
Refining Dependencies Improves
Partial-Order Verification Methods*

(Extended Abstract)

Patrice Godefroid and Didier Pirot t in

Universit~ de Liege, Institut Montefiore B28, 4000 Liege Sart-Tilman, Belgium.
Email : {god,pirottin}@montefiore.ulg.ac.be

A b s t r a c t . Partial-order verification methods exploit ~ndependency ~
between transitions of a concurrent program to avoid parts of the state
space explosion due to the modeling of concurrency by interleaving. In
this paper, we study the influence of refining dependencies between tran-
sitions of the program on the effectiveness of these methods. We show
that carefully tracking dependencies can yield substantial improvements
for their performances. For instance, we were able to decrease the mem-
ory requirements needed for the verification of a real-size protocol with
such a method from a factor of 5 to a factor of 25 by only refining de-
pendencies.

1 Introduction

The effectiveness of state-space exploration techniques for debugging and proving cor-
rect concurrent reactive systems is increasingly becoming established as tools are be-
ing developed. The number of "success stories" about applying these techniques to
industrial-size systems keeps growing. The reason for which these techniques are so
successful is mainly due to their simplicity: they are easy to understand, easy to imple-
ment and, last but not least, easy to use: they are fully automatic. Moreover, the range
of properties that they can verify has been substantially broaden in the last decade
thanks to the development of model-checking methods for various temporal logics.

The only real limit of state-space exploration verification techniques is the often
excessive size of the state space. This observation has triggered the development of
new methods to overcome this serious problem which limits both the applicability and
the efficiency of the approach. Some of them tackle the ef fects of state explosion (e.g.
"on the fly" methods [JJ89], bit-stat e hashing [Ho188], state-space caching [GHP92],
state-compression techniques [HGP92]) while others rather tackle its causes.

Partial-order verification methods (e.g. [Vai91, Godg0, PL90, McM92]) fit in the
second category. Their aim is to avoid the paxt of the state explosion due to the mod-
eling of concurrency by interleaving. With these methods, the behavior of the program

* This work was partially supported by the European Community ESPRIT BRA
project REACT (6021) and by the Belgian Incentive Program "Information Tech-
nology" - Computer Science of the future, initiated by the Belgian State - Prime
Minister's Service - Science Policy Office. The scientific responsibility is assumed by
its authors.

439

being verified is described, explicitly [PL90, McM92] or implicitly [Val91, God90], by
means of partial orders of transitions, rather than by sequences of transitions.

In this paper, we follow the approach of [God90, GW91b, HGP92] and use Mazurkie-
wicz's traces as a semmitic model [Maz86]. Mazurkiewicz's traces are defined as equiv-
alence classes of sequences of transitions that the system being analyzed can perform
from its initial state. Two sequences of transitions are equivalent (belong to the same
trace) if they can be obtained from each other by successively permuting adjacent sym-
bols which are "independent". Intuitively, ~independent" means that their occurrence
does not affect each other. A trace corresponds to a partial order of transition occur-
rences: the set of all sequences belonging to the trace is the set of all linearizations of
this partial order. If two independent transitions occur next to each other in a sequence
of a trace, the order of their occurrence is irrelevant since they are unordered in the
partial order corresponding to that trace.

Loosely speaking, the basic idea behind partial-order verification methods like the
ones of [God90, GW91b, HGP92] can be stated as follows: given a dependency relation
D C T x T on the set T of transitions in the program P, it is possible to verify
properties of the program P by exploring only one sequence of each trace (partial order
of transitions) the system can perform from its initial state. Thus, there are basically
three questions that have to be answered in order to fully characterize such partial-
order verification methods:

1. How does one minimize the number of sequences explored while exploring at least
one sequence per trace?

2. Which properties can be verified?
3. Which dependency relation is Used?

Several techniques that answer the first question love81, Va191, GW91b] and the sec-
ond one [Val90, GW91a, HGP92, Pe192] have been proposed and studied. In con-
trast, the third question has been little investigated so far. Existing related work
deals essentially with semantic issues about various formal definitions of dependency
(e.g. [KP92, Ochg0]).

In this paper, we address the third question mentioned above from a pragmatic
point of view. Given a concurrent program, we study which dependency relation should
be used in order to maximize the efficiency of partial-order verification algorithms. Our
idea is that, by refining dependencies, one can increase the number of independent
transitions, decrease the number of traces and thus improve the performances of the
verification since the number of sequences that have to be explored (at least one per
trace) can decrease. This can be done independently of the partial-order verification
algorithm being used to perform the state-space exploration and independently of the
type of property being checked.

2 Program and Semantics

Consider a program P describing a system composed of n interacting concurrent pro-
cesses Pi. Each process Pi is represented by a transition system Ai. Formally, a tran-
sition system is a tuple A = (E, S, A, so), where 2? is an alphabet of commands, S is
a finite set of states, A C_ S x ~? x S is a transition relation, and so E S is the initial
state.

We assume that processes can communicate asynchronously with each other by
performing operations on shared objects. Each object consists of a value and a set of

440

operators tha t test and /o r modify the value of the object. Formally, we define an object
O as a tuple O = (Dora, OP) , where Dora is the set of all possible values for the object,
and O P is the set of operations that can be performed on the object. Each operation
opi E O P is a function IN i x Dora --* OUTi x Dora, where IN i represents the set of
possible inputs and OUTi the set of possible outputs of this operation. Note tha t an
operation on an object may not necessarily be defined for all inputs in E I N i and for
all values v E Dora of the object, opi(in, v) --* (out, v ~) will denote the execution of the
operation opi E O P with in G INi as input, out E OUTI as output , while v E Dora
and v' E Dora will represent the value of the object respectively before and after the
execution of opl. If an operation takes no input or returns no output , we will use "-"
instead of in or out to denote that the input or output value is not meaningful.

Example 1. Consider an object whose domain Dora is the set of the integers. We define two opera-
tions Read and Write on this object as follows. Let v E Dora,

- Read(-,v) -.* (v,v): a Read operation takes no input and returns the value of the object. A
Read operation is always defined.

- Wrlte(v ~, v) -* (-, v~): a Write operation takes v ~ E Dora as input and sets the value of the
object to el. It has no output. A Write operation is defined for any input vl ~ Dora.

A transit ion of a process Pi is defined u s a guarded command (cond --* actions),
where cond is a conjunction of boolean expressions cj, and actions denotes a sequence
of operations on objects. We assume that the t ruth value of cond in a given s ta te
determines if the transit ion is enabled or not in that state. We also assume that , for
each operation op that appears in the actions par t of the guarded command, if op is
not defined for all inputs and values of the object, there is a condition cj (expressed by
using operations on the object) in the cond part of the guarded command such tha t
op is defined if[cj is true. For the sake of uniformity and to simplify what follows,
the s ta te of each process Pi is represented by an object gprogram counter" PCi (for
example, PCI can be viewed as an integer variable). Each transit ion t = (s, a, s ') o f / ~
has a condition cj in i ts cond par t which is evaluated by an operation on PC~ (a Read
operation), such tha t cj is true iff the value of the program counter PC~ corresponds
to state s. Similarly, the execution of an enabled transit ion of Pi involves an operat ion
on PCi (a W r i t e operation). In the sequel, all operations tha t appear either in the
cond par t or the actions part of a transit ion are said gto be used by" this transition.

A transit ion system Ap -- (~ p , Sp, Ap, sop) representing the joint global behavior
of the processes Pi can be computed by simulating all possible sequences of transit ions
the system can perform from its init iaLstate. ~ p is t h e set of transit ions that appear
in the code of the program P, Sp is the set of states that the system can reach from
the initial s ta te soP, and each transit ion of A p corresponds to a transit ion between
two states tha t the system can perform by executing a single transit ion of one of the
processes of the program 2. A p is called the ~state space" of the program P.

In practice, the limits of verification methods based on state-space exploration
techniques come essentially from the Often excessive size of the s ta te space Ap . How-
ever, experiments with part ial-order verification methods have shown that most of this
explosion can be avoided. Therefore, let us turn to part ial-order semantics, namely,
Mazurkiewicz's traces [Maz86].

Traces are defined as equivalence classes of sequences of transitions. Given a set T
and a symmetrical binary relation D C T • called dependency relation, two sequences

2 In the case of synchronous communications, a transition of Ap may correspond to the execution
(synchronization) of several transitions of different processes. We do not consider this case here
for the sake of simplicity.

441

over T belong to the same trace with respect to D (are in the same equivalence class)
if they can be obtained from each other by successively permuting adjacent symbols
which are not dependent, i.e. independent, according to D. For instance, if tl and 42 are
two transitions of T which are independent according to D, the sequences tit2 and t2tl
belong to the same trace. A trace is fully characterized by only one of its sequences.
Therefore, a trace is usually represented by one of its elements enclosed within brackets
and, when necessary, subscripted by the alphabet and the dependency relation. Thus
the trace containing both t l h and t2tl could be represented by [~lt2](T,D). ~k trace cor-
responds to a partial order of transition occurrences: the set of all sequences belonging
to the trace corresponds to the set of all linearizations of this partial order.

3 D e p e n d e n c y R e l a t i o n s

In the context considered here, the set T is defined as the union of the sets /ti of
transitions of the processes Pi. In other words, T corresponds to the set of transitions
that appear in the code of the program. The following definition (adapted from [KP92])
characterizes the properties of possible "valid" dependency relations for the transitions
of a given program P:

Def in i t i on 1. Let T be the set of transitions in the program P and D C_ T x T be a
symmetrical binary relation. D is a valid dependency relation for P iff for all t l , t2 E T,
(tl, t2) ~ D (tl and t2 are independent) implies that the two following properties hold
for all states s E Sp of Ap:

1. if tl is enabled in s and s ~ s v, then t2 is enabled in s iff t2 is enabled in s I
(independent transitions can neither disable nor enable each other); a~d

2. if ~1 and t2 are enabled in s, then s t~2 s I and s t~l s' (commutativity of enabled
independent transitions).

To determine if two given transitions are dependent or not, it is not practical to enu-
merate all reachable states of the program and to check the two above properties for
all these states and for all pairs of transitions. Fortunately, it is possible to define a
valid dependency relation between transitions by considering the operations on shared
objects they perform.

We first define a dependency relation between the operations on an object as follows:

Def in i t ion 2. Let O = (Do,n, OP) be an object and Do C_ OP • OP be a symmetrical
binary relation. Do is a valid dependency relation for 0 if[for all opl, op2 E OP,
(opt, op2) f~ Do (op~ and op2 are independent) implies that the two following properties
hold for all values v E Dora, and for aJ] inputs inx and in2:

1. if opl (in1, v) is defined, with opx (in1, v) --* (out1, v'l), then op2 (in2, v) is defined iff
op2(in2, v~) is defined; and

2. if Opl(in~, v) and op2(in2, v) are defined, then 3oat1, out2, v~, v~, v" such that:
- Opl(i . l , ~) - . (0,~t1,,4) and op2(in2, ~ ') - . (0~2, .")
- op2(in2 , v) - * (o~t2, v~) and op~(in~, v~) - . (o.t~, v")

(commutativity of operations, with the same outputs)

Ezample ~. Consider again the example of an object representing an integer value. A valid depen-
dency relation between the operations on this object is given in the following table, where "+" means
that operations are dependent, while "-" denotes the fact that operations are independent:

442

Two Wri te operations are dependent because they can leave the object with different values de-
pending on the order of their execution. A Read and a Wr i t e operations are dependent because
the output of the Read can be different depending on the order of execution of these operations.
Two Read operations are independent because they are always defined and return the same output
independently of the order of their execution.

Now, we can define a dependency relation between transitions of a program P from
dependency relations between operations as follows:

Definit ion 3. Let T be the set of transitions in the program P. Two transitions ta, t2 G
T 'are independent iff Vopl used by tl and Vop2 used by t2, if opl and op2 axe two
operations on the same object, then opl and op2 are independent.

One can easily check that the dependency relation on transitions obtained with this
definition is a valid one.

4 Towards More Independency

Since partial-order verification methods have to explore at least one sequence per trace,
the smaller is the number of traces, the smaller can be the number of explored se-
quences, and the more efficient canbe the verification. One way to decrease the number
of traces is to reduce the size of the dependency relation.

Theo r em 4. Let T be an alphabet, and D C_ T • T and D' C_ T • T be two valid
dependency relations. Let L be a set of sequences over T, L~ and L~ be the set of
traces (equivalence classes) induced respectively by D and D t on L. If D ~ C D, then D e
induces less traces on L than D: IZbl _< IZz, I.

Proof. Straightforward. (See full paper.)

It is therefore desirable to have as few dependencies as possible between transitions of a
program, and thus between operations on objects, in order to improve the effectiveness
of paxtia]-order verification methods.

In practice, there are essentially two ways of refining dependencies between opera-
tions: by refining the operations themselves and by using conditional dependency.

Refining an operation opi consists of splitting the operation viewed as a set of pairs
(INi • Dora, OUTI • Dora) in several parts, and considering these different paxts as
being different operations, between which some independency may arise.

Example 3. Consider again the example of the object corresponding to an integer variable. We
saw that, in general, two W r i t e operations are dependent. But there are special cases of W r i t e
operations that can be considered as being independent: for instance, two incrementation operations
Iner, formally defined by lner (- , v) --, (- , v § 1) (always defined), can be considered as being
independent according to Definition 2. We obtain a new dependency relation:

443

In t he p rev ious example , t he new d e p e n d e n c y re la t ion o b t a i n e d a f te r ref ining t he
o p e r a t i o n W r i t e m a y yield less dependenc ie s be t w een t h e t r a n s i t i o n s of t he p rog ram.
I t is t h u s p re fe rab le to use] n c r r a t h e r t h a n W r i t e w h e n e v e r possible . In prac t ice ,
t h i s can b e done by add ing t he o p e r a t i o n I n c r to t he p ro toco l mode l ing l a n g u a g e and
by us ing i t expl ic i t ly in t h e code of t h e p rog ram, or t he ver i f ica t ion tool could d e t e c t
a u t o m a t i c a l l y w h e n a W r i t e o p e r a t i o n ac tua l ly pe r fo rms an I n c r ope ra t i on .

T h e second way of ref in ing d e p e n d e n c y re la t ions is to define t h e m as be ing c o n d i -

t i ona l : i n s t e a d of def in ing a d e p e n d e n c y re l a t ion t h a t ho lds for all s t a t e s s E Sp , i t is
poss ib le to define a d e p e n d e n c y re la t ion for each s t a t e indiv idual ly . Def in i t ion 1 t h e n
b e c o m e s [KP92]:

D e f i n i t i o n 5. Le t T b e t he set of t r a n s i t i o n s in the p r o g r a m P and D C_ T x T • Sp . D

is a v a l i d c o n d i t i o n a l d e p e n d e n c y r e l a t i o n for P iff for all h , t2 E T , s E S p , (t l , t2, s)
D (t l a n d t2 are i n d e p e n d e n t in s) impl ies t h a t (t2, ta, s) ~ D and t h a t t h e two fol lowing
p r o p e r t i e s ho ld in s t a t e s:

1. i f t l is enab l ed in s and s ~ s ~, t h e n t2 is enab l ed in s iff t2 is enab l ed in s I
(i n d e p e n d e n t t r an s i t i ons c an ne i t he r d i sab le nor enab le each o the r) ; and

2. i f t l a n d t2 are enab l ed in s, t h e n s t ~ s ' and s t ~ l s ' (c o m m u t a t i v i t y of e n a b l e d
i n d e p e n d e n t t r ans i t ions) .

Def in i t ions 2 a n d 3 can be a d a p t e d in a s imi lar way.

Exam pl e • . Consider a bounded FIFO channel (buffer) of size N. The domain D a m of possible
values for this object is the set of sequences of messages M U M 2 U . . . tJ M N, where M is the set
of possible messages that can be transmitted via the channel. We define three operations on this
object:

- S e n d (V , V l V 2 . . . v ~ ,) -.~ (-,VlV 2 . ..v~,v) defined i f n < N and v E M,
- R e c e i v e (- , VlV2 . . . v n) -* (Vl, v2 . . . vn) defined if n > 0,
- L e n g t h (- , VlV 2 . . . Vn) --" (n j ely 2 . . . vn) always defined.

The following tables give respectively a constant and a conditional dependency relation between
these operations. If the condition given in the row op and column op ~ of the table is true for the
value v E Dora considered (n is the number of messages in the channel), then op and op ~ are
dependent for v. Otherwise, they are independent. A "-" in the table represents a condition which
is always false (operations always independent).

DEP. S e n d R e c e i v e L e n g t h
S e n d Jr q- -b S e n d n < N n = O o r n = N n < N

R e c e i v e q- + + R e c e i v e n = O or n = ~ n > O n > 0
L e n g t h + + - Length] n < N n > 0 -

Thanks to conditional dependency, operations that are dependent for some but not all values v E
Dora ewe no more considered as dependent for all values.

We can st i l l r educe dependenc ie s be t w een ope ra t i ons by s i m u l t a n e o u s l y ref in ing t he
o p e r a t i o n s a n d by us ing a cond i t iona l dependency .

E x a m p l e 5. Consider the previous example. In real protocol models, the operation L e n g t h is often
used to test if a channel is empty or full. Let us introduce two new operations E m p t y and F u l l
defined as follows:

- E m p t y (- , v l v 2 . . . v n) --* (if (n = O) then t r u e else]a l se , v l v 2 . . . v n) always defined.
- - F u l l (- , VlV 2 . . . vn) "-~ (if (n ---- N) then t r u e else . false , ely 2 . . . v,,) always defined.

A new dependency relation can then be defined:

DEP. S e n d R e c e i v e L e n g t h E m p t y F u l l
S e n d n < N n = 0 o r n = N n < N n = 0 n = N - 1

Re'ceive n = 0 o r n = N n > 0 n > 0 n = 1 n = N
L e n g t h n < N n ~ 0 - - -
E m p t y n = 0 n = 1 - - -

F u l l n = N - 1 n = N - - -

444

Note that , when using a conditional dependency relation, the definition of a trace
has to be modified: a conditional trace is defined with respect to a state of A p . Two

tO t I ti_z b t ,_ t L~ and so --- 8z --, sequences so ~ sz ~ s2 . . . ---, 8i .2, si+z --* 8i+2. . . ---* s,, 8,,+z

t~_l b ~ o ~ t , - i ' ~ ' belong to the same "conditional trace 8 2 . . . ~ Si ~ 8i+1 ~ 81+2" ' " ~ $n S n + l

from state so" iff a and b axe independent in state sl. Maybe surprisingly, a conditional
trace does not necessarily correspond anymore to a part ia l order of transitions: the set
of sequences in a trace does not always correspond to the set of all l inearizations of
a par t ia l order [KP92]. However, the following theorem is still satisfied by conditional
traces:

T h e o r e m 6. Consider a conditional trace [w] f rom s E A p . I f 8 =~ 8', then Vw' E [w] :
t o t

8 =r S I .

Proof. Follows from Definition 5. (See full paper.)

Since the preservation of this theorem is the only assumption about traces which is
needed in the sequel, we will not distinguish traces from conditional traces.

5 Using Refined Dependencies

In this section, we show how refined dependencies can be used by existing state-space
exploration methods using part ial-order techniques. These methods do not explore the
whole state space of the program being verified, but only parts of it. They proceed as
follows: at each state s reached during the search, they compute a subset T of the set
of all enabled transit ions and explore only the transitions of this subset T, the other
enabled transitions are not explored.

Two main techniques have been proposed in the l i terature for computing such
sets T. One of them is the sleep set technique (see [GW93]). Wi th this technique,
information about the past of the search is used to compute such sets T. This technique
is fully compatible with the refined dependencies of the previous Section and will
not be discussed further here. The second technique is actually a whole family of
algorithms [Ove81, Va191, GWglb] that compute "persistent sets".

We define persistent sets of transitions as follows:

D e f i n i t i o n 7. A set T of transitions that are enabled in s ta te s is said to be per-
t o t I t~ - - I t~

sistent in s iff, for all sequences 8 ---- s0 --~ sz -* s~ . . . --* s , ---, 8,+1 of transit ions
t0, tz, t2 , tn ~ T from 8 in Ap, t , is independent in s,, with respect to all transit ions
in T.

Intuitively, a persistent set T in a s ta te s is a set of enabled transitions whose occurrence
can no t be affected by the evolution of the system by transitions outside this set T
from state s. Note that the set of all enabled transitions is trivially persistent.

I t can be shown that , at each s tate reached during the search, i t is sufficient to
explore only the transit ions of a (nonempty) persistent set rather than all enabled
transitions in order to detect all deadlocks of the program. Other properties than
deadlock detection can be verified by using additional conditions tha t must be met a t
each s tate reached during the search [Val91, Val90, HGP92].

The basic idea of all the algorithms [Ore81, Val91, GW91b] that compute persistent
sets is the same: they use information about the stat ic s tructure (code) of the program

445

being verified. They d i re r by the type of information about the program they use (e.g.
"distinction between local and global transit ions ", ~which process can access which
variable z, ~which process can access which variable from its current location", etc.)
and therefore also by their t ime complexity. Indeed, analyzing more information about
the program requires more t ime but can yield smaller persistent sets. See [HGP92] for
a quick comparison between these algorithms. Note tha t exploring the smallest number
of enabled transit ions at each step of the search is a heuristics: i t does not necessary
lead to the exploration of the smallest number of states.

The most elaborated technique of this family tha t has been proposed so far is
the s tubborn set technique of Valmari. Stubborn sets 3 are formally defined as fol-
lows [Val91]:

D e f i n i t i o n 8. A set T, of transitions is a s tubborn set in s ta te s if Ts contains at least
one enabled transit ion and Vt E T~:

1. if t is disabled in s, and c~ is a necessary condition for t to be enabled which is
false in s, then all transit ions t ~ whose execution can make cl tr,te are also in T,;

2. if t is enabled in s, then all transitions t ' such that t and t ' axe dependent are also
in To.

I t can be shown that , by taking all enabled transit ions of a s tubborn set, one obtains
a persistent set. From the above definition, one can derive algorithms for computing
s tubborn sets. In [Val91] two such algorithms are given.

When considering processes communicating with each other via shared objects, we
have shown tha t dependencies between transit ions arise from dependencies between
operations on shared objects. To use the previous stubborn set definition, we need the
following information:

1. By point 1 of the definition, we need to determine the set of transit ions t ' whose
execution can change the t ru th value of a condition ci from false to true. Thus,
for each operation op used to compute c~, we have to determine the operations op'
on the same object that could change the Value returned by op, i.e. the operations
that are dependent with op, and next determine all transitions t ' that can perform
at least one such operation op'.

2. By point 2 of the definition, we need to determine the set of transit ions tha t are
dependent with t, i.e. the set of transitions tha t use at least one operat ion op' tha t
are dependent with one of the operations used by t.

Both cases involve the notion of dependency expressed as a constant proper ty between
transit ions. Definition 8 is still valid in the context considered here but cannot gain from
the use of conditional dependency. Therefore, algorithms derived from this definition
will produce unnecessarily large persistent sets.

In order to avoid this, we now give a new yet more general definition inspired from
the s tubborn set definition that can be used to compute smaller persistent sets. Unlike
the above definition, the new definition takes conditional dependency into account.

D e f i n i t i o n 9. A set Ts of transitions is a conditional stubborn set in s ta te s if Ts
contains at least one enabled transit ion and Vt E Ts:

3 "Stubborn sets in the strong sense" according to Valmari's terminology. "Stubborn sets in the
weak sense" will not be considered here.

446

tO t l t~-- I tTt
1. if t is disabled in s, then for all sequences s -- so --, s l --* s ~ . . . --, sn --, sn+x

of transit ions from s in A p such that t is enabled in s ,+a (which implies that
3i, 0 _< i ~ n, such that t and tl are dependent in si), at least one of the to, t a , . . . , t ,
is also in To.

t*t--I t~
2. if t is enabled in s, then for all sequences s = so ~ sa ~ s2 s , --* sn+a of

transitions from s in Ap such that t and tn are dependent in s , , at least one of
the to,t1 , t , is also in Ts.

T h e o r e m 10. The set of all enabled transitions in a conditional stubborn set T~ is
persistent in s.

Proof. See full paper.

The differences between Definition 8 and Definition 9 are tha t dependencies between
transit ions are not Considered in all states but only for successor states of s, and tha t
one adds to T~ one of the tl transitions of the path leading to a dependent transit ion
t,,, instead of t , . I t can be proved that all sets To satisfying Definition 8 also satisfy
Definition 0, while the converse is not true. Therefore, Definition 9 is finer and can be
used to produce smaller persistent sets than Definition 8.

However, it is not obvious to develop a practical algorithm tha t would produce
automatical ly sets To according to Definition 9. Indeed, this definition uses information
about sequences of transitions in the s ta te space, about which no assumption can be
made!

Nevertheless, this more general definition can be profitably used to define a relation
which models very finely the possible interactions between operations on a same object.
More precisely, our idea is to define a relation !>~ between operations on an object tha t
would tell us for each operation used by a transit ion in T~ which other operations might
~interact" with it, and thus which other transitions should be added to T, as well. The
relation ~might interact" is represented by the relation I>o which is formally defined
as fallows:

D e f i n i t i o n 11. Let op and op' be two operations on a same object O and s be a

reachable state. If it is impossible to have a sequence s = so t_o sa ~ s 2 . . . --* s ,
Sn+l of transitions from s in A p such that V0 _< i < n : Vop" on O used by ti: op and
op" are independent in state sl, t , uses op', and op and op' are dependent in sn, then
op ~g sop'; else op I> j op'.

Given such a t>~ relation for all operations that c a n b e performed on shared objects,
one can proceed as follows to compute conditional s tubborn sets:

1. If t E T, is disabled in s and ci is a necessary condition for t to be enabled which
is false in s, then, for all operations op used to evaluate el, all t ransit ions t ' that
use an operation op ~ such that op t>s op' are also in Ts.

2. If t E T~ is enabled in s, then, for all operations op used by t, all transit ions t ' tha t
use an operation op' such that opt>, op ~ are also in To.

T h e o r e m 12. The previous procedure produces conditional stubborn sets as defined in
Definition 9.

Proof. See full paper.

447

To use the above procedure, we finally have to determine for each type of shared
object what the relation !>~ is for each pair (op, op') of possible operations on this
object. According to Definition 11, we have op t>~ op' unless it can be proved that it is

t ,_ l ~ of transitions from impossible to have a sequence s = so ~ s l ~ s~ . . . ~ sn s , + l
s in Ap such that V0 _< i < n : Vop" used by ti: op and op" axe independent in state sl
and tn uses op' with op and o f dependent in an.

The following table represents the relation t>, for the channel example. For two
operations op and op' on a same channel, if the condition given in row op and column
op' in the table is true in a state s, then we have op t>, op', while "-" denotes the fact
that op ~8op ' .

I>, Send Receive Length Empty Ful l
S e n d n < N n = N n < N n < N r t = N - 1

R e c e i v e n = 0 n > 0 n > 0 n = l n > 0
Length n < N n > 0 - - -
E m p t y n = 0 n > O - - -

F u l l n < N n = N - - -

For instance, let us show how to determine when S e n d I>, R e c e i v e . One has to
to ~ tm--I tm

determine when it is impossible to find a sequence s = so "-, s l s2 . . . "-, sra --*

sm+l of transitions from s such that the S e n d and R e c e i v e operations are dependent in
sin, and u < i < m : Vop" used by ti: S e n d and op" are independent in state si. Since
S e n d and R e c e i v e are dependent in s,~, we obtain from the conditional dependency
relation between S e n d and R e c e i v e (see Section 4) that either n = 0 or n --- N in s,~. If
n = 0 in Sr~, the Receive operation is not defined in s,n and there can not be a transition

tm executing a R e c e i v e operation such that s,~ ~-~ sm+l. If n = N in s,~, the R e c e i v e

operation is defined. If n < N in s, and since n = N in sin, at least one transition tl
in the sequence groins to sm executes an operation that cha~ges the value of n from
n < N to N. This operation can only be a S e n d operation and is performed from state
sl such that n < N. Therefore, we obtain from the conditional dependency relation
between S e n d and S e n d when n < N that the two S e n d operations are dependent. It
is thus impossible to find a sequence satisfying Definition 11 when n < N in s. One
concludes that S e n d t>~ R e c e i v e only when n = N.

Note that it would not have been possible to obtain such a proof without using
conditional dependency and conditional s tubborn sets.

6 Experiments

Wehave implemented the algorithms discussed in the previous Section in an automated
protocol validation system called SPIN [tto191], which accepts PROMELA as modeling
language. We present experiments made with our implementation on two sample real
protocols4:

- URP is AT&T's Universal Receiver Protocol, modeled in 419 lines of PROMELA.
It consists of three processes communicating via FIFO channels.

- DTP is a data transfer protocol modeled in 391 lines of PROMELA. It consists of
three processes communicating via FIFO channels.

Experiments were performed using three different algorithms:

4 We thank Gera rd J. Holzmann for provid ing us wi th these examples,

448

- Algo 1: a classical depth-first search (exploring all reachable states).
- Algo 2: a partial-order verification algorithm with an unrefined dependency relation

(all operations on a same channel are dependent).
- Algo 3: the same partial-order verification algorithm with a refined dependency

relation (Length refined with Empty and Full, use of a conditional dependency
relation).

The results obtained with these three algorithms for the URP and DTP protocols are
presented in the following table. Experiments were performed on a SPARC2 worksta-
tion (64 Megabytes of RAM). For each run, the numbers of visited states and traversed
transitions are given. Time (in seconds) is user time plus system time as reported by
the UNIX system time command.

[ProtocollAlgorithml{Stored States TransitionslTime{

URP Algo 1
Algo 2
Algo 3

DTP Algo 1
Algo 2
Algo 3

19,515 47,836
6,759 7,779
4,430 4,659

251,409 648,467
56,626 65,710
9,920 10,367

4.9
11.1
7.9

59.8
35.8
7.0

These results clearly show that refining dependencies can yield substantial improve-
meats for both the time and memory requirements of the partial-order verification
algorithm. For the DTP examph, using Algo 2 reduces the number of stored states,
i.e. the memory requirements, by a factor of 5 with respect to the classical state-space
exploration performed by Algo 1. By carefully defining dependencies, Algo 3 can again
reduce the memory requirements by another factor of 5.

7 Conclusions

The results of Section 6 demonstrate that tracking dependencies in a concurrent pro-
gram is a basic issue that strongly influences the performances of partial-order veri-
fication techniques. It is therefore very important to define dependencies as finely as
possible. However, as illustrated in Section 5, carefully tracking and exploiting depen-
dencies between operations on a same object is by no means a trivial task. Fortunately,
this has to be done only once for each type of object.

Therefore, we advocate the use of object libraries where classic high-level com-
munication objects (such as various definitions of communications channels including
lossy channels, shared variables, semaphores, etc), operations on these objects, the de-
pendency and I>, relations are defined as carefully as possible once for all. One can
then specify concurrent systems by using these object libraries and thus gain from the
refined dependencies during verification which is still fully automatic. In contrast, we
discourage the opposite approach consisting of defining "everything", including objects,
by processes (for instance, a transmission medium is usually modeled by a process that
transmits messages).

Note that all this is quite natural. Indeed, when using such objects, one indirectly
provides more information to the verification tool about the structure of the state
space of the program being verified. If the tool is clever enough to be able to use these
information (as it is the case with a partial-order verification tool), it is not surprising

449

that the verification can be performed more efficiently and becomes applicable to larger
systems.

We have implemented partial-order verification techniques like the ones discussed
in Section 5 and such object libraries in an add-on package for the validation tool
SPIN [Ho191]. This Paxtial-Order Package is available free of charge for educational
and reseaxch purposes by anonymous ftp from montefiore.ulg.ac.be from the/pub/po-
package directory.

R e f e r e n c e s

[GHP92]

[God90]

[GW91a]

[GW91b]

[GW93]

[HGP92]

ptoi~]

[Hol91]
[JJ89]

[KP92]

[McM92]

[Och90]

[Ove81]

Wel92]

[PL90]

[valg0]

[~V'a191]

P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In Proc.
~th Workshop on Computer Aided Verification, Montreal, June 1992. Lecture Notes in
Computer Science, Springer-Verlag.
P. Godefroid. Using partial orders to improve automatic verification methods. In Proc.
~nd Workshop on Computer Aided Verification, volume 531 of Lecture Notes in Com-
puter Science, pages 176-185, Rutgers, June 1990.
P. Godefroid and P. Wolper. A partial approach to model checking. In Proceedings of the
6th IEEE Symposium on Logic in Computer Science, pages 406-415, Amsterdam, July
1991.
P. Godefroid and P. Wolper. Using partial orders for the efficient verification of deadlock

freedom and safety properties. In Proc. 3rd Workshop on Computer Aided Verification~
volume 575 of Lecture Notes in Computer Science, pages 332-342~ Aalborg, July 1991.
P. Godefroid and P. Woiper. Using partial orders for the efficient verification of deadlock
freedom ~md safety properties. Formal Methods in System Design, Kluwer Academic
Publishers, 2(2):149-164, April 1993.
G, J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction strate-
gies for teachability analysis. In Pros. 12th IFIP WG 6.1 International Symposium on
Protocol Specification, Testing, and Verification, Lake Buena Vista, Florida, June 1992.
North-Holland.
G. J. Holzmann. An improved protocol reachability analysis technique. Software, Practice
and Experience, 18(2):137-161, 1988.
G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.
C. Jard and T. Jeron. On-line model-checking for finite linear temporal logic specifica-
tions. In Workshop on automatic verification methods for finite state systems, volume
407 of Lecture Notes in Computer Science, pages 189-196, Grenoble, June 1989.
S. Katz and D. Puled. Defining conditional independence using collapses. Theoretical
Computer Science, 101:337-359, 1992.
A. Ms~urklewicz. Trace theory. In Pctri Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Pctri Nets 1986, Part II; Proceedings of an Ad.
vanced Course, volume 255 of Lecture Notes in Computer Science, pages 279-324, 1986.
K. McMillan. Using unfolding to avoid the state explosion problem in the verification of
asynchronous circuits. In Proc. ~th Workshop on Computer Aided Verification, Montreal,
June 1992.
E. Ochmanski. Semi-commutation and deterministic petri nets. In Proc. Symposium on
Mathematical Foundations of Computer Science, volume 452, pages 430-438. Lecture
Notes in Computer Science, 1990.
W. T. Overman. Verification of Concurrent Systems: Function and Timing. PhD thesis,
University of California Los Angeles, 1981.
D. Peled. All from one, one for all: on model checking using representatives. Technical
reporL AT&T Bell Laboratories, 1992.
D. K. Probst and H. F. Li. Using partial-order semantics to avoid the state explosion
problem in asynchronous systems. In Proc. s Workshop on Computer Aided Verifica-
tion, volume 531 of Lecture Notes in Computer Science, pages 146-155, Rutgers, June
1990.
A. Valmari. A stubborn attack on state explosion. In Proc. s Workshop on Computer
Aided Verification, volume 531 of Lecture Notes in Computer Science, pages 156-165,
Rutgers, June 1990.
A. Vedmari. Stubborn sets for reduced state space generation. In Advances in Petri Nets
1990, volume 483 of Lecture Notes in Computer Science, pages 491-515. Springer-Verlag,
1991.

