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Abstract. We propose an iterative approach to formal verification by 
language containment. We start with some initial abstraction and then 
iteratively refine it, guided by the failure report from the verification 
tool. We show that the procedure will terminate, propose a series of 
heuristic aimed at reducing the size of BDD's used in the computation, 
and formulate several open problems that could improve efficiency of 
the procedure. Finally, we present and discuss some initial experimental 
results. 

1 Introduct ion  

The size of finite-state systems that can be verified by formal methods has in- 
creased significantly since the introduction of implicit state enumeration tech- 
niques based on fixed-point computations and binary decision diagrams (BDD's) 
[2, 5]. Still, many practical systems are out of reach of these methods. Moreover, 
the size of systems to be verified increases rapidly with the progress of VLSI 
technologie s . 

Many researchers and practitioners believe that one of the keys to managing 
such complex systems is the use of abstractions and reductions, where one tries 
to  verify a complex systems by verifying its simplified version [6, 3]. 

We make a distinction between two kinds of simplifications: exact and conser- 
vative. Exact simplifications preserve all aspects of system behavior, 1 therefore 
the original system is verified if and onl~ if the simplified system is. They can 
be applied to virtually any verification formalism, but it is often hard to find an 
exact simplification of reasonable size. 

On the other hand, conservative simplification preserve enough information 
of the system behavior to guarantee that the original system is verified if the 
simplified system is. However, if the simplified system is not vcrified, the original 
system might or might not satisfy the required property. Conservative approx- 
imations exist only for some formalisms like language containment [6], simula- 
tion [1], VCTL and VCTL* model checking [3], but they can often lead to much 

* Supported by SRC under grant # 93-DC-008. 
1 Here, we use the term "behavior" informally, since the exact meaning varies with 

verification formalisms. 
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larger reductions in size than exact simplification. We use the word abstraction 
and the phrase conservative simplification interchangeably. 

The obvious problem is how to proceed when the abstracted system is not 
verified. In practice, the user would analyze a failure report from a verification 
tool to decide whether the failure is inherent in the original system, or the con- 
sequence of some oversimplification. If the latter applies, the user would usually 
modify the current abstraction of the system, resulting in a slightly more com- 
plex system and repeat the verification process. Kurshan [7] observed that  it is 
often necessary to go through several of these iterations before the final deci- 
sion can be made. No attempts have been made to automate this process, even 
though this significant designer involvement is seen as one of the obstacles to 
wider acceptance of formal verification techniques in the design community. 

The main purpose of this paper is to describe one of the possible ways to 
automate this iterative process. Although ideas similar to those presented here 
could easily be applied to any formalism allowing abstractions, many details 
are dependent on the fact that  inside an iteration loop we are using a language 
containment tool based on the theory of L-automata and implemented with 
BDD's. For example, in the case of  tools based on explicit state enumeration, 
the complexity of the system is measured very well by the number of  reachable 
states. That  is not necessarily true in case of BDD-based tools. In fact, some of 
the heuristic abstractions described in the following sections result in a system 
with more reachable states, but smaller BDD representations. 

The rest of this paper is organized as follows. In Sect. 2 we discuss previous 
results significant to our work. In Sect. 3 we propose a heuristic iterative verifi- 
cation algorithm and provide justifications for our choices of heuristics. Finally, 
we discuss initial experimental results in Sect. 4. 

2 Preliminaries 

We represent a system to be verified as a collection of n communicating finite- 
s ta te  subsystems called L-processes [6]. With every L-process (say Pi) we asso- 
ciate variables zi (a present state variable) and yi (a next state variable) both 
ranging over some finite non-empty set V/ (a set of states) and a variable oi (an 
output variable) ranging over some other finite non-empty set Oi (a set of ob- 
servables). Let r be a variable ranging over Dr = {true, false} and let a variable 
o = ( o l , . . . ,  on) be a n-tuple containing all output variables, ranging over the 
set O = O1 x . . .  x On. The L-process Pi can then be specified with Boolean 
functions Ii(zi) ( a characteristic function of the initial states), Ti(xi, Yl, o, r) (a 
characteristic function of the transition relation, or just "transition relation") 
and a set of Boolean functions Z, = { Z l ( x i ) , . , . ,  Z#'(x~)} (a set of cycle sets). 

We interpret Ii(xi) and cycle sets in Zi assets  of states, and we interpret 
transition relation as an edge labeled graph. Nodes of the graph are elements 
of the state space 1~ and edge labels are elements of 0 x Dr. If ~ is satisfied 
for x~ = a, Yi = b, o = e and some value of r, we say that  there exists an edge 
from a to b labeled with e. We require that  for every valuation a, b and c of xi, Yi 
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and o, the expression Ti(a, b, c, false) is satisfied only if T/(a, b, c, true) is. Edges 
for which ~(a,  b, c, true) is satisfied and Ti(a, b, c, false) is not, are called recur 
edges. 

A language of an L-process P/ (denoted by s contains all infinite se- 
quences of element of observable space O that have an accepting run. A run is 
said to be accepting if it starts in some of the initial states and it does not cross 
any of the recur edges infinitely often nor it remains in some of the cycle sets 
infinitely often. 

Kurshan [6] has defined a product | of L-processes that satisfies: 
Y$ 

ff.(Pl | 1 7 4  Pn) -: N ff.(Pi ). (1) 
i=l 

We think of the language as the possible behaviors of the system. The task of 
formal verification is to prove that all of these behaviors are acceptable, i.e. that 
the language of the system to be verified is contained in some other language that 
defines a set of acceptable behaviors: Kurshan [6] has shown that under some 
mild conditions, it is possible to reduce the language containment problem to the 
cheek of emptiness of the language of L-process P = ~i~o Pi, where P1 , . . . ,  Pn 
are components of the system to be verified and P0 (also called a task) is an 
L-process whose language defines a complement of acceptable behaviors. In the 
rest of this paper we will assume that zi and Yi are present and next state 
variables of the process Pi and that x = (x0, x l , . . . ,  xn) and y = (Y0, Yl , . . - ,  Yn) 
are present  and next state variables of the process P.  Obviously, the language 
emptiness problem lends itself to conservative simplifications. Any L-process R 
satisfying: 

s  C s  (2) 

is an abstraction of P.  The challenge is to find R which is small, satisfies (2) by 
construction, and yet close enough to P such that its language is empty if s 
is. 

One way of generating R that is likely to be 2 smaller than P and satisfies (2) 
is to compute partial product ~)ier  P/ for some I C {0 , . . . ,  n}. We say that 
processes in I are active and others are ignored. An equivalent interpretation of 
this abstraction is that we have replaced every process Pj,  j ~ I with a process 
that has the same states but unrestricted transition between any two states 
(transition relation equals true), all states designated as initial (characteristic 
function of  initial states equals true) and no cycle sets. The following lemma 
states that this is indeed the conservative simplification. 

L e m m a  1. Let Po, .... , Pn be L-processes and let [ C {0 , . . . ,  n}. Then: 
n 

z(| c 
i--0 iEI 

2 In all examples we tried this did result in a smaller BDD. However, it is not true in 
general case. In fact, it is very easy to construct degenerate examples where this is 
not the case. 
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n 

Proof. ~(| p,) _- c(| v,) n ,( | P,) c_ L(| a). o 
{=0 i 6 I  iE{O, . . . ,n}- I  i E I  

The second kind of abstractions we use is closely related to the language con- 
tainment algorithm: which we now describe only in as much details as necessary 
for this paper. The language containment algorithm can be divided into three 
main steps: 

1. Computing the product, i.e. in this step we compute I(x) = 1-Iin=o I~(xi), 
T(~, y, o, r) = ll,"_-0 T,(~,, ~,, o, ~) and z = U,"=o z , .  

2. Removing the outputs, i.e. in this step we compute: 

G(x, y, r ) =  ~o: T(x, y, o, 0 .  (3) 

We say that G(x, y, r) is the graph of the system. We can interpret this 
operation as removing labels form the edges in graph defined by T(x, y, o, r). 

3. Search for a bad run, i.e. in this step we search the graph of the system 
G(x, y, r) for an accepting run. If such a run exists the language is not empty 
and verification tools usually report one such run. 

The following proposition states another sufficient condition for a conserva- 
tive approximation. 

P ropos i t ion2 .  Let G(x,y ,r)  be a graph of the system, and let H(x ,y , r )  be 
some Boolean function that covers G. Then, the absence of a bad cycle in the 
graph interpretation of H(x, y, r) implies the absence of a bad cycle in G(x, y, r). 

Proof. Since H(x, y, r) covers G(x, y, r) every edge in G appears also in H, and 
every non-recur edge in G is also a non-recur edge in H. Therefore, any bad 
cycle in G (i.e. a cycle not containing any of the recur edges and not contained 
in any of the cycle sets) exists and is also bad in H, and any path from some of 
the initial states to such a cycle in G is also a path in H. [] 

The following result is a well known fact in Boolean theory, so we state it here 
without a proof: It offers a convenient way to compute an abstraction satisfying 
the condition in Proposition 2. 

L e m m a  3. Let G(x, y, r) be as defined by (3) and let: 

H(~, y, r) = H ( 3 o :  Ti(zi, y,, o, r)). (4) 
i=0  

~hen, g ( ~ ,  U, r) covers G(~, y, r). 

We can interpret this abstraction as ignoring the communication between 
subsystems, since we remove labels from edges before checking whether they 
can be simultaneously satisfied. The heuristic argument for computing (4) in- 
stead of (3) is that all the intermediate results in (4) have fewer variables in its 
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support than the intermediate result (I-Ii~0 Ti(xi, yi, o, r)) in (3). This is likely 
to reduce the size of the intermediate BDD's. In fact the intermediate result 
(I-I~=o ~(x i ,  yi, o, r)) is usually the single largest BDD created throughout the 
language containment algorithm. 

The second heuristic argument follows from the well known fact that the 
BDD size of the product of two Boolean functions is bounded from above by 
the product of the sizes of BDD's representing each function, but if they have 
disjoint supports under appropriate ordering the bound can be strengthen to 
the sum of the sizes of BDD's. This suggests that the BDD representing (4) 
is likely to be smaller than BDD representing (3), since intermediate results 
(30: ~(xi ,y i ,  o, r)) in (4) have only r as a common support. 

As is the case with the other proposed abstractions, these heuristic arguments 
do not hold in general, and counter-examples are easily constructed. However, 
our (admittedly limited) experience supports them without exceptions. 

It is interesting to note that both of these abstractions result in a graph with 
the same number of nodes as the original one, but with more edges, therefore 
possibly more reachable states. So, these abstractions are not at all suitable for 
a verification tool based on explicit state enumeration, but they should result in 
a smaller BDD representation in most cases. 

3 V e r i f i c a t i o n  A l g o r i t h m  

Our verification algorithm is a special case of the following four-step general 
iterative approach to formal verification: 

Initial abstraction: Choose an initial abstraction. 
Verification: Try to verify the task. If the verification is successful, terminate 

with success. Otherwise, go to the next step. 
Failure analysis: Analyze the failure report from the verification tool and de- 

termine whether the failure is inherent in the original system or the failure 
is due to the oversimplification. If the former is true, terminate with failure. 
If the latter is true, go to the next step. 

Ref inement :  Refine the abstraction in a way that a reported failure is elimi- 
nated. Go to the verification step. 

This general procedure is applicable to any formal verification techniques that 
allows conservative simplifications. The specific algorithm will depend on the 
technique, but also on the heuristic choices of initial abstraction, failure report 
and refinement procedures. 

The algorithm we propose for iterative language containment (ILC algorithm 
from here on) is shown in Fig. 1. In the following paragraphs we describe and 
justify the choices we have made in that algorithm. 

3.1 Initial Abstraction 

Our choice of the initial abstraction is based on the observation that many of 
the interesting properties are expressed in terms of of the output variables of 
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input P0,..., P, 
input  Act 

begin 

step 1: I ( x ) =  H 

step ~: 

step 3: 
step 4: 
step 5: 
step 6: 

/* L-processes, where P / =  (Ii(xl), Ti (xi, yi, o, r), Zi) */ 
/* a set containing indexes of the task and of all */ 
]* processes whose output variables are in the */ 
/* support of the task's transition relation */ 

h(=,); v ( , ,  y,T) = 1 ]  T,(=,, y,, o, T); z = U z,; 
iEAct iEAct i~Act  

while not STOP do 

if "bad run" does not exist then  
STOP/* the task is verified */ 

else if  "bad edges ~ e(x, y, r) exist then  
G(x, y, r) = G(x, y, r) * e(x, y, r) 

else i f  there exists New C Act that eliminates the bad run then 

Aet=ActUNew; I (~)=I(x )*  H /k(xk); Z = Z U  U Zk; 
kENew kENew 

a ( z , y , r ) = G ( ~ , y , r ) *  H (?o:Tk(xk,yk,o,r)); 
kENew 

else 
STOP/* the task is not verified */ 

end if  
end while 

end 

Fig. 1. ILC - iterative language containment algorithm 

only a few subsystems, and that  for some of the properties the behavior of some 
subsystems is irrelevant. Therefore, as an initial abstraction, in step 1 of the 
ILC algorithm, we ignore all the subsystems that  are not in the Act set, i.e. 
all except the task and those processes that  have their output variables in the 
support of the task's transition relation. By choosing this initial abstraction 
and an appropriate refinement step, we will never consider a subsystem that  is 
irrelevant to the property to be verified. 

3.2 Ver i f ica t ion  

In step 2 of the ILC algorithm a verification procedure is performed. For this 
step we use a tool described in [5]. Similarly to COSPAN [4], in case of failure 
the tool reports one "bad run", i.e. an initialized sequence of states that  does 
not cross any of the recur edges infinitely often, nor it remains forever in any 
of the cycle sets. A bad run can be represented by a final prefix, called a "bad 
path",  and a final, but infinitely often repeated sufftx called a "bad cycle". The 
choice of the cycle and the path is done by the tool and is basically arbitrary. 

We stress the importance of the failure report for our algorithm. If the task is 



35 

not satisfied than there always (in any iteration) exists a failure report to show 
it. However, the tool might ignore that failure for many iterations, reporting 
instead "false" failures. At the moment, there are no heuristics (let alone exact 
procedures) which would guide the tool in the search of the "real" failure. 

3.3 Failure Analysis  

The task of the failure analysis step is determined by the failure report and the 
types of abstraction used. As indicated previously, there are two abstractions 
used: ignoring communications (step 6 of the ILC algorithm)and ignoring sub- 
systems (step 1 of the ILC algorithm): In our algorithm we first analyze the 
former in step 3, and then, if no violations are found, we analyze the latter in 
step 5 of the ILC algorithm. 

If the communication between subsystems is ignored while making a product 
the result is a graph with same nodes and more edges than the exact graph. 
Since all other information (initial states, recur edges and cycle sets) is exact 
one should only check that every edge in the report is the "real" edge, i.e. that 
the product of labels of all component edges is not false. Care should be taken 
not to consider recur edges while analyzing a bad cycle. 

Let eik(x~, Yi, r) be a characteristic function of the i-th component of the 
k-th edge in the failure report, i.e. if the k-th edge is ((x0)k,.. . ,  (xn)k) 

let: 

e i k ( x i ,  Yi, r )  d el (Xi --~ (T,i)k) $ (Yi --  (~i)k+l) $ F, 

where F is true if the k-th edge is in a bad path, and F is (r = false) if the 
k-th edge is in a bad Cycle. The expression (r = false) ensures that we will 
not consider any recur edges in the bad cycle. If we can find some k and some 
I C_ Act such that: 

labk(o) = H 3 ( x i , y i ,  r) : (Ti(xi,yi,o,r)*ei~(xi, yi,r)), (5) 
iE[ 

evaluates to false, we can compute: 

y, r) = I I  r), (6) 
iEI 

a characteristic function of the set of "bad edges", as required in step 3 of the ILC 
algorithm. The justification for the name "bad edges" comes from the following 
proposition. 

P ropos i t ion4 .  Let I C Act be such that iab~(o), as defined by (5), evaluates to 
false for some k, and let e(x, y, r) be as defined by (6). Then: 

a) e(x, y, r) intersects with the present graph of the system, 
b) e(x, y, r) does not intersect with the exact graph of the system, 
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Proof. 

a) If the k=th edge is in the bad path, e(x, y, r) contains at least that edge, 
which must also be contained in the present graph of the system. If the k-th 
edge is in the bad cycle, e(x, y, r) must at least intersect that edge, because 
the k-th edge must be non-recur, i.e. not dependent on r. Since that edge is 
contained in the present graph of the system, e(x, y, r) intersects the present 
graph. 

b)  If the k-th edge is in the bad path, since labk(o) = fa l se  there can be no edge 
in the exact graph of the system with components (ei)~ --+ (x~)k+l i E I, 
because no element of the observable space can satisfy all their label simul- 
taneously. If the  k-th edge is in the bad cycle, there can be no non-recur edge 
in the exact graph of the system with components (xi)~ ~ (xi)~+l because 
no element of the observable space can satisfy all their label simultaneously. 
If there is a recu r edge with these components, it is by definition covered by 
(r = true) ,  so e(x, y, r) (which is covered by (r =- fa l se ) )  does not intersect 
it. 

[] 

The proof of part a) shows not only that e(~,y,  r) intersects with the present 
graph of the system, but also with the failure report. Therefore, the reported 
bad run is no longer a run after the graph of the system is updated in step 4 o f  
the ILC algorithm. 

Proposition 4 shows that the criterion labk(o) "" fa l se  is correct in a sense 
that corresponding e(~, y, r) never contains edges that are in the exact graph of 
the system. The following proposition shows that it is also complete, in a sense 
that if an I satisfying labk(o) = fa l se  can not be found, the intersection of the 
languages of active processes is indeed not empty. 

P ropos i t i onS .  Let I = Act  in (5) and let a sequence a = al,  . . . ,a~ ,  . .. (where 
ak e 0 ) ,  be such ~hat lab~(ak) • fa l se  for  every k in a bad run. Then a G 

s Pi). 

Proof. It suffices to show that a bad run is a run of a~'s in ~)ieAr Pi and that 
a bad cycle does not contain any of the recur edges of active processes. Indeed, 
if the k-th edge is in the bad path: 

lab (a ) = 1-I : r) r false, 
iEI  

implies ~hat there exists an edge between (~)k and (~i)k+t labeled with ak, 
which in turn implies that a bad path is a (finite) prefix of the run of a. Similarly, 
if the k-th edge is in the bad cycle: 

labk(ak) -- ~ I  Ti((xi)k ,  (x/)k+l, ak, fa l se ) )  # fa lse ,  
iEI 

implies that there exists a non-recur edge between (xi)k and (xi)k+l labeled 
with ak. Thus, a bad cycle is an (infinitely often repeated) suffix of the run of 
a, which does not contain any recu r edges. [:1 
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If this phase of failure analysis reveals no oversimplifications, we move to the 
next one in step 5 of the ILC algorithm. First, we construct a simple L-process 
X satisfying s _C s Pi). We set a graph of X to be exactly the graph 
of the reported bad run (i.e. "bad path" + "bad cycle"), and we set the label of 
the k-th edge to be labk(o) as defined by (5). 

Next, we try to find a subset New of ignored processes such that the inter- 
section of s Pi) and s  is empty. If such a subset cannot be found, 
the intersection of languages of all processes is not empty, and we terminate the 
verification procedure with failure. Otherwise, we go to the refinement phase 
in step 6 of the ILC algorithm. To find a Set New we can reuse language con- 
tainment algorithm, but finding it can be as difficult as the original verification 
prt)blem. We propose the following heuristics to avoid this complexity: 3 

1. first, try to find a single process Pk such that s A s -- ~, 
2. if that fails, order ignored processes in a way that every process has at 

least one variable in common support either with X or with some process 
preceding it (in that order), 

3. compute cumulative product X | P1 | . . .  adding one ignored process at a 
time in order chosen in the previous step, 

4. repeat the previous step until one of the following conditions is satisfied: 
(a) the language of the cumulative product becomes empty: in this case let 

New contain all ignored processes in the cumulative product, 
(b) the cumulative product contains all ignored processes and its language is 

not empty: in this case terminate with failure, 
(c) the cumulative product is too big. (i.e. occupied memory exceeds some 

given limit): in this case let New contain all ignored processes in the 
cumulative product (we defer eliminating the failure report until subse- 
quent iterations). 

3.4 Re f inemen t  

Depending on the results of failure analysis there are two different refinement 
problems: deleting certain edges from the current abstraction (step 4) and in- 
cluding a previously ignored subsystem into the current abstraction (step 6 of 
the ILC algorithm). 

We delete some bad edges by executing step 4 o f  the ILC algorithm, where 
e(x, y, r) is as defined in (6) and ! C Act in (6) is such that (5) evaluates to 
false. The smaller [ is, more edges will be deleted, hence we will converge faster 
towards the exact graph. 

We propose a two-step method of finding a suitable I. First, we evaluate (5) 
iteratively for ever increasing subset of Act, starting with a singleton, adding 
one new element in each iteration, and stopping as soon as (5) evaluates to 
false. Say that this happens for some I I C Act. Then, we try all two-element 
sets {l, rn} _C I'. If some of those makes (5) false we use it in (6), otherwise 

The choice of these heuristics were influenced by discussions with R.P. Kurshan. 
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we use I'. In principle, one could then try all triples, quadruples, etc., but we 
conjecture that it would actually increase total running time. 

The second refinment task occurs when we find a subset New of ignored 
processes that eliminates the reported failure. In that case, we include New in 
the set of active processes, and update initial states, cycle sets and transition 
relation as indicated in step 6 of the ILC algorithm. This amounts to including 
processes in New in the current abstraction, but ignoring the communication 
between them and other active processes. This way, we only need to update the 
graph of the system from the previous iteration. Since this is also true for the 
other refinement procedure, we do not ever compute the full transition relation 
of the system. 

On the other hand, the reported failure will not be eliminated in the updated 
system. This is important only in terms of efficiency, since the failure will even- 
tually be eliminated in subsequent iterations, but their number may be large. To 
define a refinement step which retains some of the mentioned advantages, but 
also eliminates the reported failure is another interesting open problem. 

3.5 Convergence and  Correctness  

In showing the correctness of the ILC algorithm we assume that the algorithm 
that searches for a bad run in step 2 is correct. Also, we assume that in step 6 a 
set New is not empty unless the failure report is valid despite the abstractions. 
In our implementation, for both of these steps, we use previously developed 
language containment algorithm. 

Proposition6. The ILC algorithm is correct. 

Proof. To show that the algorithm can not terminate with a false success we 
need to show that at every point in the algorithm the description of the system 
is an abstraction of the exact system. Indeed: 

1. by Lemma 1 (I(z), G(z, y, r), Z) computed in step 1 is an abstraction of Lhe 
exact system, 

2. by Proposition 4b the updated graph of the system in step 4 contains the 
exact graph if the one before the update did so, hence by Proposition 2 it is 
an abstraction of the exact system, 

3. by Lemma 3 and Proposition 2 (I(z), G(x, y, r), Z) updated in step 6 are an 
abstraction of @iCAc~t.JNew Pi if before the update they were an abstraction 
of ~)~eAet P~, and by Lemma i ~eAe~UNe~ P'~ is an abst~'action of the exact 
system. 

Now, we make an inductive argument on the number of iteration, using part 1 
as a base case, and parts 2 and 3 as an inductive step. 

To show that the algorithm can not terminate with a false failure we need to 
show that a failure is reported only if a sequence is found that is in the language 
of all the components Po,..., Pn. Indeed, a failure is reported only if step 4 
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results in a sequence a which by Proposition 5 is contained in the languages of 
all the active processes, and by the assumption of correctness of step 5, also in 
the language of all the ignored processes. [] 

Proposition T. The 1LC algorithm terminates. 

Proof. At each iteration we either execute steps 4 or 6 or terminate. Step 6 can 
not be executed more than n times, because every time it is executed the set 
Act grows by one new element and Act C {0, . . . ,  n). By Proposition 4a updated 
G(z, y, r) in step 4 contains at least one minterm less than the one before the 
update, and by Proposition 6 it always Contains the exact graph of the system. 
Therefore, step 4 can also be executed only finitely many times. [] 

The proof of the Proposition 7 has an unfortunate consequence that the 
number of steps in the worst case is proportional to the possible number of 
edges in the exact graph which is exponential in the number of subsystems. 

4 E x p e r i m e n t s  a n d  C o n c l u s i o n s  

We have tested our algorithm on two different properties of the well known Din- 
ing Philosopher's problem. We have used the solution with an encyclopedia [8] 
to insure that the system is deadlock and starvation free. All experiments were 
performed on a 400Mb DEC 5000 workstation. 

The first property we have verified is that two neighboring philosophers will 
never eat at the same time (mutual exclusion). More precisely we have verified 
this property for the first two philosophers. The results are summarized in Ta- 
ble 1. We could not verify any larger examples due to the memory limit. No 
comparison is given to  the direct approach since it can verify systems with at 
most several hundred philosophers. For any number of philosophers the algo- 
rithm verified the property in one iteration. 

Table 1. Results for the mutual exclusion property 

philosophers 2,0001 4,000i 6,000 8,000 10,000i 12,000 14,000 
reachable states 109~3110 a9~ 102~ 10 ~a6 104T71 105618 10 ~59~ 
CPU time [see] 42.8 160.4 359.1 627.8 981.2 1346.6 1854.4 

The other property we have verified is that the first philosopher will not 
be hungry forever (starvation). Although this property is expressed in terms of 
outputs of only one philosopher, it is not a local property. In fact, some aspects 
of the behavior of all philosophers must be included to verify this property. In 
this case results were not nearly as good as for the mutual exclusion method. In 
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fact, it performed worse than the direct method with the number of iterations 
growing rapidly with the number of philosophers. 

To summarize, we have presented a general iterative approach to language 
containment problem and proposed several specific heuristic aimed at reducing 
the size of BDD's used in computation. We have examined strengths and weak- 
nesses of our approach and formulated several open problems. Our procedure is 
completely automatic and very efficient for some classes of problems. 

Although the proposed heuristics are capable of dealing with some very large 
systems, they are by no means the definite answer to the state explosion prob- 
lem. Rather, we envision them as one of the tools available to deal with real-life 
verification problems. Other tools might include different abstractions, explo- 
ration of symmetry and induction. But, we believe that our proposed ideas of 
automatic failure analysis and automatic modifications will play an important 
role in any of these approaches. 
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