
From Dynamic Programming to Greedy Algorithms

Richard Bird and Oege de Moor*

Programming Research Group
11 Keble Road
Oxford OX1 3QD
United Kingdom

Abstract
A calculus of relations is used to reason about specifications and algorithms for optimi-
sation problems. It is shown how certain greedy algorithms can be seen as refinements
of dynamic programming. Throughout, the maximum lateness problem is used as a mo-
t ivating example.

1 I n t r o d u c t i o n

An optimisation problem can be solved by dynamic programming if an opt imal solution
is composed of optimal solutions to subproblems. This property, which is known as the
principle of optimality, can be formalised as a monotonicity condition. If the principle of
opt imal i ty is satisfied, one can compute a solution by decomposing the input in all possi-
ble ways, recursively solving the subproblems, and then combining optimal solutions to
subproblems into an optimal solution for the whole problem. By contrast, a greedy algo-
r i thm considers only one decomposition of the argument. This decomposition is usually
unbalanced, and greedy in the sense that at each step the algori thm reduces the input
as much as possible. If the decomposition has a more balanced character, the a lgori thm
is commonly classified as an instance of the divide-and-conquer paradigm.

Certain greedy algorithms can be seen as refinements of dynamic programming. If
the principle of opt imali ty is satisfied, dynamic programming is applicable, and if an ad-
dit ional monotonici ty condition is satisfied, then we can narrow the choice of decomposi-
tions to a single candidate, thus obtaining a greedy algorithm. This idea was formalised in
[3] for a restricted class of optimisation problems, namely those involving list part i t ions.
Although it was suggested that the technique might be more widely applicable, it proved
difficult to formulate the general theorem in the framework of that paper. The conclusion
was tha t a more flexible framework was needed, and this observation mot ivated one of
us to undertake an in-depth study of dynamic programming in a categorical sett ing [15].
The present paper summarises the results on dynamic programming, and shows how they
can be extended to a theory of greedy algorithms.

The structure of the paper is as follows. First we study a typical applicat ion of the
greedy strategy, the so-called maximum lateness problem from operations research. This
example serves to explain the objectives of the paper and provides motivat ion for the

* Research supported by a studentship from British Petroleum International.

44 Richard Bird and Oege de Moor

subsequent calculus. After introducing this calculus, we show how dynamic programming
applies to the problem. We then go on to prove an abstract result about greedy algo-
ri thms, and show how a greedy algorithm can be derived for our example. We conclude
with a brief discussion of the implications of the research.

2 Example: Maximum Lateness

Maximum Lateness is a scheduling problem: given a bag z of jobs, we want to find a
permutat ion y, called a schedule, of x that minimises a certain function c, called the cost
function. This cost function returns the so-called maximum lateness of a schedule, and
this explains the name of the problem [7]. The maximum ~ateness problem is specified as
a relation mr, where

mt = min(e) �9 perms.

The function perms returns the set of all permutat ions of a bag. Tha t is,

perms y = { x I bagify �9 = y },

where bagify is the function that turns a sequence of jobs into a bag. The relation min(c)
holds between a set of schedules and those of minimum cost c:

y (m i n (c)) y s = y e y s A (V z E y s : cy<_ c z) .

The cost function c returns the maximum lateness of a schedule. With each job a are
associated three nonnegative quantities: a processing time t ime a, a due time due a, and a
weight weight a. The processing time is a measure of the relative time it takes to complete
a job. The due time gives the absolute time when a job should be finished. Finally, the
weight of a job indicates the importance of finishing this job in time. An impor tant job
has a high weight, and an unimportant one a low weight.

The cost function is defined by the following equations (we write (4t-) for concatena-
tion of sequences and [a] for the singleton sequence with element a)

c y = m a x { l a t e n e s s z l 3 v : z ~ v = y A z # []}
lateness (z -H- [a]) = weight a x (length (z -H- [a]) - due a)

length z = Z (t i m e a).
a E z

In words, the length of a (partial) schedule is the total time taken to complete it, which
is the sum of the individual processing times. The lateness of a job a coming after a
par t ia l schedule z is a weighted measure of the time by which length (z q+ [a]) exceeds
the due time of a (a negative quanti ty if a is completed before it is due). Finally, the
cost of a schedule is the maximum, taken over all nonempty prefixes z of the schedule,
of the lateness associated with z.

From Dynamic Programming to Greedy Algorithms 45

We can also define the cost c recursively by the equations (writing [] for the empty
sequence)

c f l - - - o 0

c(y -~ [a]) = c y I I ((bagify y) | a)

y | a = wt a x (Z (t i m e b) + time a - due a).
bey

Here (t_l) stands for the binary operator that returns the maximum of its arguments.
We have defined y | a for a bag y rather than a list, because the order of elements is
unimportant. This observation will be useful when we derive an efficient algorithm for
mr.

An example. The table below displays an instance of the maximum lateness problem.
There are four jobs given, named a, b, c and d. The respective values of t ime, due and
weight are given in the subsequent columns. The minimum cost of a schedule is 20, and
this minimum is realized by two schedules: bcda and cbda.

name time due weight
a 10 13 4
b 3 3 5
c 1 2 6
d 4 5 3

Dynamic programming solution. A typical dynamic programming solution for the maxi-
mum lateness problem is given by

[], i fx = (}
m t x = min (c) {mt y % [a] I Y + (a) = x}, otherwise

Here we use () to denote the empty bag, (a) for the singleton bag with element a, and +
for bag union. This dynamic programming solution for mt takes time exponential in the
size of x, even when the recursive calls of mt are tabulated. Admittedly, this description
of dynamic programming is informal, since the notation suggests that mt is a function
while it is really a relation. To give a rigorous formulation, we shall need various concepts
from the relational calculus, which will be introduced in Section 3 below.

Greedy solution. The greedy algorithm for maximum lateness can be described by the
following recursion equation:

[1, i f~ = ()
m t x = mt y -H- [a], otherwise.

where (y, a) = split x.

The expression split x yields a pair (y, a), consisting of a bag y and an element a such
that y + (a) = x. Furthermore, y and a are chosen to minimise the value of y | a. In
this sense, the algorithm is greedy: split finds an optimal splitting. A straightforward
implementation of the greedy algorithm takes cubic time: it takes quadratic time to find

46 Richard Bird and Oege de Moor

the opt imum split, because there is a linear number of splits (y, a), and one may compute
y | a in linear time. Using well-known program transformations, this naive program can
be transformed into a quadratic time program, thus obtaining Lawler's algori thm [10].
There is a yet more efficient implementation of the same greedy strategy, which only
requires O(n log 2 n) computat ion steps [7].

The general questions we are interested in are these: how is the dynamic program-
ming solution derived from the initial problem statement, and what extra conditions
are necessary to ensure that a greedy algorithm also solves the problem? To answer
these questions we need a calculus of relations suitable for expressing and manipulat ing
specifications of optimisation problems.

3 A C a l c u l u s o f R e l a t i o n s

This section gives a brief introduction to a calculus of relations designed for the purpose of
solving optimisation problems [15]. The exposition makes use of some elementary notions
from category theory, namely category, functor, terminal object, product , coproduct,
and algebra for an endofunctor. Readers not familiar with this material can find it (for
example) in the textbook by Barr and Wells [2]. There are also a number of introductions
that focus on applications to program derivation [6, 11, 12, 14, 17]; these are especially
suited as background for the present paper.

3.1 Relat ions

Sets are denoted by upper case identifiers: A, B, C. A relation between A and B i~s a
subset of the cartesian product A • B and we write a(R)b as shorthand for (a, b) E R.
The category Rel of sets and relations has sets as objects and relations as arrows. We
write R : A ~-- B for a relation to A from B. The set A is called the target of R and B
the source. Composit ion of relations is defined by

a(R . S)c ~_ (3b : a(R)b A b(S)c),

and the converse R ~ by b(R~ - a(R)b. A relation R : A ~-- B is said to be simple
if R �9 R ~ C_ idA, and entire if idB C_ R ~ �9 R. Simple relations are also known as imps,
par t ia l functions or part ial maps; and entire relations are also called total relations. A
relation is a function if it is both entire and simple. Functions will be denoted by lower
case identifiers. The two inequations which state that f is a function can also be phrased
as an equivalence: f is a function if and only if

(R . I ~ c s) = (R c_ S. f)

for all R and S. Equivalently, f is a function if and only if

i f . R e s) = (R c f ~

for all R and S. We shall refer to these equivalences as the shunting rules for functions.
Sets and functions form a subcategory Fun of Rel.

From Dynamic Programming to Greedy Algorithms 47

Intersection and union. Given two relations R, S : A +- B the intersection (R n $) is
defined by the equivalence

TO_ (n n s) -- (T C_ a) ^ (TO_ S).

In other words, R n S is the greatest lower bound of R and S. Intersection and converse
are related by the so-called modular law,

(R . S) A T C_ (RA(T. S~ S,

which is also known as Dedekind's rule. An importance consequence is tha t composit ion
with simple relations distributes over intersection:

(R N T) . S = (R . S) n (T . S), provided S is simple.

The inclusion (C) is an instance of monotonicity, and the containment (_D_D) follows from
the modular law and simplicity:

(R. S)A(T.S) C (RA(T. S.S~ S C (RA T). S.

The union R U S of two relations R, S : A ~ B is their least upper bound:

R U S C _ T - (R C T) A (SC_ T).

In contrast to intersection, we have

(a u T). ~' = (R. S) u (T. S)

without any restriction on S.

Knaster-Tarski. For any two sets A and B, the relations A +- B form a complete lattice.
We can therefore appeal to the well-known theorem of Knaster and Tarski for solving
recnrsion equations. A modern proof of this theorem can be found in [5].

T h e o r e m I . Let (s <_) be a complete laltice, and let r : s +-- s be a monotonic function.
Then the equation r x = x has a least solution which is also the least solution ore x < x.

Quotient. Suppose R : A +-- B and S : C +- B are relations with a common source.
Then the quotient R / S : A +- C is defined by the equivalence

(T C_ R / S) =- (T . S C_ R).

One can also construct R / S explicitly:

c(l:l/S)b -- (Va: b(S)a =:~ c(R)a).

Using the characterisation of quotients and the shunting rules for functions, we get

T C_ (R / S) . f =- T . f ~ C_ R / S - T . f ~ S C_ R - T C R / (f ~ S).

Hence (R / S) . f = R / (f ~ . S). Similar reasoning gives fo . (R / S) : (fo . R) / S .

48 Richard Bird and Oege de Moor

Powersets. The representation of a relation R : A *--- B as a subset of the cartesian
product A • B is the tradit ional one, but it is also possible to consider a relation as a se t -
valued function AR : PA ~-- B, where PA denotes the power set of A. The isomorphism
between relations and set-valued functions is described by the equivalence

(f = AR) - (E " f = R),

where the function AR, called the power transpose of R, is defined by

(AR) b = {a I a(R)b},

and E : B ~ PB is the membership relation. Various useful identities can be derived
from the above equivalence. For instance, by taking f = id and R = E in the right-hand
side, one finds that

AE = id.

By taking] = AR in the left-hand side, we obtain

E . A R = R.

3.2 M i n i m u m E l e m e n t s

For R : A *-- A, the relation rain(R) : A *- PA is defined by

min(lO = ~ n (R/~) ,

where ~ denotes the converse of E. In words, a(min(R))x if a is an element of x, and
for all b, if b e z, then a(R)b. We can define max(R) = rain(R~ so the restriction to
minimum elements is not important . We will need various propert ies of rain(R), the first
of which is

rain(R). AS = S n R / S ~

Note that this specializes to the definition of rain when S = E, because AE = id. This
result may be proved as follows

rain(R). A S

= {definition of rain(R)}

(E n R / 9) . AS

= {since AS is simple}

(C. AS) n (R / 9) . AS

= {since E cancels A}

S n (R / 9) . A S

= {quotient, AS function}

S N RI ((A$) ~ 3)

= {converse and E cancels A}

S n R / S ~

A useful fact in applications is the following result which says that we can always constrain
min(R) to take account of context.

From Dynamic Programming to Greedy Algorithms 49

Proposition 2. I f S is simple, then m i n (R) . S = min (R ') �9 S, where

R' = (e . s) . (e . s) ~ n R.

P r o o f . Observe that if S is simple, then (by left-distributivity of (.S) over O)

m i n (R) . S = E . S n (R / 9) . S

m i n (R ') . S = e . S O ((e . S) . (e . S)o) I~ �9 S n (n l g) " S

It is therefore sufficient to show that

e . S C_ ((~ . S) . (e " S) ~ �9 S.

For any S we have (by the modular law) S C_ S. S ~ S, and therefore E. S C E" S- S ~ S.
Since (by the definition of quotients)

e . s . s o c_ ((e . s) . (e . s) ~

the claim is established.

C o r o l l a r y 3. We have

min(R) . A S O = min(S ~ . S O R) . A S o .

Moreover, S O �9 S O R is transitive i f R is transitive and S is simple.

Proo f . The first part is inmaediate since A S ~ is simple and E .A S o = S ~ For the second
part we argue

(s o . snR) . (s o.snR)
C {monotonicity}

S ~ . S . S ~ . S O R . R

C_ {since S is simple}

S o . S O R . R

_C {since R is transitive}

S O . S A R .

3.3 Relators

The class of monotonic functors Rel ~ Rel plays a fundamental role in the calculus of
relations. A functor F : Rel ~-- Rel is monotonic if R C_ S implies FR C FS. The following
theorem states the most important properties of monotonic functors. A detailed proof
can be found in the paper by Carboni, Kelly and Wood [4].

P r o p o s i t i o n 4 . Suppose that F : Rel *--- Rel is monotonic. Then

- F preserves functions, i.e. for all f in Fun, F f is a funct ion.
- F preserves eonve,'~e, i.e. F(R o) = f i n) o

50 Richard Bird and Oege de Moor

- F is determined by its action on functions. That is, i f G : Rel ~ Rel is another
monotonic functor, the statement

Ff = Gf for all f in Fun

is equivalent to F = G.

In words, the last proper ty says tha t each monotonic functor is the unique extension of
some functor F : Fun ~-- Fun to relations. We will use the same le t ter F to denote bo th
a functor on Fun and its extension to Rel. When a functor on Fun has an extension to
relations, it is said to be a relator.

Proposition 5. A funetor F : Fun ~ Fun is a relator i f and only i f the following condi-
tion is satisfied: f . #o = h o "k implies F t . (Fg) ~ = (Fh) ~ Fk.

Most functors tha t occur in p rogramming problems are relators, and we now consider
some examples.

Product. The extension of the product functor • : Fun ~ (Fun x Fun) is given by

where r l : A ~-- A x B and r2 : B ~-- A x B are the left and right projec t ion functions.
However, the extended product x does not define a categorical p roduc t in Rel, so here
the decision to use the same nota t ion for the extension to relations is misleading.

Coproduct. The coproduct functor + : Fun *--- (Fun x Fun) also extends to relations; we
have

R + S = ~I . R . L~ O ~2 . S . L~,

where t l : A + B ~ A and t2 : A + B ~ B are the coproduc t injections. Unlike product ,
+ does define a categorical eoproduct in Rel, so the use of the same no ta t ion is harmless.
Since Rel is isomorphic to its own opposite, + also defines a product in Rel.

List. The list functor I. : Fun ~ Fun takes a set A and returns the set A* of all finite
sequences with elements f rom A. On arrows, (I.f) is the funct ion tha t applies f to all
e lements of a sequence:

L/[al, a2, . . . , a~] : If a l , f ~ 2 , . . . , f .~].

The extension of L to relations is defined by

[al, a 2 , . . . , a,l(I-R)[bi, b2, . . ., bm] =

(n = m) A (Vi : 1 < i < n : ai(R)bi).

From Dynamic Programming to Greedy Algorithms 51

Powerset . Finally, consider the covariant powerset functor P : Fun ~-- Fun tha t sends a
function to its existential image. Here, PA is the powerset of A and (P /) z = {f a I a E z}.
The extension of P to relations is defined by

~:(PR)y =

(Va �9 x : ~b �9 ~ : a(R)b) ^ (Vb �9 y : 3~ �9 x : a(R)b).

Note that P : Rel ~-- Rel is not the same as the existential image functor E : Rel ~-- Rel

defined by EA = PA and

(ER)~ = {a I 3b �9 z : a(R)b}.

The functor P returns relations and is monotonic, while E returns functions and is not
monotonic. Since P and E coincide on functions, we may conclude tha t the restriction to
monotonic functors in proposition 4 is necessary.

Since for every A we have a relation �9 : A ~-- PA, one might expect it to be some sort
of natural transformation, both with respect to E and P. Indeed, we have

�9 . E R = R . � 9 and � 9 C_ R . � 9

As an applicat ion of these facts, we prove a technical proposition tha t will be useful in
later proofs. It states a rule for eliminating min, P and A.

Proposition 6.

ra in (R) . P S . A T ~ �9 T C_ R . S

P r o o f . First observe that

A T ~

{A T ~ function, shunting}

T C _ (A T ~ 1 7 6

= {converse}

T C (E . A T ~ ~

= {G cancels A}

T C (T~ ~

= {converse is an involution}

/rue.

Using this auxiliary result, we can prove the proposition:

rain(R) �9 P S . A T O �9 T

C_ {above}

m i n (R) . PS .

52 Richard Bird and Oege de Moor

C {naturality of E (see below)}

min(R) . 9 . S

_C {def. rain}

R / 9 . 9 . s

C_ {quotient}

R-8.

In the second step, we exploited the natural i ty of E in the following way:

P S - 9

= { c o n v e r s e }

(E. (os)~ ~
= {P relator, Prop. 4}

(E" P S~ ~

C {naturali ty of E}
(S o �9 e) ~

= { c o n v e r s e }

9 . S

This completes the proof.

Once it is known how a functor can be extended from functions to relations, it is easy
to extend other operators as well. Consider for instance the split operator (_, _), which is
defined on two functions with a common source by the equation

(f , g) a = (f a ,g a).

For relations R and S we have

(R, S) = (R x S) . (id, id).

Such derived operators do not necessarily satisfy the same propert ies as their functional
counterparts. For example, we have that ~q. (R, S) C R but C_ cannot be replaced by --.

3.4 Algebras and Catamorphisms

Let F : "4 *-- ,4 be a functor on some category A. By definition, an F-a lgebra is an arrow
f : A *-- FA. The object A is said to be the carrier of f .

If f : A *-- FA and g : B *--- FB are F-algebras, then an F - h o m o m o r p h i s m from
f to g is an arrow h : A *--- B of .4 such that h - f = g �9 Fh. The composition of two
F-homomorphisms is again an F-homomorphism, so the F-algebras in .4 form a category
in which the objects are F-algebras and the arrows are F-homomorphisms. When this
category has an initial object a , and f is another F-algebra, we write ~]) to denote

From Dynamic Programming to Greedy Algorithms 53

the unique F-homomorphism from a to f . Homorphisms of the form (Ill) are called
catamorphisms. Init ial i ty can thus be phrased as the equivalence

(h = ([f])) = (h . ~ = f . F/t).

Not all functors Fun *-- Fun have an initial algebra, for example, the existential image
functor P does not. However, all polynomial functors Fun ~ Fun do (see [13]). The class
of polynomial functors is inductively defined by the following clauses:

1. The identity functor and constant funetors are polynomial;
2. if F and G are polynomial, then so are their composition FG, their sum F + G and

their product F • G, where

(F+G)f=Ff+Gf
(F • G) / = FI x GI.

All polynomial functors are relators. For any relator F , the initial algebra ~ of F : Fun *---

Fun is also an initial algebra of F : Rr *-- Rel. We also have that ([R]) is simple if R is.
Proofs of these facts can be found in [1, 15].

In the category of functions, the universal property of the initial algebra ~ can only
be specified as an equation, for equality is the only way of comparing two functions.
For relations, the situation is different: here we can also talk in terms of inclusion. The
following result, which is an easy consequence of the Knaster-Tarski fixpoint theorem,
shows how the universal property of cr can be weakened to deal with inclusions.

P r o p o s i t i o n 7. For all R and S we have

(R . ~ = S. FR) - (n = ([SD)

(n . . c s . FR) ~ (R c_ {S]))

(R. ~ 2 S . FR) ~ (n ~ eSD).

It is well-known that the initial algebra cr is in fact an isomorphism [9], and therefore we
have, for instance,

(n = S . Fn . ~~ = (n = ([SD).

4 D y n a m i c P r o g r a m m i n g

In this section we restate a result of De Moor [15]. Throughout, we assume F is a relator
and c~ is its initial algebra.

We shall need the following definition. A function f : A *-- FA is monotonic with
respect to a relation R : A +-- A if

f . F R C _ R . f .

To il lustrate this definition, consider numerical addition + : N ~ (N • N) , where N is
the set of natural numbers. Addition is an algebra of the functor F given by FA = A • A

54 Richard Bird and Oege de Moor

and Ff = f x f . Now, addition is monotonic with respect to <. The definition above
translates to

(3a, b : c = a + b A a<_a t A b < b t) ~ c < a ~ ~

and corresponds to the normal definition of monotonicity of + in both arguments.

T h e o r e m S . (De Moor [15]) Let R be a preorder, and let P be an F-algebra. Define
T = min (R) . A ~p~O. I f c~ is monotonic with respect to R, then the least solution D of
the equation

D = rain(R). P((~. F D) . A P ~

satisfies D C T.

Before giving the proof of this theorem, let us briefly consider its intuitive inter-
pretation. The recursion equation for D is in line with the operational description of
dynamic programming in the introduction to this paper. The function A po splits the
argument in all possible ways. This yields a set of decompositions, and for each of these
decompositions, we recursively compute solutions to subproblerns. The expression

P(o~. FD). A po

generates a set of candidate solutions, and rain(R) selects a minimum element.
Turning to the proof of the Dynamic Programming Theorem, we note that (by

Knaster-Tarski) it suffices to show

min(R) . P(oc. F T) . A P ~ C_ T.

Since T = rain(R). A qp~, = ~p~, N R/qP~, this proof obligation can be split into two
simpler conjuncts:

and

min(R) . P(~. FT) . A P ~ C_ (~p])o

min(R) . P(a . F T) . A P ~ qP~ C R.

The first conjunct is proved as follows:

min(R) . P((~. F T) . A P ~

C {def. rain)

E. P(o~. FT).AP ~

C_ {naturality of E}
a . F T . E" AP ~

= {E cancels A}

o~. F T . P ~

= {def. T)

o,. F(min(R). A EPD~ P~

From Dynamic Programming to Greedy Algorithms 55

It remains to show that

C {def. min}

a . F(E- A (~p])O), po

= {e cancels A}

~ . F([P]) ' . p0

= {converse}

(P . F(~P]). o~~ ~

= {catamorphism}
(~p])O.

rain(R). P(a. FT).AP ~ ~P~ C_ R.

This can be done as follows:

ra in(R) . P (a . F T) . A P ~ . ~PD

= {catamorphism}

rain(R). P(o~. FT) . A po . p . F([P]). o~ ~

C_ {Prop. 6}

R- a . F T- F(~P]) �9 a ~

= {F functor}

m i n (R) . ~ . or. F(T . (~P])) �9 o~ ~

C {def. T, Prop. 6}

min(R) . 9 " a " F R . a ~

C_ {monotonicity}

R . R

C_ {R transitive}

R.

This completes the proof of the Dynamic Programming Theorem.

Let T = m i n (R) . A([P~ ~ as in the Dynamic Programming Theorem. Using Corol-
lary 3 we have T = m i n (R ') . A([P~O, where R' = ([pDO . ([p]) n R. Furthermore, R '
is transit ive if R is and if P is simple. This means we have only to establish that ~ is
monotonic with respect to R ~ in order to apply the dynamic programming theorem. In
most practical applications we are not given the relation R but rather a cost function c,
i.e. R = c o �9 S �9 c for some preorder S. The proof of the following useful proposit ion is
omit ted.

P r o p o s i t i o n 9. Suppose R = c o �9 S . c, where c satisfies

e.o~ = k. F(~P]), c),

for some k that is monotonic with respect to S, i . e . k . F(id x S) C_ S . k. Then, provided
P is entire, we have that c~ is monotonic with respect to ~p~O. ~p~ n R .

56 Richard Bird and Oege de Moor

4.1 A p p l i c a t i o n

Let us now apply the above theory to the maximum lateness problem. Let J denote the
type of jobs. The type of sequences over J is the initial algebra of the functor F : F u n ~--

F u n given by

FA = 1 + (A x J)

F h = id + (h x i d) ,

where 1 denotes the terminal object of F u n . This initial algebra will be denoted by
c~ = [u, -~<:]. Applied to the single element of 1, the function u returns the empty sequence
[]. Applied to (z, a) the function ~ returns x - ~ a = z % [a]. Tha t is, we suppose
that sequences are constructed from left to right. There is of course a dual method that
constructs sequences from right to left, but the lef t - to-r ight bias in the maximum lateness
problem means that the given way of constructing sequences is the more appropriate.

Bags of jobs form an F -a lgeb ra [v, +<], where u returns the empty bag, and x -m a
denotes the bag formed by adding a to the bag z. The function bagi fy = (Iv, +<:]) turns
a sequence into a bag, and p e r m s = A bag i fy ~ returns the set of permutat ions of a bag.

Recall that the cost function c associated with the lateness problem satisfies

c[] = - ~

~(~ ~ [a]) = c �9 u (n,giyy ~: | ~).

Hence

c " ~ = k " F (b a g i f y , c)

where k = [-c~ , | and | is defined by

(t , n) | a = n u (~ | a).

In order to make use of Proposition 9 we need to check that

k . F(:d x (<)) c (<) . k.

Unfolding the various definitions we get the implication

m < n ~ (~ : , m) | < (~ : , n) |

But this is immediate from the definition of | The conclusion is that dynamic program-
ming is applicable to the maximum lateness problem.

From Dynamic Programming to Greedy Algorithms

5 G r e e d y A l g o r i t h m s

57

Now we tu rn to greedy algorithms. The following theorem is s imi l a r to the dynamic
p rogramming theorem bu t involves an extra condition.

T h e o r e m 10. Let T = rain(R). A (~P~~ where R is transitive. Suppose that c~ is mono-
tonic with respect to R, and ~ = F~P~ �9 s ~ satisfies S . ~ C_/3. R for some S. Then the
(unique) solution G of the equation

G = c~. FG. m i n (S) . A P ~

satisfies G C_ T .

P r o o f . Let U = rain(S) . A P ~ We first show tha t G = (~U~ ~ is the unique solut ion of
the equa t ion G = (~ �9 F G �9 U.

G = eu~ ~

-- {converse)
Go = Cu 0}

--- {Proposit ion 7}

G O �9 a = U ~ �9 FG ~

--_- {converse; F preserves converse)

a ~

--- {a is an isomorphism}

G = a . F G . U .

Next, we have

G C T

{above form for G and Proposit ion 7}

a . F T - U C T

--- {since T = ([e])~ N R/~P~}

a - F T . U C _ (~ P]) ~ and a . F T . U C R/qP~.

We establish these inclusions separately.

, - F T - U C_ (IF])~

r {since T C ([P])~ and U C_ G ~ }

a-F(~G]) ~ e ~ c ([G])'

= {Proposit ion 7}

true.

58 Richard Bird and Oege de Moor

Second, a . F T . U C_ R / ~ P ~ is equivalent to ~ . F T . U . ([P]) C_ R. The lat ter inclusion
may be proved as follows:

e . F T . U. (IV])

= {Proposition 7, (~ isomorphism}

c~. F T . U. P . F ~ P]) . s ~

C_ {def. U, Prop. 6}

~ . F T . S . F([P]) �9 c~ ~

C_ {assumption}

a . F T . F([P]) �9 c~* �9 R

= {since F is a functor}

e . F(T. ([P~) . (~o . R

C {def. T, Prop. 6}

o~- FR- ~r ~ �9 R

C {since a is monotonic}

c~.c~ ~ . R . R

= {since a is an isomorphism}

R . R

C {R is transitive}

true.

The proof is complete.

The conclusion of the theorem says that there is a greedy algori thm for T. At each step
of the computation, one chooses an optimal split t ing with r a i n (S) �9 A p o . Subsequently,
the subproblem(s) are solved by means of FG, and the solutions are composed into a
solution for the whole problem by ~. Note that we can again use Corollary 3 to rewrite
U in the form U = m i n (S ') . A P ~ where S ' = p o . P N S . As in the case of monotonicity,
we state a proposition that eases the task of verifying the extra condition in the greedy
theorem. Like Proposition 9, its proof is omitted.

Proposition 11. Suppose tha t F = Fo + F1, a n d c~ = [a0, a l] . F u r t h e r m o r e , a s s u m e tha t

S = So + S~, a n d P = [P0, P1], and ([PD ~ is en t i re . T h e n

(VO . p n S) . F(~P D �9 ot ~ C_ F(~P 9 �9 o~ ~ . ((~p~O . ~PD n R)

i f and on ly i f

(P~ " P i Iq S i) " Fi([PD c_ Fi([PD " a ~ " R . cei f o r i = O, 1.

From Dynamic Programming to Greedy Algorithms 59

5.1 Application

Let us go back to the m a x i m u m lateness problem. It has a l ready been shown tha t c~ is
monotonic , so it remains to verify that with P = [u, +<], and S ~ = po . p f3 S for some
suitable S, and R = (bagify ~ . bagify) N (c ~ (<) . c), we have

S' . Fbagify. [u, ..H.<] ~ _C Fbagify. [u,-H-<] ~ R.

Choose S = id + ((@)o . (<_). (@)). Proposi t ion 11 says tha t the proof obl iga t ion is
equivalent to

(,, | ~) < ((baaify ~) | b) ^ (u +< ,,) = ((b~aiIy y) -+< b)

To prove this implicat ion, we consider two cases: a = b and a r b. In the case a = b we
have u = bagify y, and so we can take z = y. On the other hand, if a r b, we argue

c(~ ~- [a]) _< c(u -~ [b])
= {definition of c}

c x U (u | a) <_ cy LI (bagify y @ b)

= {since u @ a <_ bagify y @ b}

c x < c y H (b a g i f y y | b)

= {definition of e}

e ~ < e (y -~ [b]).

Now, since u +< a = (bagify y) +< b and a r b, there exist Yo and Yl such tha t y =
Yo qt- [a] q+ Yx. Take x = Yo 4t- yl q - [b]. We claim tha t c x _< c (y q+ [b]). More generally,
we have c (w -H- z) < c (w q+ [a] q+ z) for all w, z, and a. This follows by induct ion on z,
using the result

(wq+ z) @ b

= {definition of @}

wt b x ((Y]~cr time c) + time b - due b)

_< {since weights and t imes are nonnegat ive}

wt b • ((5 : c~- to l§ time c) + time b - due b)

= {definition of |

(w ~+ [a] a- z) | b.

The conclusion is tha t the m a x i m u m lateness problem can be computed by a greedy
a lgor i thm.

60 Richard Bird and Oege de Moor

6 C o n c l u s i o n s

One of the aims of the paper was to clarify the relationship between dynamic program-
ming and certain greedy algorithms. This relationship is captured in the very similar
statements of the dynamic programming and greedy theorems.

It is important to note that the greedy theorem gives general conditions under which
a greedy solution is possible, but does not discuss mathematical systems in which the
greedy condition is valid. Two such systems are known: those of a matroid and those of a
greedoid (see [8]). Essentially, the verification of the greedy condition for the maximum
lateness problem is an application of greedoid theory. It remains to be seen whether our
approach gives further insight into such systems.

Finally, because the greedy theorem holds for tree algebras and not just lists, it
may also have applications in the derivation of d ivide-and-conquer algorithms. Here a
comparison with Smith's approach to divide-and-conquer [16] could be a fruitful research
topic.

References

1. R.C. Backhouse, P. Hoogendijk, E. Voermans, and J.C.S.P. van der Woude. A relational
theory of datatypes. Department of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands., June 1992.

2. M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall, 1990.
3. R.S. Bird and O. de Moor. List partitions. To appear, Formal Aspects of Computing, 1992.
4. A. Carboni, G.M. Kelly, and R.J. Wood. A 2-categorical approach to geometric morphisms,

i. Cahiers de TopoIogie et Geometric Differentielle Categoriques, 32(1):47-95, 1991.
5. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
6. Maarten M. Fokkinga. Law and Order in Algorithmies PhD thesis, Technical University

Twente, The Netherlands, 1992.
7. D.S. Hochbaum and R. Shamir. An O(nlog 2 n) algorithm for the maximum weighted

tardiness problem. Information Processing Letters, 31:215-219, 1989.
8. B. Korte, L. Lovasz, and R. Schrader. Greedoids, volume 4 of Algorithms and combina-

torics. Springer-Verlag, 1991.
9. J. Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrift,

103:151-161, 1968.
10. E.L. Lawler. Optimal sequencing of a single machine subject to precedence constraints.

Management Science, 19(5):544-546, January 1973.
11. G. Malcolm. Homomorphisms and promotability. In J.L.A. van de Snepscheut, editor,

Mathematics of Program Construction, volume 375 of Lecture Notes in Computer Science,
pages 335-347. Springer-Verlag, 1989.

12. G. Malcolm. Data structures and program transformation. Science of Computer Program-
ming, 14:255-279, 1990.

13. E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer-Verlag, 1986.

14. L. Meertens. Paramorphisms. To appear, Formal Aspects of Computing, 1990.
15. O. de Moor. Categories, relations and dynamic programming. D.Phil. thesis. Technical

Monograph PRG-98, Computing Laboratory, Oxford, 1992.
16. D.R. Smith. Applications of a strategy for designing divide-and-conquer algorithms. Sci-

ence of Computer Programming, 18:213-229, 1987.

From Dynamic Programming to Greedy Algorithms 61

17. M. Spivey. A categorical approach to the theory of lists. In J.L.A. van de Snepscheut,
editor, Mathematics of Program Construction, volume 375 of Lecture Notes in Computer
Science., pages 399-408. Springer-Verlag, 1989.

