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Abstract 
A calculus of relations is used to reason about specifications and algorithms for optimi-  
sation problems. It is shown how certain greedy algorithms can be seen as refinements 
of dynamic programming. Throughout, the maximum lateness problem is used as a mo- 
t ivating example. 

1 I n t r o d u c t i o n  

An optimisation problem can be solved by dynamic programming if an opt imal  solution 
is composed of optimal solutions to subproblems. This property, which is known as the 
principle of optimality, can be formalised as a monotonicity condition. If the principle of 
opt imal i ty  is satisfied, one can compute a solution by decomposing the input in all possi- 
ble ways, recursively solving the subproblems, and then combining optimal solutions to 
subproblems into an optimal solution for the whole problem. By contrast,  a greedy algo- 
r i thm considers only one decomposition of the argument.  This decomposition is usually 
unbalanced, and greedy in the sense that  at each step the algori thm reduces the input  
as much as possible. If the decomposition has a more balanced character, the a lgori thm 
is commonly classified as an instance of the divide-and-conquer  paradigm. 

Certain greedy algorithms can be seen as refinements of dynamic programming.  If 
the principle of opt imali ty  is satisfied, dynamic programming is applicable, and if an ad- 
dit ional monotonici ty condition is satisfied, then we can narrow the choice of decomposi- 
tions to a single candidate,  thus obtaining a greedy algorithm. This idea was formalised in 
[3] for a restricted class of optimisation problems, namely those involving list part i t ions.  
Although it was suggested that  the technique might be more widely applicable, it proved 
difficult to formulate the general theorem in the framework of that  paper.  The conclusion 
was tha t  a more flexible framework was needed, and this observation mot ivated  one of 
us to undertake an in-depth  study of dynamic programming in a categorical sett ing [15]. 
The present paper summarises the results on dynamic programming, and shows how they 
can be extended to a theory of greedy algorithms. 

The structure of the paper is as follows. First  we study a typical  applicat ion of the 
greedy strategy, the so-called maximum lateness problem from operations research. This 
example serves to explain the objectives of the paper and provides motivat ion for the 
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subsequent calculus. After introducing this calculus, we show how dynamic programming 
applies to the problem. We then go on to prove an abstract  result about  greedy algo- 
ri thms, and show how a greedy algorithm can be derived for our example. We conclude 
with a brief discussion of the implications of the research. 

2 Example: Maximum Lateness 

Maximum Lateness is a scheduling problem: given a bag z of jobs, we want to find a 
permutat ion y, called a schedule, of x that  minimises a certain function c, called the cost 
function. This cost function returns the so-called maximum lateness of a schedule, and 
this explains the name of the problem [7]. The maximum ~ateness problem is specified as 
a relation mr, where 

mt = min(e)  �9 perms. 

The function perms returns the set of all permutat ions of a bag. Tha t  is, 

perms y = { x I bagify �9 = y }, 

where bagify is the function that  turns a sequence of jobs into a bag. The relation min(c)  
holds between a set of schedules and those of minimum cost c: 

y ( m i n ( c ) ) y s  = y e y s  A ( V z E y s  : cy<_ c z ) .  

The cost function c returns the maximum lateness of a schedule. With  each job  a are 
associated three nonnegative quantities: a processing time t ime a, a due time due a, and a 
weight weight a. The processing time is a measure of the relative time it takes to complete 
a job.  The due time gives the absolute time when a job should be finished. Finally, the 
weight of a job indicates the importance of finishing this job in time. An impor tant  job 
has a high weight, and an unimportant  one a low weight. 

The cost function is defined by the following equations (we write (4t-) for concatena- 
tion of sequences and [a] for the singleton sequence with element a) 

c y = m a x  { l a t e n e s s  z l 3 v  : z ~ v = y A z # []} 
lateness (z -H- [a]) = weight a x (length (z -H- [a]) - due a) 

length z = Z ( t i m e  a). 
a E z  

In words, the length of a (partial) schedule is the total  time taken to complete it, which 
is the sum of the individual processing times. The lateness of a job  a coming after a 
par t ia l  schedule z is a weighted measure of the time by which length (z q+ [a]) exceeds 
the due time of a (a negative quanti ty if a is completed before it is due). Finally, the 
cost of a schedule is the maximum, taken over all nonempty prefixes z of the schedule, 
of the lateness associated with z. 
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We can also define the cost c recursively by the equations (writing [] for the empty 
sequence) 

c f l  - -  - o 0  

c(y -~ [a]) = c y I I ((bagify y) | a) 

y | a = wt a x ( Z ( t i m e  b) + time a - due a). 
bey 

Here (t_l) stands for the binary operator that returns the maximum of its arguments. 
We have defined y | a for a bag y rather than a list, because the order of elements is 
unimportant.  This observation will be useful when we derive an efficient algorithm for 
mr. 

An  example. The table below displays an instance of the maximum lateness problem. 
There are four jobs given, named a, b, c and d. The respective values of t ime,  due and 
weight are given in the subsequent columns. The minimum cost of a schedule is 20, and 
this minimum is realized by two schedules: bcda and cbda. 

name time due weight 
a 10 13 4 
b 3 3 5 
c 1 2 6 
d 4 5 3 

Dynamic  programming solution. A typical dynamic programming solution for the maxi- 
mum lateness problem is given by 

[], i fx  = (} 
m t x  = min (c ) {mt  y % [a] I Y + (a) = x}, otherwise 

Here we use ( ) to denote the empty bag, (a) for the singleton bag with element a, and + 
for bag union. This dynamic programming solution for mt takes time exponential in the 
size of x, even when the recursive calls of mt are tabulated. Admittedly, this description 
of dynamic programming is informal, since the notation suggests that  mt is a function 
while it is really a relation. To give a rigorous formulation, we shall need various concepts 
from the relational calculus, which will be introduced in Section 3 below. 

Greedy solution. The greedy algorithm for maximum lateness can be described by the 
following recursion equation: 

[1, i f~  = () 
m t x  = mt y -H- [a], otherwise. 

where (y, a) = split x. 

The expression split x yields a pair (y, a), consisting of a bag y and an element a such 
that y + (a) = x. Furthermore, y and a are chosen to minimise the value of y | a. In 
this sense, the algorithm is greedy: split finds an optimal splitting. A straightforward 
implementation of the greedy algorithm takes cubic time: it takes quadratic time to find 
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the opt imum split, because there is a linear number of splits (y, a), and one may compute 
y | a in linear time. Using well-known program transformations, this naive program can 
be transformed into a quadratic time program, thus obtaining Lawler's algori thm [10]. 
There is a yet more efficient implementation of the same greedy strategy, which only 
requires O(n log 2 n) computat ion steps [7]. 

The general questions we are interested in are these: how is the dynamic program- 
ming solution derived from the initial problem statement,  and what extra  conditions 
are necessary to ensure that  a greedy algorithm also solves the problem? To answer 
these questions we need a calculus of relations suitable for expressing and manipulat ing 
specifications of optimisation problems. 

3 A C a l c u l u s  o f  R e l a t i o n s  

This section gives a brief introduction to a calculus of relations designed for the purpose of 
solving optimisation problems [15]. The exposition makes use of some elementary notions 
from category theory, namely category, functor, terminal  object,  product ,  coproduct,  
and algebra for an endofunctor. Readers not familiar with this material  can find it (for 
example) in the textbook by Barr and Wells [2]. There are also a number of introductions 
that  focus on applications to program derivation [6, 11, 12, 14, 17]; these are especially 
suited as background for the present paper. 

3.1 Relat ions  

Sets are denoted by upper case identifiers: A, B, C. A relation between A and B i~s a 
subset of the cartesian product A • B and we write a(R)b as  shorthand for (a, b) E R. 
The category Rel of sets and relations has sets as objects and relations as arrows. We 
write R : A ~-- B for a relation to A from B. The set A is called the target of R and B 
the source. Composit ion of relations is defined by 

a(R .  S)c ~_ (3b :  a(R)b A b(S)c),  

and the converse R ~ by b(R~ - a(R)b. A relation R : A ~-- B is said to be simple 
if R �9 R ~ C_ idA, and entire if idB C_ R ~ �9 R. Simple relations are also known as imps, 
par t ia l  functions or part ial  maps; and entire relations are also called total  relations. A 
relation is a function if it is both entire and simple. Functions will be denoted by lower 
case identifiers. The two inequations which state that  f is a function can also be phrased 
as an equivalence: f is a function if and only if 

(R . I  ~ c s) = (R c_ S.  f)  

for all R and S. Equivalently, f is a function if and only if 

i f . R e  s ) = ( R c f  ~  

for all R and S. We shall refer to these equivalences as the shunting rules for functions. 
Sets and functions form a subcategory Fun of Rel. 
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Intersection and union. Given two relations R, S : A +- B the intersection (R n $)  is 
defined by the equivalence 

TO_ (n  n s )  -- ( T C_ a )  ^ (TO_ S). 

In other words, R n S is the greatest lower bound of R and S. Intersection and converse 
are related by the so-called modular law, 

( R . S ) A  T C_ (RA(T. S~ S, 

which is also known as Dedekind's rule. An importance consequence is tha t  composit ion 
with simple relations distributes over intersection: 

(R N T ) .  S = (R .  S) n ( T .  S), provided S is simple. 

The inclusion (C) is an instance of monotonicity, and the containment (_D_D) follows from 
the modular  law and simplicity: 

(R. S)A(T.S) C (RA(T. S.S~ S C (RA T). S. 

The union R U S of two relations R, S : A ~ B is their least upper bound: 

R U S C _  T - ( R C  T) A (SC_ T).  

In contrast  to intersection, we have 

(a u T). ~' = (R. S) u (T.  S) 

without any restriction on S. 

Knaster-Tarski.  For any two sets A and B, the relations A +- B form a complete lattice.  
We can therefore appeal  to the well-known theorem of Knaster and Tarski for solving 
recnrsion equations. A modern proof of this theorem can be found in [5]. 

T h e o r e m  I .  Let (s <_) be a complete laltice, and let r : s +-- s be a monotonic function. 
Then the equation r x = x has a least solution which is also the least solution ore  x < x.  

Quotient. Suppose R : A +-- B and S : C +- B are relations with a common source. 
Then the quotient R / S  : A +- C is defined by the equivalence 

( T  C_ R / S )  =- ( T .  S C_ R).  

One can also construct R / S  explicitly: 

c(l:l/S)b -- (Va:  b(S)a =:~ c(R)a).  

Using the characterisation of quotients and the shunting rules for functions, we get 

T C_ ( R / S ) .  f =- T . f ~  C_ R / S  - T . f ~  S C_ R - T C R / ( f  ~  S). 

Hence ( R / S ) .  f = R / ( f  ~ . S). Similar reasoning gives fo . ( R / S )  : (fo . R ) / S .  
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Powersets. The representation of a relation R : A *--- B as a subset of the cartesian 
product  A • B is the tradit ional  one, but  it is also possible to consider a relation as a se t -  
valued function AR : PA ~-- B, where PA denotes the power set of A. The isomorphism 
between relations and set-valued functions is described by the equivalence 

( f  = AR) - (E " f = R), 

where the function AR, called the power transpose of R, is defined by 

(AR) b = {a I a(R)b}, 

and E : B ~ PB is the membership relation. Various useful identities can be derived 
from the above equivalence. For instance, by taking f = id and R = E in the right-hand 
side, one finds that  

AE = id. 

By taking ] = AR in the left-hand side, we obtain 

E . A R =  R. 

3.2 M i n i m u m  E l e m e n t s  

For R : A *-- A, the relation rain(R) : A *- PA is defined by 

min(lO = ~ n (R/~) ,  

where ~ denotes the converse of E. In words, a(min(R))x  if a is an element of x, and 
for all b, if b e z, then a(R)b. We can define max(R) = rain(R~ so the restriction to 
minimum elements is not important .  We will need various propert ies of rain(R), the first 
of which is 

rain(R).  AS  = S n R / S  ~ 

Note that  this specializes to the definition of rain when S = E, because AE = id. This 
result may be proved as follows 

rain(R).  A S  

= {definition of rain(R)} 

(E n R / 9 ) .  AS  

= {since AS is simple} 

(C. AS)  n ( R / 9 ) .  AS 

= {since E cancels A} 

S n ( R / 9 ) . A S  

= {quotient, AS function} 

S N RI ( (A$)  ~ 3) 

= {converse and E cancels A} 

S n R / S  ~ 

A useful fact in applications is the following result which says that  we can always constrain 
min(R) to take account of context. 
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Proposition 2. I f  S is simple, then m i n ( R ) .  S = min (R ' )  �9 S,  where 

R' = ( e .  s ) .  ( e .  s )  ~ n R. 

P r o o f .  Observe that  if S is simple, then (by left-distributivity of (.S) over O) 

m i n ( R ) .  S = E .  S n ( R / 9 ) .  S 

m i n ( R ' ) .  S = e .  S O ( ( e .  S ) .  ( e .  S )o ) I~  �9 S n ( n l g ) "  S 

It is therefore sufficient to show that 

e .  S C_ ( ( ~ .  S ) .  ( e "  S ) ~  �9 S. 

For any S we have (by the modular law) S C_ S.  S ~ S, and therefore E. S C E" S- S ~ S. 
Since (by the definition of quotients) 

e .  s .  s o c_ ( ( e .  s ) .  ( e .  s ) ~  

the claim is established. 

C o r o l l a r y  3. We have 

min(  R ) . A S O = min(  S ~ . S O  R ) . A S o . 

Moreover, S O �9 S O R is transitive i f  R is transitive and S is simple. 

Proo f .  The first part is inmaediate since A S ~ is simple and E .A S o = S ~ For the second 
part we argue 

(s o . snR) . ( s  o.snR) 
C {monotonicity} 

S ~ . S . S  ~ . S O R . R  

C_ {since S is simple} 

S o . S O R . R  

_C {since R is transitive} 

S O . S A R .  

3.3 Relators 

The class of monotonic functors Rel ~ Rel  plays a fundamental role in the calculus of 
relations. A functor F : Rel  ~-- Rel  is monotonic if R C_ S implies FR C FS. The following 
theorem states the most important properties of monotonic functors. A detailed proof 
can be found in the paper by Carboni, Kelly and Wood [4]. 

P r o p o s i t i o n 4 .  Suppose that F : Rel  *--- Rel  is monotonic.  Then 

- F preserves functions,  i.e. for  all f in Fun, F f  is a funct ion.  
- F preserves eonve,'~e, i.e. F(R o) = f i n )  o 
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- F is determined by its action on functions. That is, i f  G : Rel ~ Rel  is another 
monotonic functor, the statement 

Ff  = Gf  for  all f in Fun 

is equivalent to F = G. 

In words, the last proper ty  says tha t  each monotonic  functor  is the unique  extension of  
some functor  F : Fun ~-- Fun to relations. We will use the  same le t ter  F to denote  bo th  
a functor  on Fun and its extension to Rel. When a functor  on Fun has an extension to 
relations,  it is said to be a relator. 

Proposition 5. A funetor  F : Fun ~ Fun is a relator i f  and only i f  the following condi- 
tion is satisfied: f . #o = h o "k implies F t .  (Fg) ~ = (Fh) ~  Fk. 

Most  functors tha t  occur in p rogramming  problems are relators,  and we now consider 
some examples.  

Product. The  extension of  the product  functor • : Fun ~ (Fun x Fun) is given by 

where r l  : A ~-- A x B and r2 : B ~-- A x B are the  left and right projec t ion  functions.  
However,  the extended product  x does not  define a categorical  p roduc t  in Rel, so here 
the  decision to use the same nota t ion for the extension to relations is misleading.  

Coproduct. The  coproduct  functor  + : Fun *--- (Fun x Fun) also extends  to relations; we 
have 

R + S = ~I . R . L~ O ~2 . S . L~, 

where t l  : A + B ~ A and t2 : A + B ~ B are the coproduc t  injections.  Unlike product ,  
+ does define a categorical  eoproduct  in Rel, so the use of  the same no ta t ion  is harmless. 
Since Rel is isomorphic to its own opposite,  + also defines a product  in Rel. 

List.  The  list functor  I. : Fun ~ Fun takes a set A and returns  the set A* of all finite 
sequences with elements  f rom A. On arrows, (I.f) is the funct ion tha t  applies f to all 
e lements  of a sequence: 

L/[al,  a2, . . . ,  a~] : If a l , f  ~ 2 , . . . , f  .~]. 

The  extension of  L to relations is defined by 

[al, a 2 , . . . ,  a,l(I-R)[bi, b2, . . ., bm] = 

(n = m) A (Vi : 1 < i <  n : ai(R)bi).  
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Powerset .  Finally, consider the covariant powerset functor P : Fun ~-- Fun tha t  sends a 
function to its existential image. Here, PA is the powerset of A and (P / )  z = {f  a I a E z}. 
The extension of P to relations is defined by 

~:(PR)y = 

(Va �9 x :  ~b �9 ~ : a(R)b) ^ (Vb �9 y :  3~ �9 x :  a(R)b).  

Note that  P : Rel  ~-- Rel  is not  the same as the existential image functor E : Rel  ~-- Rel  

defined by EA = PA and 

(ER)~ = {a I 3b �9 z :  a(R)b}. 

The functor P returns relations and is monotonic, while E returns functions and is not 
monotonic. Since P and E coincide on functions, we may conclude tha t  the restriction to 
monotonic functors in proposition 4 is necessary. 

Since for every A we have a relation �9 : A ~-- PA, one might expect it  to be some sort 
of natural  transformation, both with respect to E and P. Indeed, we have 

�9 . E R = R . � 9  and � 9  C_ R . � 9  

As an applicat ion of these facts, we prove a technical proposition tha t  will be useful in 
later proofs. It states a rule for eliminating min,  P and A. 

Proposition 6. 

ra in (R) .  P S .  A T ~ �9 T C_ R .  S 

P r o o f .  First  observe that  

A T ~  

{A T ~ function, shunting} 

T C _ ( A T ~ 1 7 6  

= {converse} 

T C ( E . A T ~  ~ 

= {G cancels A} 

T C (T~ ~ 

= {converse is an involution} 

/rue. 

Using this auxiliary result, we can prove the proposition: 

rain(R) �9 P S .  A T O �9 T 

C_ {above} 

m i n ( R )  . PS  . 



52 Richard Bird and Oege de Moor 

C {naturality of E (see below)} 

min(  R ) . 9 . S 

_C {def. rain} 

R / 9 . 9 .  s 

C_ {quotient} 

R-8.  

In the second step, we exploited the natural i ty of E in the following way: 

P S - 9  

= { c o n v e r s e }  

(E. (os)~ ~ 
= {P relator, Prop. 4} 

(E" P S~ ~ 

C {naturali ty of E} 
( S  o �9 e )  ~ 

= { c o n v e r s e }  

9 . S  

This completes the proof. 

Once it is known how a functor can be extended from functions to relations, it  is easy 
to extend other operators as well. Consider for instance the split operator  (_, _), which is 
defined on two functions with a common source by the equation 

( f , g )  a = ( f  a ,g  a). 

For relations R and S we have 

(R, S) = (R x S ) .  (id, id). 

Such derived operators do not necessarily satisfy the same propert ies  as their functional 
counterparts.  For example, we have that  ~q. (R, S) C R but  C_ cannot be replaced by --. 

3.4 Algebras and Catamorphisms 

Let F : "4 *-- ,4 be a functor on some category A. By definition, an F-a lgebra  is an arrow 
f : A *-- FA. The object A is said to be the carrier of f .  

If  f : A *-- FA and g : B *--- FB are F-algebras,  then an F - h o m o m o r p h i s m  from 
f to g is an arrow h : A *--- B of .4 such that  h - f  = g �9 Fh. The composition of two 
F-homomorphisms is again an F-homomorphism, so the F-algebras in .4 form a category 
in which the objects are F-algebras and the arrows are F-homomorphisms.  When this 
category has an initial object a ,  and f is another F-algebra,  we write ~])  to denote 



From Dynamic Programming to Greedy Algorithms 53 

the unique F-homomorphism from a to  f .  Homorphisms of the form (Ill) are called 
catamorphisms.  Init ial i ty can thus be phrased as the equivalence 

(h = ([f])) = ( h . ~  = f .  F/t). 

Not all functors Fun *-- Fun have an initial algebra, for example, the existential image 
functor P does not. However, all polynomial  functors Fun ~ Fun do (see [13]). The class 
of polynomial  functors is inductively defined by the following clauses: 

1. The identity functor and constant funetors are polynomial; 
2. if F and G are polynomial, then so are their composition FG, their sum F + G and 

their product  F • G, where 

(F+G)f=Ff+Gf 
(F • G ) / =  FI  x GI. 

All polynomial functors are relators. For any relator F ,  the initial algebra ~ of F : Fun *--- 

Fun is also an initial algebra of F : Rr *-- Rel.  We also have that  ([R]) is simple if R is. 
Proofs of these facts can be found in [1, 15]. 

In the category of functions, the universal property of the initial algebra ~ can only 
be specified as an equation, for equality is the only way of comparing two functions. 
For relations, the situation is different: here we can also talk in terms of inclusion. The 
following result, which is an easy consequence of the Knaster-Tarski  fixpoint theorem, 
shows how the universal property of cr can be weakened to deal with inclusions. 

P r o p o s i t i o n  7. For all R and S we have 

( R . ~  = S. FR) - (n  = ([SD) 

(n  . .  c s .  FR) ~ (R c_ {S])) 

(R. ~ 2 S .  FR) ~ (n ~ eSD). 

It is well-known that  the initial algebra cr is in fact an isomorphism [9], and therefore we 
have, for instance, 

(n = S .  Fn .  ~~ = (n  = ([SD). 

4 D y n a m i c  P r o g r a m m i n g  

In this section we restate a result of De Moor [15]. Throughout,  we assume F is a relator  
and c~ is its initial algebra. 

We shall need the following definition. A function f : A *-- FA is monotonic  with 
respect to a relation R : A +-- A if 

f . F R C _ R . f .  

To il lustrate this definition, consider numerical addition + : N ~ (N • N) ,  where N is 
the set of natural  numbers. Addition is an algebra of the functor F given by FA = A • A 
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and Ff = f x f .  Now, addition is monotonic with respect to <. The definition above 
translates to 

(3a, b : c = a + b  A a<_a t A b < b t ) ~ c < a ~  ~ 

and corresponds to the normal definition of monotonicity of + in both arguments. 

T h e o r e m S .  (De Moor [15]) Let R be a preorder, and let P be an F-algebra. Define 
T = min (R) .  A ~p~O. I f  c~ is monotonic with respect to R, then the least solution D of 
the equation 

D = rain(R). P((~. F D ) . A P ~  

satisfies D C T. 

Before giving the proof of this theorem, let us briefly consider its intuitive inter- 
pretation. The recursion equation for D is in line with the operational description of 
dynamic programming in the introduction to this paper. The function A po splits the 
argument in all possible ways. This yields a set of decompositions, and for each of these 
decompositions, we recursively compute solutions to subproblerns. The expression 

P(o~. FD). A po 

generates a set of candidate solutions, and rain(R) selects a minimum element. 
Turning to the proof of the Dynamic Programming Theorem, we note that (by 

Knaster-Tarski) it suffices to show 

min(R) .  P(oc. F T ) . A P  ~ C_ T. 

Since T = rain(R).  A qp~, = ~p~, N R/qP~,  this proof obligation can be split into two 
simpler conjuncts: 

and 

min(R) . P(~. FT) .  A P  ~ C_ (~p])o 

min(R) .  P(a .  F T ) . A P  ~ qP~ C R. 

The first conjunct is proved as follows: 

min(R)  . P((~. F T ) .  A P  ~ 

C {def. rain) 

E. P(o~. FT).AP ~ 

C_ {naturality of E} 
a .  F T .  E" AP  ~ 

= {E cancels A} 

o~. F T .  P ~ 

= {def. T)  

o,. F(min(R). A EPD~ P~ 
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It  remains to show that  

C {def. min}  

a .  F(E- A (~p])O), po 

= {e cancels A} 

~ .  F([P]) ' .  p0 

= {converse}  

(P .  F(~P]). o~~ ~ 

= {catamorphism} 
(~p])O. 

rain(R). P(a. FT).AP ~ ~P~ C_ R. 

This can be done as follows: 

ra in(R) .  P ( a .  F T ) . A P  ~ . ~PD 

= {catamorphism} 

rain(R). P(o~. FT ) .  A po .  p .  F([P]). o~ ~ 

C_ {Prop. 6} 

R-  a .  F T-  F(~P]) �9 a ~ 

= {F functor} 

m i n ( R ) .  ~ .  or. F(T .  (~P])) �9 o~ ~ 

C {def. T, Prop. 6} 

min(R)  . 9 " a "  F R . a  ~ 

C_ {monotonicity} 

R . R  

C_ {R transitive} 

R. 

This completes the proof of the Dynamic Programming Theorem. 

Let T = m i n ( R ) .  A([P~ ~ as in the Dynamic Programming Theorem. Using Corol- 
lary 3 we have T = m i n ( R ' ) .  A([P~O, where R'  = ([pDO . ([p]) n R. Furthermore,  R '  
is transit ive if R is and if P is simple. This means we have only to establish that  ~ is 
monotonic with respect to R ~ in order to apply the dynamic programming theorem. In 
most practical applications we are not given the relation R but  rather a cost function c, 
i.e. R = c o �9 S �9 c for some preorder S. The proof of the following useful proposit ion is 
omit ted.  

P r o p o s i t i o n  9. Suppose R = c o �9 S .  c, where c satisfies 

e.o~ = k.  F(~P]), c), 

for  some k that is monotonic  with respect to S, i . e . k .  F(id x S)  C_ S .  k. Then,  provided 
P is entire, we have that c~ is monotonic  with respect to ~p~O. ~p~ n R .  
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4.1 A p p l i c a t i o n  

Let us now apply the above theory to the maximum lateness problem. Let J denote the 
type of jobs. The type of sequences over J is the initial algebra of the functor F : F u n  ~-- 

F u n  given by 

FA = 1 +  (A x J )  

F h  = id  + (h  x i d ) ,  

where 1 denotes the terminal object of F u n .  This initial algebra will be denoted by 
c~ = [u, -~<:]. Applied to the single element of 1, the function u returns the empty sequence 
[]. Applied to (z, a) the function ~ returns x - ~  a = z % [a]. Tha t  is, we suppose 
that  sequences are constructed from left to right. There is of course a dual  method that  
constructs sequences from right to left, but the lef t - to-r ight  bias in the maximum lateness 
problem means that  the given way of constructing sequences is the more appropriate.  

Bags of jobs form an F -a lgeb ra  [v, +<], where u returns the empty bag, and x -m a 
denotes the bag formed by adding a to the bag z. The function bagi fy  = (Iv, +<:]) turns 
a sequence into a bag, and p e r m s  = A bag i fy  ~ returns the set of permutat ions of a bag. 

Recall that  the cost function c associated with the lateness problem satisfies 

c[ ]  = - ~  

~(~ ~ [a]) = c �9 u (n,giyy ~: | ~). 

Hence 

c " ~ = k " F ( b a g i f y ,  c) 

where k = [ -c~ ,  | and | is defined by 

( t ,  n) | a = n u (~ | a). 

In order to make use of Proposition 9 we need to check that  

k .  F(:d x ( < ) )  c ( < ) .  k. 

Unfolding the various definitions we get the implication 

m < n ~ ( ~ : , m ) |  < ( ~ : , n ) |  

But this is immediate from the definition of | The conclusion is that  dynamic program- 
ming is applicable to the maximum lateness problem. 
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5 G r e e d y  A l g o r i t h m s  

57 

Now we tu rn  to greedy algorithms. The following theorem is s imi l a r  to the dynamic  
p rogramming  theorem bu t  involves an extra  condition. 

T h e o r e m  10.  Let T = rain(R).  A (~P~~ where R is transitive. Suppose that c~ is mono- 
tonic with respect to R,  and ~ = F~P~ �9 s ~ satisfies S . ~ C_/3. R for  some S.  Then the 
(unique) solution G of the equation 

G = c~. FG.  m i n ( S ) . A P  ~ 

satisfies G C_ T .  

P r o o f .  Let U = rain(S) .  A P  ~ We first show tha t  G = (~U~ ~ is the unique  solut ion of 
the equa t ion  G = (~ �9 F G �9 U. 

G = eu~  ~ 

-- {converse) 
Go = Cu 0} 

--- {Proposit ion 7} 

G O �9 a = U ~ �9 FG ~ 

--_- {converse; F preserves converse) 

a ~  

--- {a  is an isomorphism} 

G = a .  F G . U .  

Next, we have 

G C T  

{above form for G and  Proposit ion 7} 

a .  F T -  U C  T 

--- {since T = ([e])~ N R/~P~}  

a - F T . U C _ ( ~ P ] ) ~  and a .  F T .  U C R/qP~.  

We establish these inclusions separately. 

, - F T -  U C_ (IF])~ 

r  {since T C ([P])~ and  U C_ G ~ } 

a-F(~G]) ~  e ~ c ([G])' 

= {Proposit ion 7} 

true. 
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Second, a .  F T .  U C_ R / ~ P ~  is equivalent to ~ .  F T .  U .  ([P]) C_ R. The lat ter  inclusion 
may be proved as follows: 

e .  F T .  U.  (IV]) 

= {Proposition 7, (~ isomorphism} 

c~. F T .  U.  P .  F ~ P ] ) . s  ~ 

C_ {def. U, Prop. 6} 

~ .  F T .  S .  F([P]) �9 c~ ~ 

C_ {assumption} 

a .  F T .  F([P]) �9 c~* �9 R 

= {since F is a functor} 

e .  F(T. ( [P~) . (~o .  R 

C {def. T, Prop. 6} 

o~- FR-  ~r ~ �9 R 

C {since a is monotonic} 

c~.c~ ~ . R .  R 

= {since a is an isomorphism} 

R . R  

C {R is transitive} 

true. 

The proof is complete. 

The conclusion of the theorem says that  there is a greedy algori thm for T. At each step 
of the computation,  one chooses an optimal split t ing with r a i n ( S )  �9 A p o .  Subsequently, 
the subproblem(s) are solved by means of FG, and the solutions are composed into a 
solution for the whole problem by ~. Note that  we can again use Corollary 3 to rewrite 
U in the form U = m i n ( S ' ) . A P  ~ where S '  = p o  . P N S .  As in the case of monotonicity, 
we state a proposition that  eases the task of verifying the extra  condition in the greedy 
theorem. Like Proposition 9, its proof is omitted. 

Proposition 11. Suppose  tha t  F = Fo + F1, a n d  c~ = [a0, a l ] .  F u r t h e r m o r e ,  a s s u m e  tha t  

S = So + S~, a n d  P = [P0, P1], and  ([PD ~ is en t i re .  T h e n  

(VO . p n S )  . F(~P D �9 ot ~ C_ F(~P 9 �9 o~ ~ . ((~p~O . ~PD n R )  

i f  and  on ly  i f  

(P~ " P i  Iq S i )  " Fi([PD c_ Fi([PD " a ~ " R . cei f o r  i = O, 1. 
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5.1 Application 

Let us go back to the m a x i m u m  lateness problem. It  has a l ready been shown tha t  c~ is 
monotonic ,  so it  remains to verify that  with P = [u, +<], and S ~ = po . p f3 S for some 
suitable S, and R = (bagify ~ . bagify) N (c ~  ( < ) .  c), we have 

S' .  Fbagify. [u, ..H.<] ~ _C Fbagify. [u,-H-<] ~  R. 

Choose S = id + ((@)o . (<_). (@)). Proposi t ion 11 says tha t  the  proof  obl iga t ion  is 
equivalent  to 

(,, | ~) < ((baaify ~) | b) ^ (u +< ,,) = ((b~aiIy y) -+< b) 

To prove this implicat ion,  we consider two cases: a = b and a r b. In the case a = b we 
have u = bagify y, and so we can take z = y. On the other  hand,  if  a r b, we argue 

c(~ ~- [a]) _< c(u -~ [b]) 
= {definition of c} 

c x  U (u | a) <_ cy LI (bagify y @  b) 

= {since u @ a <_ bagify y @ b} 

c x  < c y H ( b a g i f y y |  b) 

= {definition of e} 

e ~ < e (y -~ [b]). 

Now, since u +< a = (bagify y) +< b and a r b, there exist Yo and Yl such tha t  y = 
Yo qt- [a] q+ Yx. Take x = Yo 4t- yl q -  [b]. We claim tha t  c x _< c (y q+ [b]). More generally, 
we have c (w -H- z) < c (w q+ [a] q+ z) for all w, z, and a. This  follows by induct ion  on z, 
using the result  

(wq+ z ) @ b  

= {definition of @} 

wt b x ((Y]~cr time c) + time b - due b) 

_< {since weights and t imes are nonnegat ive} 

wt b • ( (5 : c~- to l§  time c) + time b - due b) 

= {definition of | 

(w ~+ [a] a- z) | b. 

The  conclusion is tha t  the m a x i m u m  lateness problem can be computed  by a greedy 
a lgor i thm.  
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6 C o n c l u s i o n s  

One of the aims of the paper was to clarify the relationship between dynamic program- 
ming and certain greedy algorithms. This relationship is captured in the very similar 
statements of the dynamic programming and greedy theorems. 

It is important  to note that  the greedy theorem gives general conditions under which 
a greedy solution is possible, but does not discuss mathematical  systems in which the 
greedy condition is valid. Two such systems are known: those of a matroid and those of a 
greedoid (see [8]). Essentially, the verification of the greedy condition for the maximum 
lateness problem is an application of greedoid theory. It remains to be seen whether our 
approach gives further insight into such systems. 

Finally, because the greedy theorem holds for tree algebras and not just  lists, it 
may also have applications in the derivation of d ivide-and-conquer  algorithms. Here a 
comparison with Smith's  approach to divide-and-conquer  [16] could be a fruitful research 
topic. 
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