, it is 
possible to extend these definitions by arbitrary operations. Examples can again be found 
in [Partsch 90]. 

C u b e s .  As another example for illustrating the formalization of concepts as algebraic 
types, we consider (the combinatoric properties of) the notion "cube". 

Intuitively, with respect to the notion of a cube, three different kinds of entities are 
involved: faces, edges, and vertices. Accordingly, depending on whether we consider faces, 
edges, or vertices as primitive entities, different representations of the concept cube will 
emerge from relating the respective primitives. The obvious possibilities are 

- 6-tuples of related faces 
- 12-tuples of related edges 
- 8-tuples of related vertices. 

In the sequel we will concentrate on the first possibility. Specifications based on the 
other ones follow similar patterns. 

Assuming the availability of a type FACE which defines a sort f (for "face") and an 
equality = on objects of sort f, the combinatoric properties of cubes can be axiomatically 
defined by 6-tuples of related faces as follows: 
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t y p e  F-CUBE 
e x p o r t s  FACE, iscube; 
b a s e d  on  BOOL; 
inc lude  FACE; 
f u n c t s  .H.: ( f  • f) "-* b o o l ,  

._L.: (f x f) --* bool ,  
iscube: (f  • f x f x f x f • f) --* b o o l ;  

ax ioms  V a, b, c, d, e, ~. f I] 
include EQUIV(f, .11.), 
a _L b - -~(a II b), 
(a / b A a  _L cA b l  c - -  t r ue )  =~ 

(d  II a v d II b v d II c = t r u e ) ,  
(a = b = t r u e )  ~ (a II b --  t r u e ) ,  
iscube(a, b, c, d, e, f )  = 

-.(~ = b) A - . (c  = d) A - . (e  = f )  A 

(paralle 0 
(perpendicular to) 

(1) 
(e )  

(3) 
(4) 

all bAcll  dAe l l fAa-LeAa-LeAe le  
e n d o f t y p e  

The sufficient completness of this definition is obvious: By the axioms of EQUIV, any 
subterm of the form a [] b can be reduced to either t r u e  or false. Since, moreover, any 
subterm of the form a .I_ b can be reduced to a term over (a ]] b), the axioms of BOOL 
guarantee that arbitrary terms (over .]]. a n d ,  I .) are reducible to either t r u e  or false. 

Whether this formalization really captures the intuitive notion of (the combinatoric 
properties of) a cube is a different question which cannot be answered formally, but only 
made plausible. To this end, from this definition additional properties can be derived 
which profitably can be used either for checking the adequacy of the formal specification 
or in program development. Examples are: 

L e m m a  1 
For faces a, b, c, d, e, fwe  have: 
a.  (a II b A a _L c = t r u e )  :~ (b .L c = t rue ) ;  
b.  i scube(a ,b , c ,d , e , f )  ~ I { a , b , c , d , e , f }  I = 6; 
c. iscube(a, b, c, d, e, f )  - iscube(c, d, a, b, e, f);  
d.  iscube(a, b, c, d, e, f )  - iscube(b, a, c, d, e, f);  
e.  iscube(a, b, c, d, e, f )  - iscube(c, d, e, f ,  a, b). 

Proo f :  Straightforward from the axioms and basic rules of logic. �9 

L e m m a  2 
For elements a, b, c, d, e, f o f  type f there are exactly 15 equivalence classes with 
respect to iscube. 

Proo f :  
First we show that all possible tuples of arguments for iscube can be represented 
by at most 15 tuples formed out of a, b, e ,  d, e, .ft. 
From lemma 1 it follows that for all tuples starting with an element different 
from a there is an equivalent one (with respect to iscnbe) starting with a. Thus, 
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it is sufficient to consider tuples start ing with ab, ac, ad, ae, a]. Likewise it 
follows that  for all tuples start ing with abd, abe, abf there is an equivalent one 
s tar t ing with abc. By analogous reasoning we conclude that  for all tuples there 
are equivalent ones start ing with abe, acb, adb, aeb, afb. Once more using the 
same reasoning we finally find out that  the tuples 

a, b, c, d, e , l  a, c, b, d, e , I  a, d, b, c, e , l  a, e, b, c, d , l  a , ] ,  b, c, d, e 
a, b, c, e, d , l  a, c, b, e, d , l  a, d, b, e, c , I  a, e, b, d, c , I  a , I ,  b, d, c, e 
a, b, c , I ,  d, e a, c, b,], d, e a, d, b,], c, e a, e, b,],  c, d a , I ,  b, e, e, d 

are sufficient to represent all possible argument tuples to iscube. Finally, it  is easy 
to see that  none of these tuples is equivalent to another (with respect to iscube), 
which concludes the proofi �9 

L e m m a  3 
For foxes a, b, c, d, e, ]which  are mutually different w.r.t. =,  we have: 

iscube(a, b, e, d, e, f)r 
a l  c A a l  e A c . L e A  b . l _ c A b l  e A  d l  e A  
a_l_ d A  a J _ f A  c_L f A  b_L d A  b_L f A  d_L f 

P r o o f :  Straightforward from the definition of iscube and lemma 1. 

5 E x a m p l e s  

In this section we would like to illustrate how to use the specification formalism intro- 
duced in the previous sections by means of somewhat more complex examples. 

5.1 T h e  B o u n d e d  Buf fe r  

As part  of a simple system of communicating agents, we consider the problem of specifying 
the behaviour of a "bounded buffer". The problem is as follows: 

There is a buffer of restricted length. Information can be sent to the buffer for 
storing. I f  the buffer is not full, the information is stored and an OK-message 
is given. Information can also be retrieved from the buffer according to priorities 
tagged to the information. Storing (retrieval) results in issuing an error message, 
if the buffer is full (empty). 

In order to formally specify the problem, we assume to have available a type INFO 
which defines an object kind info (of information) and an operat ion pry: in fo  --* n a t  
which assigns a priority to an information. Disregarding the problem of boundedness,  the 
intended buffer obviously behaves like a priority queue (of objects of type info)  which 
may be specified by 
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t y p e  PQUEUE 
e x p o r t s  p q u e u e ,  put, max, rest, init, [.[; 
b a s e d  on  INFO, NAT4 as (nat ,  0, .+1, .-1,.,.,.); 
so r t s  pqueue ,  
func t s  init: ---, p q u e u e ,  

put: (pqueue  • info) ~ pque ue ,  
r a a x - p q u e u e  ---* info, 
rest: p q u e u e  --+ pqueue ,  
I.l: p q u e u e  ---, na t ;  

ax ioms  V q: pque ue ;  i: info It 
l initl = O, 

Iput(q,i)l = Iql +1, 
d e f i n e d ( m a x ( q ) )  =~ (0 < lql) = t rue ,  
m a x ( ~ t ( i n i t ,  i)) = i, 
max(put(q ,  i)) -- i f  pry(max(q))  < pry(i)  t h e n / e l s e  max(q )  fi 

p r o v i d e d  0 < Iql, 
de f ined(res t (q ) )  ~ (0 < Iql) = t rue ,  
rest(put(  init,  i) ) ==. init, 
rest(put(q,  i)) --- i f  p ty(rnaz(q))  < pty( i)  t h e n  q else put(res t (q) ,  i) fi 

p r o v i d e d  0 < Iql 
e n d o ~ y p e  

Taking boundedness into account, the intended buffer can be specified in terms of 
priority queues as follows: 

m o d e  buf fe r  = (q: p q u e u e  I1 Iql < N V  [ql = N);  

According to the informal description, input to the buffer is either information to be 
stored or an attempt to retrieve stored information. Thus, a single piece of input to the 
buffer can be specified by 

m o d e  i ne l em = sto(infl info) I retr. 

Likewise, a single piece of output from the buffer is either an OK-message, an error 
message or an information. This can be formalized by 

m o d e  o u t e l e m  = OK I s-error I r-error I mk-res( in~. info). 

The behaviour of the intended buffer is completely characterized by specifying a func- 
tion buffer which maps an arbitrary sequence of input elements onto a sequence of output 
elements. Thus, altogether, we have the following specification: 
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t y p e  BUFFER(N) 
params  N: nat; 
expor t s  input ,  o u t p u t ,  buffer; 
based  on INFO, PQUEUE, SEQU, NAT4; 
m o d e  ine lem = sto(infi info) [ retr;, 
m o d e  input  = SEQU(inelem); 
m o d e  o u t e l e m  -- O K  [ s-error [ r-error I mk-res ( in f :  info);  
m o d e  o u t p u t  = SEQU(outelem);  
m o d e  buffer -- (q: pqueue  II Iql < N v  Iql = N ) ;  
functs  buffe~, input  -~ output ,  

buff. ( inpu t  x buffer)  -+ output ;  
a x i o m s  V in: input;  b: buffer; i: info [[ 

buffer(in) - buff(in,  init  ), 
b u f f ( < > ,  b) - <> ,  
buff(sto(i)  + in, b) =- if  Ib] < N t h e n  O K  + buff( in,  put(b, i)) 

else s-error + buff( in,  b) fi, 
buf f (re tr  + in, b) - if  Ibl > 0 t h e n  mk-res (max(b ) )  

+ buff( in,  rest(b)) 
else r-error + bu1~in, b) fl 

e n d o ~ y p e  

213 

5.2 T h e  " C u b e  P r o b l e m "  

An informal statement of the problem was given in section 1. Following the method- 
ological guidelines from section 2, formalizing the problem requires formalization of the 
problem domain, i.e., input, output, and constituents of the problem, as well as formal- 
izing the problem proper as an expression in terms of the formalization of the problem 
domain. Each of these aspects will be separately looked at in turn, assuming the availabil- 
ity of basic concepts such as bags, indexed sequences or tuples, for which an intuitively 
obvious notation will be used as long as we are reasoning on the conceptual level. In 
our subsequent treatment of the problem, in particular, the influence of various design 
decisions during formalization will be commented on. 

I n p u t .  In our attempt to formalize the input to the problem, we follow a top-down 
approach. We start from a first rough approximation of the conceptual data structures 
involved and then gradually refine them until we reach a sufficiently detailed and ade- 
quate description. 

Input  
In a most general view, according to the informal description given in section 1, the 
"input" to the problem consists of a bag of 6 pieces, i.e. 

pbag =def (B: hag o f  piece  II IBI = 6), 

assuming the availability of a primitive type piece that formally specifies the individual 
pieces of the puzzle. Additionally, we know that the surface area covered by all pieces 
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when arranged in a cube has to be 6x5 z = 150: 

~p~B area-covered-by(p) = 150. 

Thus, together, as a first approximation, we specify the input to the problem by 

p b a g  '~def (B" bag  of  piece II IBI = 6 A EpeB area-covered-by(p) = 150). 

For a further, more adequate refinement, a detailed specification of p iece  is needed. 

Individual pieces 
In order to formally describe the pieces, there are obviously different possibilities. Ir- 
respective of these, however, all pieces have common characteristics which need not be 
specified explicitly and may be considered invariants. Each piece has: 

- 4 sides, perpendicular to each other; 
- a fixed "kernel" of size 32 = 9 square units; 
- a thickness of i unit; and 
- upto 5 "teeth" per side, each of size 1 square unit. 

According to these common characteristics, the area covered by a single piece p is 
composed of the size of the kernel and the areas covered by the teeth. With respect to 
the latter, we further have to distinguish between "middle teeth" (which contribute to 
the total area of the cube in two dimensions) and "corner teeth" (contributing to three 
dimensions). Assuming the availability of appropriate auxiliary operations, the area cov- 
ered by a single piece thus can be defined by 

area-covered.by(p) =def 9 + 2 • middle-teeth(p) + 3 • corner-teeth(p). 

The individual "geometry" of each piece is given by the presence, resp. absence, of 
"teeth" at its sides. Thus, a straightforward formalization of pieces might be given by 

s i d e  =def (s: i ndexe dse qu  o f  boo l  II Isl = 5), (5.2.1) 
p i e c e  =def rap(s1: side, s2: side, s3: side, s4: s i d e )  

(or, equivalently: p iece  = (p: i n d e x e d s e q u  o f  side II Ipl = 4),  implicitly assuming a 
fixed orientation of the sides, e.g. clockwise). 

However, this straightforward formalization does not take into account that two con- 
secutive sides share a common corner, i.e., for each side si of a piece p 

$/[5] : S(i m o d  4)+1[ 1] (5.2,2) 

has to be required. Furthermore, in order to be mechanically stable, there must not be 
"isolated teeth" at the corners, i.e., for each side si of a piece p 

8/[5] ~ 8/[4] ~/ $(i i o n  4)+1[ 2] (5,2.3) 

has to be required, too. 
Thus, rather than using pieces as defined in (5.2.1), we need 
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r p l e c e  = d e f  (P: p i e c e  II isagp(p)) where (5.2.4) 
isagp(p) =def 

Vl<i<4 (p.s~[5] = p.s(~ rood  4)+111]) ^ (p.s~[5] =~ p.si[4] V p.s(~ r o o d  4)+112]) �9 

Here, the well-known dot notation is used to denote the selection of the components of 
a tuple. If selection is used in conjunction with indexing or slicing, it is assumed that 
selection has higher priority. 

The simple closed forms of the properties (5.2.2) and (5.2.3) are obviously a conse- 
quence of our decision to assume a fixed orientation of the sides of a piece. Otherwise, 
explicit conditions on all pairs of adjacent sides would have been needed. On the ba- 
sis of this definition we are now also in a position to formalize the auxiliary functions 
middle-teeth and corner-teeth, e.g. by 

middle-teeth(p) =def ~i=1..4 (btn(p.si[2]) -4- btn(p.si[3]) + btn(p.si[4]) ), 
corner-teeth(p) =def L'i=L4 btn(p.si[1]), 
bin(b) =def i f  b t h e n  1 e l se  0 ft. 

Furthermore,  definitions of functions to access side i (1 < i < 4) of a piece or its left 
corner, its middle part ,  and its right corner, which will be needed to formalize tha t  two 
sides fit together, are straightforward: 

full-side(i, p) =def p.si, 
left-cornea(i, p) =def p.s~[1], 
middle-part(i, p) =def p.si[2 : 4], 
right-corner(i, P) =aef p.si[5]. 

Summing up, in order to formally describe the input to our problem, we may use 

pbag =def (B: b a g  o r  r p l e c e  IIIBI = 6 A sveB area-covered-by(p) = 150) (5.2.5) 

with definitions of r p i e c e  and the auxiliary functions as given above. 

Other definitions .for individual pieces 
Of course, there are alternative representations of pieces. Examples are: 

- representation by corners (of unit size) and (the middle parts  of) sides (of size 3). 
Here, due to considering corners as individual entities, an equivalent of requirement 
(5.2.2) is not explicitly needed. However, access to a side or its parts  has to be 
changed. 

- representation by sides (of size 4), assuming that  each corner (of unit size) is uniquely 
at tached to one of its adjacent sides. Here too, an explicit equivalent of requirement 
(5.2.2) is not needed, but  again access to a side and its constituents has to be changed. 

- representation by (the very middle tooth of) sides (of unit size) and corners (of 
size 3). Again, an explicit equivalent of requirement (5.2.2) is not needed. Moreover, 
requirement (5.2.3) is already given in the definition of corner. However, accessing a 
side or its parts  becomes somewhat more difficult. 
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"View8" 
So far we did not pay attention to the fact that the description of a piece depends on 
the way we look at it. Obviously, by rotating a piece (clockwise or anti-clockwise) by 
90 degrees it remains the same, although its description changes - irrespective of which 
formalization is used. Similarly, flipping a piece (vertically or horizontally) changes its 
representation, but, of course, not the piece itself. 

As a straightforward approach to formally describe all these various RviewsS of a 
piece, we may use generating functions id ("identity"), r ("rotate"),  f ("flip"), each of 
functionality 

rp ieee  ~ rp iece ,  

which are described by the following properties (with o denoting function composition 
and assuming that no other equalities hold than those explicitly stated): 

r o  r o  r o  r = id, 

f o  f = id, 
r o id = id o r = r, 

f o  i d = i d o f = f ,  
~ o f = / o  ~ o  ~ o , - .  

(5.2.6) 

Obviously, {id, r, f}, together with the axioms (5.2.6) generates a group with the 
elements 

{id, r, r 2, r 3, f ,  I t ,  f r  2, fr3}. (5.2.7) 

The different views, generated by {id, r, r 2, r 3, ], fr, f r  2, fr~), of piece 1 from the 
example given in the beginning may be visualized as follows: 

Constructive definitions of the generating functions of the various "views" of a piece 
are also obvious. Assuming, e.g., definition (5.2.4) for pieces, we have 

id(p)  ~-~ p, 
~(p) ~ mp(p.s~, p .~ ,  , . ~ ,  p.~) ,  
f(p) ~ ~T~p([p.s3] -1, [~.s2] -1, [p.Sl] -1, [p.84] -1) 

where verifying that these definitions preserve the essential properties (5.2.2) and (5.2.3) 
is straightforward. 
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From these definitions, deriving explicit definitions for the remaining elements of the 
group (5.2.7) is straightforward, e.g. 

r~(p) = r(r(p))= ~(mp(p.s~, p.s3,p.s,, p.s i ) )=  mp(p.s3, p.s,, P.Sl, p.s2). 

In order to formally define the aspect of "views", we may use 

v iewid  ~-~def { id, r, r 2, r 3, f, It, fr ~, fr  3} 

and a function view of functionality (viewid • rpiece)  --* rplece,  that  "applies" the 
"view function" denoted by an object of type v iewid  to a piece. 

Since view is a finite mapping, there are, of course, obvious alternative representations 
by appropriate data structures, such as maps, arrays, 8-tuples, etc. 

O u tp ut .  For an adequate formalization of the output of our initially given problem, 
F-CUBE (cf. section 4.4.2) seems to be a reasonable candidate, since the elements of type 
f obviously can be interpreted by (views of) the pieces of the puzzle and the relation J_ 
by "has a common side with". Thus, as a first approximation for formally specifying the 
output of our problem, we choose a tuple (a, b, c, d, e, f )  of (views of) pieces which forms 
a cube, i.e., for which iscube(a, b, c, d, e, f )  holds where iscube is defined as in F-CUBE 
or as in lemma 3 (cf. section 4.4.2). 

This first approximation, however, is not yet satisfactory. Since the puzzle ultimately 
aims at building a cube (provided it exists), an adequate formalization of the output 
should also give sufficient information on how to actually construct the cube from the 
pieces. 

One possibility for giving this information is by arranging the pieces in a two-dimen- 
sional way such that common sides of pieces immediately can be recognized. Thus, e.g., 
for a tuple (a, b, c, d, e, f) ,  which is known to form a cube, the following representation 
could be used (where lines indicate common sides): 

E 
C 

S S 
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Finally, for a suitable definition of iscube, we also have to take into account that two 
pieces are only allowed to form one common edge of the intended cube, if the teeth of 
adjacent sides fit together. This has two implications with respect to the formalization 
of output: 

- rather than just interpreting elements of type f by (views of) pieces, we have to use 
a stronger relation (instead of .l_) within the definition of iscube which reflects the 
idea of "fitting together"; and 

- instead of just requiring that two pieces have a common side, we also have to be more 
precise on which side of the one piece has to fit which side of the other one. 

One possibility for dealing with the latter problem is by assuming a fixed representa- 
tion for each view of a piece, e.g., 

In order to cope with the former problem, we use an appropriately defined predicate 
fits which assumes such a fixed representation of the pieces. With these modifications, 
output to our original problem now can be formally specified even in linear form, viz. by 
a sequence <a,  b, c, d, e, f >  of views of the original pieces which satisfies the predicate 
iscube defined (following lemma 3) by 

iseube(a, b, c, d, e, f )  = d e f  

fits(a, 2, c, 4) A fits(a, 3, e, 4) A fits(c, 3, e, 1) A fits(b, 3, c, 2) A fits(b, 2, e, 2) A 
fits(d, 1, e, 3) ^ fits(a, 4, d, 4) ^ fits(a, 1, f, 4) h fits(c, 1, y, 3) A fits(b, 1, d, 2) h 
fits(b, 4, f,  2) ^ fits(d, 3, f, 1). 

In order to give a formal definition of fits, we recall the properties of the pieces of the 
puzzle: Two sides of two pieces fit together, if their respective teeth are complementary 
with the exception that facing corner teeth of both pieces may not be present. Thus, an 
obvious specification for fits is the following one (assuming a fixed orientation of the sides 
of a piece): 

fits(p, i, q, j) =def 
Vl<k<3 -~(middle-part(i, p)[k] r middle-part(j, q)[3 - k + 1]) A 
-,(left-corner(i, p) ^ right-corner(j, q)) ^ -~(right-corner(i, p) ^ left-corner(j, q)). 
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F o r m u l a t i o n  of  t he  P r o b l e m  P r o p e r .  Having now available formal specifications of 
input  and output  to the problem, it remains to formally specify the problem proper.  This,  
however, is straightforward from the informal description: Given a bag b of 6 pieces, we 
want to know if a cube can be built from these pieces, and if so, how. Formally, this is 
specified by 

if formseube(b) t h e n  somecube(b) else false fi w h e r e  
psequ  =def sequ  o f  rplece; 
for~nscube(b) :-deE 3 8: p s e q u  I] isperm(b, s) A iscube(s); 
somecube(b) :de f  s o m e  s: p s e q u  11 isperm(b, s) A iscube(s); 

Here we have used an existential quantifier and a "comprehensive choice" (denoted by 
some) to formulate specification expressions. Intuitively, the meaning of these operators 
is obvious, for a formal definition we refer the reader to [Bauer et al. 85]. The symbol 
"A" is used to denote sequential conjunction. 

I t  remains to give a formal specification of isperm, i.e., to formally specify what  it  
means that  a sequence s of the above kind is an arrangement of a given bag b of pieces. 
But this is obvious: both  have to consist of the same pieces, however, maybe  in a different 
view. Thus, the formal relationship between the input bag and the output  sequence may 
be described by 

isperm(b, s) =def 
Ibl = Isl A S p: r p i ece ,  v: v i e w i d  I] 

p E b A view(v, p) -- f i r s t  s A isperm(b - p, r e s t  s). 

A C o m p l e t e  F o r m a l  Spec i f i c a t i on .  A complete formal specification of our initial  
problem now is immediately obtained by collecting the various parts  developed so far 
and translat ing them into our specification formalism. However, we have to take some 
design decisions, e.g. with respect to the representation of the pieces of the puzzle, which 
will also have consequences for some of the auxiliary functions. Furthermore,  we will 
still  use certain obvious abbreviations such as universal quantification over a restricted 
domain or i terated sums. 

For the formalization of pieces we use 

t y p e  PIECE; 
e x p o r t s  s ide ,  s, r p l ece ;  
b a s e d  on  BOOL, NAT, INDSEQU; 
m o d e  s = INDSEQU(bool) ;  
m o d e  s ide  = (s: s H Isl = 5); 
m o d e  p i e c e  = INDSEQU(side) ;  
m o d e  r p i e c e  - (p: p i e c e  II li~ -- 4 A isagp(p)); 
f u n c t s  isagp: p i e c e  --~ boo l ;  
a x i o m s  V p: p i e c e  II 

isagp(p) -- Y1_<,_<4 (Pill[5] = p[(i r o o d  4)-t-1][1]) A 
(p[i][5] :~ p[i][4] V p[(i r o o d  4)+1][2]) 

e n d o f t y p e  
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Based on the definition of pieces, the input to the problem can be formalized by 

t y p e  PBAG 
e x p o r t s  pbag;  
ba sed  on  PIECE, BOOL, NAT, BAG; 
m o d e  r p b a g  = BAG(rpiece);  
m o d e  p b a g  = (B: r p b a g  I] [B[ = 6 A ~peB area-covered-by(p) = 150); 
func t s  area-covered-by: rp iece  --* nat ,  

middle-teeth: rp iece  --+ na t ,  
corner-teeth: rp iece  -~ na t ,  
btn: boo l  ~ nat ;  

ax ioms  V p: rpiece;  b: boo l  11 
area-covered-by(p) - 9 + 2 • middle-teeth(p) + 3 • corner-teeth(p),  
middle-teeth(p) =__ Si=1..4 (btn(p[~q[2]) + btn(p[i][3]) + btn(p[i][4]) ), 
corner-teeth(p) - ~7i=1..4 btn(p[i][1]), 
btn(b) - if b t h e n  1 else 0 fi 

e n d o ~ y p e  

For the formalization of views we use the idea of "view identifiers" as introduced 
above, as well as generating functions rot (for "rotate") and flip. Thus we obtain: 

t y p e  VIEW 
e x p o r t s  v i e w i d ,  view; 
based  on  PIECE; 
m o d e  v iewid  : id I r ] r 2 I r3 I l l  f r l f  r~ I f  r a; 
func t s  view: (viewid • rp iece)  --, rp iece ,  

rot: rp iece  --~ rp iece ,  
flip: rp iece  - ,  rp iece ;  

ax ioms  V i: viewid;  p: rp iece;  s: side II 
view(i, p} = 

if  i is id t h e n  p 
elsf  i is r t h e n  rot(p) 
elsf  i is r 2 t h e n  rot(rot(p)) 
elsf  i is r a t h e n  rot(rot(rot(p))) 
elsf  i is f t h e n  flip(p) 
elsf i is fr  t h e n  flip(rot(p)) 
elsf i is fr  2 t h e n  flip(rot(rot(p))) 
elsf  i is fr 3 t h e n  f l ip(rot(rot(rot(p)))) fi, 

rot(p) -- p[4] + p [ l :  3], 
f l i p ( p )  - [p[3]] -x  + ([p[2]] -1 + ([p[1]]-I + ([p[4]] -~  + <>))) 

e n d o f t y p e  

Based on the definition of pieces, the output of the problem can be forma|ized by 
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t y p e  PSEQU 
e x p o r t s  p s e q u ,  iscube; 
b a s e d  o n  RPIECE, BOOL, NAT, INDSEQU; 
m o d e  p s e q u  = INDSEQU(rp iece ) ;  
m o d e  m s i d e  = (m: s II Iml = 3); 
f u n c t s  iscnbe: p s e q u  --* b o o l ,  

fits: ( r p i e c e  x n a t  • r p i e c e  x n a t )  -~  b o o l ,  
left-corner: (na t  x r p i e c e )  --~ b o o l ,  
middle-part: ( n a t  x r p i e c e )  --~ m s i d e ,  
ri#ht-eorner. (nat  x r p i e c e )  --* b o o l ;  

a x i o m s  V s: p s e q u ;  p, q: rp iece ;  i, j: n a t  II 
defined(iscube(s))  r Isl = 6, 
iscube( s ) - 

,fits(s[1], 2, s[3], 4) A ,fits(s[1], 3, s[5], 4) A ,fits(s[3], 3, s[5], 1) A 
.fits(s[2], 3, s[3], 2) A .fits(s[2], 2, s[5], 2) A ,fits(s[4], 1, s[5], 3) A 
,fits(s[1], 4, 8141, 4) A .fits(s[1], 1, s[6], 4) A ,fits(s[3], 1, s[6], 3) A 
,fits(s[2], l ,  s[4], 2) ^ ,fits(s[2], 4, s[6], 2) A ,fits(s[4], 3, s[6], 1); 

,fits(p, i, q, j )  -- 
V 1<k<3 -,(middle-part(i,  p)[k] ~ middle-part(j ,  q)[3- k + 1]) A 
-.( te/t-co.,e,(  i, p) ^ ~ight-co, 'ne,% q) ) ^ 
-.(,'ight-co,'ne~( i, p) ^ left-co,',,e~(j, q)), 

left-corner(i, p) - p[i][1], 
middle-part(i ,  p) - p[i][2 : 4], 
right-corner( i, p) =_ p[i][5] 

e n d o f t y p e  

Based on these definitions, the problem proper can be formalized as given above. 
This specification has been successfully used as a starting point for a (rather straight- 

forward) transformational development which ended in a (fairly efficient) backtrack pro- 
gram to solve the "cube problem" (as was requested in section 1). In this program (the 
transformed versions of) the definitions of isagp and p b a g  are profitably used to check 
the validity of the input (represented by boolean arrays). Efficiency of the resulting pro- 
gram as compared with a naive backtrack program is obtained by exploiting lemma 3 
from section 4.4 during the development. 

6 C o n c l u d i n g  R e m a r k s  

In this paper we have introduced algebraic specifications as a means for fomally specifying 
problems - or at least as a solid basis on which a comprehensive specification formalism 
can be built. Concepts, theoretical background, and abstract syntax have been borrowed 
from the language CIP-L (cf. [Bauer et al. 85]) on purpose. Of course, there are many 
other algebraically based specification languages, some of which are mentioned in section 
1. Although these languages may differ quite substantially with respect to notation or 
the particular theoretical basis, most of them basically comprise more or less the same 
concepts which justifies our inital claim to view CIP-L as a typical representative for an 
algebraic specification language. A more detailed synoptical treatment of several algebraic 
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specification languages can be found in [Wirsing 89]. There, in particular, also lots of 
interesting apsects with respect to theory are surveyed and discussed. 

Within our paper the advantage of formal specifications over informal ones was taken 
for granted. In fac L although formal specification can be argued to be an additional cost 
factor for software development, it is rather to be seen as an investment that  essentially 
pays afterwards during implementation and "maintenance". Detailed experiences in this 
respect are reported in [MSller, Partseh 86]. 

The advantages of algebraic specification over conventional (semi-formal) approaches 
to requirements engineering are also obvious. Algebraic specifications have a precise 
(formal) semantics, and thus provide the mandatory prerequisite for reasoning about 
completeness and consistency. They fit nicely into the paradigm of "transformational 
programming" (cf. [Partsch 90]) and thus make a substantial part  of a conceptually 
integrated methodology for software development. And last, but not least, algebraic 
specifications also contribute to solving the important problem of adequacy of a for- 
mal specification (cf. section 2.3). In this respect not only the expressive power with 
respect to formulating axioms has to be mentioned, but, above all, the various possibili- 
ties of "checking" adequacy, i.e. checking how far a formal problem description coincides 
with the original problem. It is obvious that  adequacy cannot be proved: the best to be 
achieved is making it plausible. In this respect, algebraic specifications provide several 
possibilities all of which are based on redundancy: 

- It is in principle possible to give different, independent formalizations of the same 
problem, and then to (formally) prove their equivalence; 

- It is possible to derive additional (redundant) properties ("theorems") from the ax- 
iomatization, and to examine these for adequacy; 

- Certain restricted algebraic specifications are "executable" (of. section 3.5) and pro- 
vide a means for "rapid prototyping". 

In order to illustrate the use of algebraic specifications, we had to restrict ourselves 
to relatively small examples for obvious reasons. More comprehensive examples can be 
found elsewhere, among them a line-oriented text editor [Partsch 90], the kernel of a 
transformation system [Bauer et al. 87], a screen-oriented editor [Feijs 90], part  of the 
Macintosh Toolbox Event Manager [Burton et al. 89], or (substantial parts of) Microsoft 
Word [Wijshoff 92]. In addition, several companies have started the experimental use of 
algebraic specification languages in their daily work. 

Algebraic specifications are an appropriate approach to problem specification and 
a reasonable basis for a suitable formalism for requirements engineering, because they 
meet nearly all properties desired of such a formalism (cf. [Partsch 91]). Nevertheless, for 
practical work, extensions of the pure formalism will be needed to enhance expressive- 
ness, such as higher-order functions (cf. [MSller 87]), specification-building operations 
(like those in ASL [Wirsing 83]), and relations to formulate indeterminism and certain 
non-functional requirements. Furthermore, extensions by modal and temporal  logic (for 
real-time and other behavioural aspects) or traces (for parallel and distributed systems) 
can be thought of. Experiments with these and similar kinds of extensions are on the way. 
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