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A b s t r a c t .  Partial-order verification methods exploit ~ndependency ~ 
between transitions of a concurrent program to avoid parts of the state 
space explosion due to the modeling of concurrency by interleaving. In 
this paper, we study the influence of refining dependencies between tran- 
sitions of the program on the effectiveness of these methods. We show 
that carefully tracking dependencies can yield substantial improvements 
for their performances. For instance, we were able to decrease the mem- 
ory requirements needed for the verification of a real-size protocol with 
such a method from a factor of 5 to a factor of 25 by only refining de- 
pendencies. 

1 Introduction 

The effectiveness of state-space exploration techniques for debugging and proving cor- 
rect concurrent reactive systems is increasingly becoming established as tools are be- 
ing developed. The number of "success stories" about applying these techniques to 
industrial-size systems keeps growing. The reason for which these techniques are so 
successful is mainly due to their simplicity: they are easy to understand, easy to imple- 
ment and, last but not least, easy to use: they are fully automatic. Moreover, the range 
of properties that they can verify has been substantially broaden in the last decade 
thanks to the development of model-checking methods for various temporal logics. 

The only real limit of state-space exploration verification techniques is the often 
excessive size of the state space. This observation has triggered the development of 
new methods to overcome this serious problem which limits both the applicability and 
the efficiency of the approach. Some of them tackle the ef fects  of state explosion (e.g. 
"on the fly" methods [JJ89], bit-stat e hashing [Ho188], state-space caching [GHP92], 
state-compression techniques [HGP92]) while others rather tackle its causes.  

Partial-order verification methods (e.g. [Vai91, Godg0, PL90, McM92]) fit in the 
second category. Their aim is to avoid the paxt of the state explosion due to the mod- 
eling of concurrency by interleaving. With these methods, the behavior of the program 
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being verified is described, explicitly [PL90, McM92] or implicitly [Val91, God90], by 
means of partial orders of transitions, rather than by sequences of transitions. 

In this paper, we follow the approach of [God90, GW91b, HGP92] and use Mazurkie- 
wicz's traces as a semmitic model [Maz86]. Mazurkiewicz's traces are defined as equiv- 
alence classes of sequences of transitions that the system being analyzed can perform 
from its initial state. Two sequences of transitions are equivalent (belong to the same 
trace) if they can be obtained from each other by successively permuting adjacent sym- 
bols which are "independent". Intuitively, ~independent" means that their occurrence 
does not affect each other. A trace corresponds to a partial order of transition occur- 
rences: the set of all sequences belonging to the trace is the set of all linearizations of 
this partial order. If two independent transitions occur next to each other in a sequence 
of a trace, the order of their occurrence is irrelevant since they are unordered in the 
partial order corresponding to that trace. 

Loosely speaking, the basic idea behind partial-order verification methods like the 
ones of [God90, GW91b, HGP92] can be stated as follows: given a dependency relation 
D C T x T on the set T of transitions in the program P, it is possible to verify 
properties of the program P by exploring only one sequence of each trace (partial order 
of transitions) the system can perform from its initial state. Thus, there are basically 
three questions that have to be answered in order to fully characterize such partial- 
order verification methods: 

1. How does one minimize the number of sequences explored while exploring at least 
one sequence per trace? 

2. Which properties can be verified? 
3. Which dependency relation is Used? 

Several techniques that answer the first question love81, Va191, GW91b] and the sec- 
ond one [Val90, GW91a, HGP92, Pe192] have been proposed and studied. In con- 
trast, the third question has been little investigated so far. Existing related work 
deals essentially with semantic issues about various formal definitions of dependency 
(e.g. [KP92, Ochg0]). 

In this paper, we address the third question mentioned above from a pragmatic 
point of view. Given a concurrent program, we study which dependency relation should 
be used in order to maximize the efficiency of partial-order verification algorithms. Our 
idea is that, by refining dependencies, one can increase the number of independent 
transitions, decrease the number of traces and thus improve the performances of the 
verification since the number of sequences that have to be explored (at least one per 
trace) can decrease. This can be done independently of the partial-order verification 
algorithm being used to perform the state-space exploration and independently of the 
type of property being checked. 

2 Program and Semantics 

Consider a program P describing a system composed of n interacting concurrent pro- 
cesses Pi. Each process Pi is represented by a transition system Ai. Formally, a tran- 
sition system is a tuple A = (E, S, A, so), where 2? is an alphabet of commands, S is 
a finite set of states, A C_ S x ~? x S is a transition relation, and so E S is the initial 
state. 

We assume that processes can communicate asynchronously with each other by 
performing operations on shared objects. Each object consists of a value and a set of 
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operators  tha t  test  and /o r  modify the value of the object.  Formally, we define an object  
O as a tuple O = (Dora, OP) ,  where Dora is the set of all possible values for the object,  
and O P  is the set of operations that  can be performed on the object.  Each operation 
opi E O P  is a function IN i  x Dora --* OUTi x Dora, where IN i  represents the set of 
possible inputs and OUTi the set of possible outputs  of this operation. Note tha t  an 
operation on an object  may not necessarily be defined for all inputs  in E I N i  and for 
all values v E Dora of the object, opi(in, v) --* (out, v ~) will denote the execution of the 
operation opi E O P  with in G INi  as input,  out E OUTI as output ,  while v E Dora 
and v' E Dora will represent the value of the object respectively before and after the 
execution of opl. If  an operation takes no input  or returns no output ,  we will use "-" 
instead of in or out to denote that  the input  or output  value is not meaningful. 

Example 1. Consider an object whose domain Dora is the set of the integers. We define two opera- 
tions Read and Write on this object as follows. Let v E Dora, 

- Read(-,v) -.* (v,v): a Read operation takes no input and returns the value of the object. A 
Read operation is always defined. 

- Wrlte(v ~, v) -* (-, v~): a Write operation takes v ~ E Dora as input and sets the value of the 
object to el. It has no output. A Write operation is defined for any input vl ~ Dora. 

A transit ion of a process Pi is defined u s a  guarded command (cond --* actions), 
where cond is a conjunction of boolean expressions cj, and actions denotes a sequence 
of operations on objects. We assume that  the t ruth value of cond in a given s ta te  
determines if the transit ion is enabled or not in that  state. We also assume that ,  for 
each operation op that  appears in the actions par t  of the guarded command, if op is 
not  defined for all inputs  and values of the object, there is a condition cj (expressed by 
using operations on the object) in the cond part  of the guarded command such tha t  
op is defined if[ cj is true. For the sake of uniformity and to simplify what follows, 
the s ta te  of each process Pi is represented by an object  gprogram counter" PCi  (for 
example, PCI can be viewed as an integer variable). Each transit ion t = (s, a, s ' )  o f / ~  
has a condition cj in i ts cond par t  which is evaluated by an operation on PC~ (a Read 
operation),  such tha t  cj is true iff the value of the program counter PC~ corresponds 
to state s. Similarly, the execution of an enabled transit ion of Pi involves an operat ion 
on PCi (a W r i t e  operation). In the sequel, all operations tha t  appear  either in the 
cond par t  or the actions part  of a transit ion are said gto be used by" this transition. 

A transit ion system Ap --  ( ~ p ,  Sp,  Ap,  sop) representing the joint  global behavior 
of the processes Pi can be computed by simulating all possible sequences of transit ions 
the system can perform from its init iaLstate.  ~ p  is t h e  set of transit ions that  appear  
in the code of the program P,  Sp  is the set of states that  the system can reach from 
the initial  s ta te  soP, and each transit ion of A p  corresponds to a transit ion between 
two states tha t  the system can perform by executing a single transit ion of one of the 
processes of the program 2. A p  is called the ~state space" of the program P.  

In practice, the limits of verification methods based on state-space exploration 
techniques come essentially from the Often excessive size of the s ta te  space Ap .  How- 
ever, experiments with part ial-order verification methods have shown that  most of this 
explosion can be avoided. Therefore, let us turn to part ial-order  semantics, namely, 
Mazurkiewicz's traces [Maz86]. 

Traces are defined as equivalence classes of sequences of transitions. Given a set T 
and a symmetrical  binary relation D C T •  called dependency relation, two sequences 

2 In the case of synchronous communications, a transition of Ap may correspond to the execution 
(synchronization) of several transitions of different processes. We do not consider this case here 
for the sake of simplicity. 
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over T belong to the same trace with respect to D (are in the same equivalence class) 
if they can be obtained from each other by successively permuting adjacent symbols 
which are not dependent, i.e. independent, according to D. For instance, if tl and 42 are 
two transitions of T which are independent according to D, the sequences tit2 and t2tl 
belong to the same trace. A trace is fully characterized by only one of its sequences. 
Therefore, a trace is usually represented by one of its elements enclosed within brackets 
and, when necessary, subscripted by the alphabet and the dependency relation. Thus 
the trace containing both t l h  and t2tl could be represented by [~lt2](T,D). ~k trace cor- 
responds to a partial order of transition occurrences: the set of all sequences belonging 
to the trace corresponds to the set of all linearizations of this partial order. 

3 D e p e n d e n c y  R e l a t i o n s  

In the context considered here, the set T is defined as the union of the sets /ti of 
transitions of the processes Pi. In other words, T corresponds to the set of transitions 
that  appear in the code of the program. The following definition (adapted from [KP92]) 
characterizes the properties of possible "valid" dependency relations for the transitions 
of a given program P:  

Def in i t i on  1. Let T be the set of transitions in the program P and D C_ T x T be a 
symmetrical binary relation. D is a valid dependency relation for P iff for all t l ,  t2 E T, 
(tl, t2) ~ D (tl and t2 are independent) implies that the two following properties hold 
for all states s E Sp of Ap: 

1. if tl is enabled in s and s ~ s v, then t2 is enabled in s iff t2 is enabled in s I 
(independent transitions can neither disable nor enable each other); a~d 

2. if ~1 and t2 are enabled in s, then s t~2 s I and s t~l  s' (commutativity of enabled 
independent transitions). 

To determine if two given transitions are dependent or not, it is not practical to enu- 
merate all reachable states of the program and to check the two above properties for 
all these states and for all pairs of transitions. Fortunately, it is possible to define a 
valid dependency relation between transitions by considering the operations on shared 
objects they perform. 

We first define a dependency relation between the operations on an object as follows: 

Def in i t ion  2. Let O = (Do,n, OP) be an object and Do C_ OP • OP be a symmetrical 
binary relation. Do is a valid dependency relation for 0 if[ for all opl, op2 E OP, 
(opt, op2) f~ Do (op~ and op2 are independent) implies that the two following properties 
hold for all values v E Dora, and for aJ] inputs inx and in2: 

1. if opl (in1, v) is defined, with opx (in1, v) --* (out1, v'l), then op2 (in2, v) is defined iff 
op2(in2, v~) is defined; and 

2. if Opl(in~, v) and op2(in2, v) are defined, then 3oat1, out2, v~, v~, v" such that: 
- Opl( i . l ,  ~) - .  (0,~t1,,4) and op2(in2, ~ ')  - .  (0~2, .") 
- op2( in2 ,  v)  - *  (o~t2, v~) and op~( in~,  v~) - .  (o.t~, v") 

(commutativity of operations, with the same outputs) 

Ezample ~. Consider again the example of an object representing an integer value. A valid depen- 
dency relation between the operations on this object is given in the following table, where "+" means 
that operations are dependent, while "-" denotes the fact that operations are independent: 
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Two Wri te  operations are dependent because they can leave the object with different values de- 
pending on the order of their execution. A Read and a Wr i t e  operations are dependent because 
the output  of the Read can be different depending on the order of execution of these operations. 
Two Read operations are independent because they are always defined and return the same output  
independently of the order of their execution. 

Now, we can define a dependency relation between transitions of a program P from 
dependency relations between operations as follows: 

Definit ion 3. Let T be the set of transitions in the program P. Two transitions ta, t2 G 
T 'are independent iff Vopl used by tl and Vop2 used by t2, if opl and op2 axe two 
operations on the same object, then opl and op2 are independent. 

One can easily check that the dependency relation on transitions obtained with this 
definition is a valid one. 

4 Towards More Independency 

Since partial-order verification methods have to explore at least one sequence per trace, 
the smaller is the number of traces, the smaller can be the number of explored se- 
quences, and the more efficient canbe the verification. One way to decrease the number 
of traces is to reduce the size of the dependency relation. 

Theo r em 4. Let T be an alphabet, and D C_ T • T and D' C_ T • T be two valid 
dependency relations. Let L be a set of sequences over T, L~ and L~ be the set of 
traces (equivalence classes) induced respectively by D and D t on L. If D ~ C D, then D e 
induces less traces on L than D: IZbl _< IZz, I. 

Proof. Straightforward. (See full paper.) 

It is therefore desirable to have as few dependencies as possible between transitions of a 
program, and thus between operations on objects, in order to improve the effectiveness 
of paxtia]-order verification methods. 

In practice, there are essentially two ways of refining dependencies between opera- 
tions: by refining the operations themselves and by using conditional dependency. 

Refining an operation opi consists of splitting the operation viewed as a set of pairs 
(INi • Dora, OUTI • Dora) in several parts, and considering these different paxts as 
being different operations, between which some independency may arise. 

Example 3. Consider again the example of the object corresponding to an integer variable. We 
saw that, in general, two W r i t e  operations are dependent. But there are special cases of W r i t e  
operations that can be considered as being independent: for instance, two incrementation operations 
Iner,  formally defined by lner ( - ,  v) --, (- ,  v § 1) (always defined), can be considered as being 
independent according to Definition 2. We obtain a new dependency relation: 
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In  t he  p rev ious  example ,  t he  new d e p e n d e n c y  re la t ion  o b t a i n e d  a f te r  ref ining t he  
o p e r a t i o n  W r i t e  m a y  yield less dependenc ie s  be t w een  t h e  t r a n s i t i o n s  of t he  p rog ram.  
I t  is t h u s  p re fe rab le  to  use ] n c r  r a t h e r  t h a n  W r i t e  w h e n e v e r  possible .  In  prac t ice ,  
t h i s  can  b e  done  by  add ing  t he  o p e r a t i o n  I n c r  to  t he  p ro toco l  mode l ing  l a n g u a g e  and  
by  us ing  i t  expl ic i t ly  in  t h e  code of  t h e  p rog ram,  or  t he  ver i f ica t ion tool  could d e t e c t  
a u t o m a t i c a l l y  w h e n  a W r i t e  o p e r a t i o n  ac tua l ly  pe r fo rms  an  I n c r  ope ra t i on .  

T h e  second  way of  ref in ing d e p e n d e n c y  re la t ions  is to  define t h e m  as be ing  c o n d i -  

t i ona l :  i n s t e a d  of  def in ing a d e p e n d e n c y  re l a t ion  t h a t  ho lds  for all s t a t e s  s E Sp ,  i t  is 
poss ib le  to  define a d e p e n d e n c y  re la t ion  for each  s t a t e  indiv idual ly .  Def in i t ion  1 t h e n  
b e c o m e s  [KP92]:  

D e f i n i t i o n  5.  Le t  T b e  t he  set  of  t r a n s i t i o n s  in  the  p r o g r a m  P and  D C_ T x T • Sp .  D 

is a v a l i d  c o n d i t i o n a l  d e p e n d e n c y  r e l a t i o n  for P iff for all  h ,  t2 E T ,  s E S p ,  ( t l ,  t2, s)  
D ( t l  a n d  t2 are i n d e p e n d e n t  in  s)  impl ies  t h a t  (t2, ta, s)  ~ D and  t h a t  t h e  two fol lowing 
p r o p e r t i e s  ho ld  in s t a t e  s: 

1. i f  t l  is enab l ed  in s and  s ~ s ~, t h e n  t2 is enab l ed  in s iff t2 is enab l ed  in s I 
( i n d e p e n d e n t  t r an s i t i ons  c an  ne i t he r  d i sab le  nor  enab le  each o the r ) ;  and  

2. i f  t l  a n d  t2 are enab l ed  in s, t h e n  s t ~  s '  and  s t ~ l  s '  ( c o m m u t a t i v i t y  of  e n a b l e d  
i n d e p e n d e n t  t r ans i t ions ) .  

Def in i t ions  2 a n d  3 can  be  a d a p t e d  in a s imi lar  way. 

Exam pl e • .  Consider a bounded FIFO channel (buffer) of size N. The domain D a m  of possible 
values for this object is the set of sequences of messages M U M 2 U . . .  tJ M N, where M is the set 
of possible messages that  can be transmitted via the channel. We define three operations on this 
object: 

- S e n d ( V , V l V 2 . . . v ~ , )  -.~ (-,VlV 2 . ..v~,v) defined i f n  < N and v E M, 
- R e c e i v e ( - ,  VlV2 . . .  v n )  -* (Vl, v2 . . .  vn) defined if n > 0, 
- L e n g t h ( - ,  VlV 2 . . .  Vn) --" (n j  ely 2 . . .  vn) always defined. 

The following tables give respectively a constant and a conditional dependency relation between 
these operations. If the condition given in the row op and column op ~ of the table is true for the 
value v E Dora considered (n is the number of messages in the channel), then op and op ~ are 
dependent for v. Otherwise, they are independent. A "-" in the table represents a condition which 
is always false (operations always independent). 

DEP. S e n d  R e c e i v e  L e n g t h  
S e n d  Jr q- -b S e n d  n < N  n = O o r n  = N  n < N 

R e c e i v e  q- + + R e c e i v e  n = O or n = ~ n > O  n > 0  
L e n g t h  + + - Length]  n < N n > 0 - 

Thanks to conditional dependency, operations that  are dependent for some but not all values v E 
Dora  ewe no more considered as dependent for all values. 

We  can  st i l l  r educe  dependenc ie s  be t w een  ope ra t i ons  by  s i m u l t a n e o u s l y  ref in ing t he  
o p e r a t i o n s  a n d  by  us ing  a cond i t iona l  dependency .  

E x a m p l e  5. Consider the previous example. In real protocol models, the operation L e n g t h  is often 
used to test if a channel is empty or full. Let us introduce two new operations E m p t y  and F u l l  
defined as follows: 

- E m p t y ( - , v l v 2  . . . v n )  --* (if (n = O) then t r u e  else ]a l se ,  v l v 2 . . . v n )  always defined. 
- -  F u l l ( - ,  VlV 2 . . .  vn )  "-~ ( if (n ---- N) then t r u e  else . false ,  ely 2 . . .  v,,) always defined. 

A new dependency relation can then be defined: 

DEP. S e n d  R e c e i v e  L e n g t h  E m p t y  F u l l  
S e n d  n < N  n = 0 o r n = N  n < N  n = 0  n = N - 1  

Re'ceive n = 0 o r n = N  n > 0  n > 0  n =  1 n = N  
L e n g t h  n < N n ~ 0 - - - 
E m p t y  n = 0 n = 1 - - - 

F u l l  n = N - 1  n = N - - - 
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Note that ,  when using a conditional dependency relation, the definition of a trace 
has to be modified: a conditional trace is defined with respect to a state of A p .  Two 

tO t I  ti_z b t ,_ t  L~ and so --- 8z --, sequences so ~ sz ~ s2 . . .  ---, 8i .2, si+z --* 8i+2. . .  ---* s,, 8,,+z 

t~_l b ~ o ~ t , - i  ' ~ ' belong to the same "conditional trace 8 2 . . .  ~ Si ~ 8i+1 ~ 81+2" ' "  ~ $n  S n + l  

from state  so" iff a and b axe independent in state sl. Maybe surprisingly, a conditional 
trace does not necessarily correspond anymore to a part ia l  order of transitions: the set 
of sequences in a trace does not always correspond to the set of all l inearizations of 
a par t ia l  order [KP92]. However, the following theorem is still satisfied by conditional 
traces: 

T h e o r e m  6. Consider a conditional trace [w] f rom s E A p .  I f  8 =~ 8', then Vw' E [w] : 
t o  t 

8 =r S I .  

Proof. Follows from Definition 5. (See full paper.)  

Since the preservation of this theorem is the only assumption about traces which is 
needed in the sequel, we will not distinguish traces from conditional traces. 

5 Using Refined Dependencies 

In this section, we show how refined dependencies can be used by existing state-space 
exploration methods using part ial-order techniques. These methods do not explore the 
whole state space of the program being verified, but  only parts  of it. They proceed as 
follows: at each state s reached during the search, they compute a subset T of the set 
of all enabled transit ions and explore only the transitions of this subset T, the other 
enabled transitions are not explored. 

Two main techniques have been proposed in the l i terature for  computing such 
sets T. One of them is the sleep set technique (see [GW93]). Wi th  this technique, 
information about  the past  of the search is used to compute such sets T. This technique 
is fully compatible  with the refined dependencies of the previous Section and will 
not be discussed further here. The second technique is actually a whole family of 
algorithms [Ove81, Va191, GWglb]  that  compute "persistent sets". 

We define persistent sets of transitions as follows: 

D e f i n i t i o n  7. A set T of transitions that  are enabled in s ta te  s is said to be per- 
t o t I t~ - - I  t~  

sistent in s iff, for all sequences 8 ---- s0 --~ sz -* s~ . . .  --* s ,  ---, 8,+1 of transit ions 
t0, tz, t2 . . . .  , tn ~ T from 8 in Ap,  t ,  is independent in s,, with respect to all transit ions 
in T. 

Intuitively, a persistent set T in a s ta te  s is a set of enabled transitions whose occurrence 
can no t  be affected by the evolution of the system by transitions outside this set T 
from state  s. Note that  the set of all enabled transitions is trivially persistent.  

I t  can be shown that ,  at each s tate  reached during the search, i t  is sufficient to 
explore only the transit ions of a (nonempty) persistent set rather  than all enabled 
transitions in order to detect  all deadlocks of the program. Other  properties than 
deadlock detection can be verified by using additional conditions tha t  must be met a t  
each s tate  reached during the search [Val91, Val90, HGP92]. 

The basic idea of all the algorithms [Ore81, Val91, GW91b] that  compute persistent  
sets is the same: they use information about the stat ic s tructure (code) of the program 
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being verified. They d i re r  by the type of information about  the program they use (e.g. 
"distinction between local and global transit ions ", ~which process can access which 
variable z, ~which process can access which variable from its current location",  etc.) 
and therefore also by their t ime complexity. Indeed, analyzing more information about  
the program requires more t ime but  can yield smaller persistent  sets. See [HGP92] for 
a quick comparison between these algorithms. Note tha t  exploring the smallest number 
of enabled transit ions at each step of the search is a heuristics: i t  does not necessary 
lead to the  exploration of the smallest number of states. 

The most elaborated technique of this family tha t  has been proposed so far is 
the s tubborn set technique of Valmari. Stubborn sets 3 are formally defined as fol- 
lows [Val91]: 

D e f i n i t i o n  8. A set T, of transitions is a s tubborn set in s ta te  s if Ts contains at least 
one enabled transit ion and Vt E T~: 

1. if t is disabled in s, and c~ is a necessary condition for t to be enabled which is 
false in s, then all transit ions t ~ whose execution can make cl tr,te are also in T,; 

2. if t is enabled in s, then all transitions t '  such that  t and t '  axe dependent  are also 
in To. 

I t  can be shown that ,  by taking all enabled transit ions of a s tubborn set, one obtains 
a persistent  set. From the above definition, one can derive algorithms for computing 
s tubborn sets. In [Val91] two such algorithms are given. 

When considering processes communicating with each other via shared objects, we 
have shown tha t  dependencies between transit ions arise from dependencies between 
operations on shared objects.  To use the previous stubborn set definition, we need the 
following information: 

1. By point  1 of the definition, we need to determine the set of transit ions t '  whose 
execution can change the t ru th  value of a condition ci from false to true. Thus, 
for each operation op used to compute c~, we have to determine the operations op' 
on the same object  that  could change the Value returned by op, i.e. the operations 
that  are dependent with op, and next determine all transitions t '  that  can perform 
at least one such operation op'. 

2. By point  2 of the definition, we need to determine the set of transit ions tha t  are 
dependent  with t, i.e. the set of transitions tha t  use at least one operat ion op' tha t  
are dependent with one of the operations used by t. 

Both cases involve the notion of dependency expressed as a constant proper ty  between 
transit ions.  Definition 8 is still valid in the context considered here but  cannot gain from 
the use of conditional dependency. Therefore, algorithms derived from this definition 
will produce unnecessarily large persistent sets. 

In order to avoid this, we now give a new yet more general definition inspired from 
the s tubborn set definition that  can be used to compute smaller persistent  sets. Unlike 
the above definition, the new definition takes conditional dependency into account. 

D e f i n i t i o n  9. A set Ts of transitions is a conditional stubborn set in s ta te  s if Ts 
contains at least one enabled transit ion and Vt E Ts: 

3 "Stubborn sets in the strong sense" according to Valmari's terminology. "Stubborn sets in the 
weak sense" will not be considered here. 
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tO t l  t~--  I tTt 
1. if  t is disabled in s, then for all sequences s -- so --, s l  --* s ~ . . .  --, sn --, sn+x 

of transit ions from s in A p  such that  t is enabled in s ,+a (which implies that  
3i, 0 _< i ~ n, such that  t and tl are dependent  in si),  at least one of  the to, t a , . . . ,  t ,  
is also in To. 

t*t--I t~ 
2. if t is enabled in s, then for all sequences s = so ~ sa ~ s2 . . . .  s ,  --* sn+a of 

transitions from s in Ap  such that  t and tn are dependent  in s , ,  at least one of 
the to,t1 . . . .  , t ,  is also in Ts. 

T h e o r e m  10. The set of  all enabled transitions in a conditional stubborn set T~ is 
persistent in s. 

Proof. See full paper.  

The differences between Definition 8 and Definition 9 are tha t  dependencies between 
transit ions are not Considered in all states but  only for successor states of s, and tha t  
one adds to T~ one of the tl transitions of the path leading to a dependent  transit ion 
t,,, instead of t , .  I t  can be proved that  all sets To satisfying Definition 8 also satisfy 
Definition 0, while the converse is not true. Therefore, Definition 9 is finer and can be 
used to produce smaller persistent sets than Definition 8. 

However, it  is not obvious to develop a practical algorithm tha t  would produce 
automatical ly sets To according to Definition 9. Indeed, this definition uses information 
about sequences of transitions in the s ta te  space, about which no assumption can be 
made! 

Nevertheless, this more general definition can be profitably used to define a relation 
which models very finely the possible interactions between operations on a same object.  
More precisely, our idea is to define a relation !>~ between operations on an object  tha t  
would tell us for each operation used by a transit ion in T~ which other operations might  
~interact" with it, and thus which other transitions should be added to T, as well. The 
relation ~might interact" is represented by the relation I>o which is formally defined 
as fallows: 

D e f i n i t i o n  11. Let op and op' be two operations on a same object  O and s be a 

reachable state. If  it  is impossible to have a sequence s = so t_o sa ~ s 2 . . .  --* s ,  
Sn+l of transitions from s in A p  such that  V0 _< i < n : Vop" on O used by ti: op and 
op" are independent  in state sl, t ,  uses op', and op and op' are dependent  in sn, then 
op ~g sop'; else op I> j op'. 

Given such a t>~ relation for all operations that  c a n b e  performed on shared objects,  
one can proceed as follows to compute conditional s tubborn sets: 

1. If t E T, is disabled in s and ci is a necessary condition for t to be enabled which 
is false in s, then, for all operations op used to evaluate el, all t ransit ions t '  that  
use an operation op ~ such that  op t>s op' are also in Ts. 

2. If t E T~ is enabled in s, then, for all operations op used by t, all transit ions t '  tha t  
use an operation op' such that  opt>,  op ~ are also in To. 

T h e o r e m  12. The previous procedure produces conditional stubborn sets as defined in 
Definition 9. 

Proof. See full paper.  
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To use the above procedure, we finally have to determine for each type of shared 
object what the relation !>~ is for each pair (op, op')  of possible operations on this 
object. According to Definition 11, we have op t>~ op'  unless it can be proved that  it is 

t ,_ l  ~ of transitions from impossible to have a sequence s = so  ~ s l  ~ s~ . . .  ~ sn s , + l  
s in Ap such that  V0 _< i < n : Vop"  used by ti: op and  op"  axe independent in state sl 
and tn uses op' with op and  o f  dependent in an. 

The following table represents the relation t>, for the channel example. For two 
operations op and op' on a same channel, if the condition given in row op and column 
op' in the table is true in a state s, then we have op t>, op',  while "-" denotes the fact 
that  op ~8op ' .  

I>, Send Receive Length Empty  Ful l  
S e n d n < N  n = N  n < N  n < N  r t = N - 1  

R e c e i v e  n = 0  n > 0  n > 0  n = l  n > 0  
Length n < N n > 0  - - - 
E m p t y  n = 0  n > O - - - 

F u l l n < N  n = N  - - - 

For instance, let us show how to determine when S e n d  I>, R e c e i v e .  One has to 
to ~ tm--I tm 

determine when it is impossible to find a sequence s = so "-, s l  s2 . . .  "-, sra --* 

sm+l of transitions from s such that  the S e n d  and  R e c e i v e  operations are dependent in 
sin, and u < i < m : Vop"  used by ti: S e n d  and  op" are independent in state si. Since 
S e n d  and R e c e i v e  are dependent in s,~, we obtain from the conditional dependency 
relation between S e n d  and  R e c e i v e  (see Section 4) that either n = 0 or n --- N in s,~. If 
n = 0 in Sr~, the Receive operation is not defined in s,n and there can not be a transition 

tm executing a R e c e i v e  operation such that s,~ ~-~ sm+l. If n = N in s,~, the R e c e i v e  

operation is defined. If n < N in s, and since n = N in sin, at least one transition tl 
in the sequence groins to sm executes an operation that  cha~ges the value of n from 
n < N to N. This operation can only be a S e n d  operation and is performed from state 
sl such that n < N. Therefore, we obtain from the conditional dependency relation 
between S e n d  and  S e n d  when n < N that  the two S e n d  operations are dependent. It 
is thus impossible to find a sequence satisfying Definition 11 when n < N in s. One 
concludes that  S e n d  t>~ R e c e i v e  only when n = N. 

Note that it would not have been possible to obtain such a proof without using 
conditional dependency and conditional s tubborn sets. 

6 Experiments 

Wehave implemented the algorithms discussed in the previous Section in an automated 
protocol validation system called SPIN [tto191], which accepts PROMELA as modeling 
language. We present experiments made with our implementation on two sample real 
protocols4: 

- URP is AT&T's  Universal Receiver Protocol, modeled in 419 lines of PROMELA. 
It consists of three processes communicating via FIFO channels. 

- DTP is a data  transfer protocol modeled in 391 lines of PROMELA. It consists of 
three processes communicating via FIFO channels. 

Experiments were performed using three different algorithms: 

4 We thank  Gera rd  J. Holzmann  for  provid ing  us wi th  these examples,  
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- Algo 1: a classical depth-first search (exploring all reachable states). 
- Algo 2: a partial-order verification algorithm with an unrefined dependency relation 

(all operations on a same channel are dependent). 
- Algo 3: the same partial-order verification algorithm with a refined dependency 

relation (Length refined with Empty and Full, use of a conditional dependency 
relation). 

The results obtained with these three algorithms for the URP and DTP protocols are 
presented in the following table. Experiments were performed on a SPARC2 worksta- 
tion (64 Megabytes of RAM). For each run, the numbers of visited states and traversed 
transitions are given. Time (in seconds) is user time plus system time as reported by 
the UNIX system time command. 

[ProtocollAlgorithml{Stored States TransitionslTime{ 

URP Algo 1 
Algo 2 
Algo 3 

DTP Algo 1 
Algo 2 
Algo 3 

19,515 47,836 
6,759 7,779 
4,430 4,659 

251,409 648,467 
56,626 65,710 
9,920 10,367 

4.9 
11.1 
7.9 

59.8 
35.8 
7.0 

These results clearly show that refining dependencies can yield substantial improve- 
meats for both the time and memory requirements of the partial-order verification 
algorithm. For the DTP examph, using Algo 2 reduces the number of stored states, 
i.e. the memory requirements, by a factor of 5 with respect to the classical state-space 
exploration performed by Algo 1. By carefully defining dependencies, Algo 3 can again 
reduce the memory requirements by another factor of 5. 

7 Conclusions 

The results of Section 6 demonstrate that tracking dependencies in a concurrent pro- 
gram is a basic issue that strongly influences the performances of partial-order veri- 
fication techniques. It is therefore very important to define dependencies as finely as 
possible. However, as illustrated in Section 5, carefully tracking and exploiting depen- 
dencies between operations on a same object is by no means a trivial task. Fortunately, 
this has to be done only once for each type of object. 

Therefore, we advocate the use of object libraries where classic high-level com- 
munication objects (such as various definitions of communications channels including 
lossy channels, shared variables, semaphores, etc), operations on these objects, the de- 
pendency and I>, relations are defined as carefully as possible once for all. One can 
then specify concurrent systems by using these object libraries and thus gain from the 
refined dependencies during verification which is still fully automatic. In contrast, we 
discourage the opposite approach consisting of defining "everything", including objects, 
by processes (for instance, a transmission medium is usually modeled by a process that 
transmits messages). 

Note that all this is quite natural. Indeed, when using such objects, one indirectly 
provides more information to the verification tool about the structure of the state 
space of the program being verified. If the tool is clever enough to be able to use these 
information (as it is the case with a partial-order verification tool), it is not surprising 
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that the verification can be performed more efficiently and becomes applicable to larger 
systems. 

We have implemented partial-order verification techniques like the ones discussed 
in Section 5 and such object libraries in an add-on package for the validation tool 
SPIN [Ho191]. This Paxtial-Order Package is available free of charge for educational 
and reseaxch purposes by anonymous ftp from montefiore.ulg.ac.be from the/pub/po- 
package directory. 
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