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Abstract: Linear relation analysis [CH78, Hal79] has been proposed a long time ago as 
an abstract interpretation which permits to discover linear relations invarianfly satisfied 
by the variables of a program. Here, we propose to apply this general method to variables 
used to count delays in synchronous programs. The "regular" behavior of these counters 
makes the results of the analysis especially precise. These results can be applied to code 
optimization and to the verification of real-tlme properties of programs. 

1 Introduction 

Synchronous programming has been proposed [IEE91] as a useful approach to describe 
real-time control kernels. A synchronous program is supposed to  instantly and determin- 
istically react to events coming from its environment, All synchronous languages share 
the same abstract notion of time: the notion of  physical (chronometric) time is replaced 
by a simple order among events; the only relevant notions are the simultaneity and prece- 
de, nee of events. Physical time does not play any special role; it is handled as an external 
event, exactly as any other event coming from the program environment. This is called 
the multiform notion of time: Simply by counting events, one can express delays counted 
in "meters" as well as in "seconds". 

The advantages of  this approach have been pointed out elsewhere. Synchronous lan- 
guages are simple and clean, they have been given simple and precise formal semantics, 
they allow especially elegant programming style. They can be compiled into a very effi- 
cient sequential code, using a specific compiling technique: The control structure of the 
object code is a finite automaton which is synthesized by an exhaustive simulation of a 
finite abstraction of  the program. 

Concerning program verification, it has been argued [BS91, HLR92] that the practical 
goal, for real-time programs, is generally to verify some simple logical safety properties: 
By a safety property, we mean, as usual, a property which expresses that something will 
never happen, and by a simple logical property, we mean a property which depends on 
logical dependences between events, rather than on complex relations between numerical 
values. For the verification of  such properties also, the synchronous approach has some 
advantages: Since the parallel composition is synchronous, the desired properties of a 
program can be easily and modularly expressed by means of  an observer, i.e., another 
program which observes the behavior of the first one and decides whether it is correct. 
The verification then consists in checking that the parallel composition of the program 
and its observer never causes the observer to complain. This verification can often be 
performed by traversing the finite control automaton built by the compiler. Moreover, 
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the automaton is generally much smaller than in the asynchronous case, where non- 
deterministic interleaving of processes often results in state explosion. 

However, the claim that usual critical properties of a real-time system do not depend 
on numerical variable values can be disputed in one important aspect: they often depend 
on the values of the delays involved in program control. Now, the finite automata built 
by the compilers and considered in the verification do not reflect these delays: Delays 
are counted by means of integer variables, described in the interpretation associated with 
the automaton. For instance, the ESTEREL compiler doesn't know that the statement 
"await 5 SECOND" takes more time than "await 3 SECOND", and neither does 
any proposed verification tool. In that sense, one Can argue that these tools have nothing 
to do with the verification of "real-time" properties. 

This paper attempts to solve the problem of talcing numerical delays into account in 
the generation of automata. Let us take a small example, in ESTEREL3: We consider a 
car, about which we know that (1) it stops within 4 seconds, and (2) if i t  doesn't stop 
before 10 meters, it bumps into an obstacle. This simple behavior can be described as 
follows in ESTEREL: 

trap END in 
await 4 SECOND; emit STOP; exit END; 

I I await I0 METER; emit BUMP; exit END; 
end. 

This small program is made of two parallel proceses embedded Into a "trap" block. 
The first process which stops waiting instantaneously emits a signal and performs an 
"exit END" which terminates the whole block, thus killing the other process. 

Now, assume we know also that the speed of the car is at most 2m/s. We can express 
this knowledge in the program, by signaling an exception whenever 3 meters are perceived 
within a second. The full program is as follows: 

module car: 
input METER, SECOND; 
relation METER # SECOND; 
ot~tput BUMP, STOP, TOO.FAST; 
trap END in 

loop await 3 METER; %mit TOO.FAST; exit END 
each SECOND 

II 
do 

await i0 METER; emit BUMP; exit END 
II awas 4 sECOND; emit STOP; exit END 
upto TOO.FAST 

end. 

The "loop ... each SECOND" is started ag~n each second. Thus, the exception 
TOO-FAST iS only raised if three METER signals are received between two successive 
SECOND signals. In that case, the whole program terminates because of the " e x i t  END" 
statement. 

From this program, the ESTEREL compiler builds an interpreted automaton similar to 
that of Fig. 1 (where X++ denotes the value of X after incrementing it). It introduces 3 
counters: T for counting 4 seconds (the time), S for counting 3 meters each second (the 

3 All the examples will be given in ESTEREL, on the one hand, because it is probably the best- 
known synchronous language, and on the other hand, because it contains specific statements to 
deal with delays. However, the method described here can be applied to other languages. 
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SECOND?T++<4 ? ~ SECOND?T++=4 ? 

T:'S:'L: = 0 ~  

METER?S+§ [ / METER?S++=3 ? 
L++<I 0 ? k.../ TOO.FAST : 

Fig. 1. An interpreted automaton 

speed), and L for counting 10 meters (the length). The structure of the automaton doesn't 
show that the emission of BUMP is impossible. 

Now, this automaton is a sequential program, dealing with 3 bounded integer variables. 
An exhaustive simulation can be performed, which leads to a detailed, non interpreted, 
automaton with 49 states and 146 transitions, on which the property can be checked. This 
solution has an obvious drawback: The size of the detailed automaton clearly increases 
as the product of the delays. Counting a time delay in milliseconds rather than in seconds 
will tremendously increase the size of the automaton. So, our goal is to detect that some 
transitions of the interpreted automaton cannot occur because of delay counting, without 
considering the detailed automaton. For that, we will apply a general method, that was 
proposed quite a long time ago but little applied, to discover linear relations among 
numerical variables of a program. After recalling in Section 2 the principles of this method, 
together with specific optimizations (Section 3), we will see on some examples that it gives 
particularly precise results when applied to counters (Section 4). 

2 L i n e a r  relation ana l y s i s  

The linear relation analysis [CH78, Hal79] is an application of the general method of 
abstract interpretation proposed by P. & R. Cousot [CC77, CC92a]. It is an approximate 
analysis method which discovers invariant linear relations among numerical variables of 
a program. We informally recall its principles in this section. 

2.1 Abstract interpretation 

Abstract interpretation is a general method to find approximate solutions of fixpoint 
equations. Most program analysis problems come down to solving a fixpoint equation 
x = F ( z ) .  Solving such an equation generally raises two kinds of problems: 

1. The solution must be computed in a complex ordered domain (typically, the powerset o f  
the state space of a program). Elements of this domain must be efficiently represented and 
normalized, together with functions defined on the domain. The ordering relation among 
the domain must be computed. A first approximation can take place at this level: instead 
of computing in the complex domain C o f  concrete values, one can choose a simpler 
abstract domain A, connected to C by means of two functions ~ : C ~ A ,  7 : A ~ C 
forming a Galois connection: Vz 6 C, Vg 6 A, a (z)  <A Y ~ z < c  7(!t) 
where < c ,  < a  respectively denote the order relations on C and A. The approximation 
of a function F,  from C to C, will be the function a (F )  = a o F o 7, from A to A. 
The basic result is that, if C is a complete lattice, ff F is increasing from C to C, then 
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,~(gp(F)) <A gp(,~(F)) (where ep(F) denotes the least fixpoint of F). So, computing 
the least fixpoint in the abstract domain provides an upper approximation of  the fixpoint 
in the concrete one. 
2. The iterafive resolution of a fixpoint equation can involve infinite (or even transfinite) 
iterations. In some cases, the abstraction performed in (1) is so strong that the abstract 
domain is either finite or of finite depth (there is no infinite, strictly increasing chain 
Y0 <A gl <`4 . . .) .  In such a case, the resolution in the abstract domain converges in a 
finite number of  steps. However, requiring the abstract domain to satisfy such a finiteness 
condition is very restrictive. Better results [CC77, CC92h] can often be obtained by per- 
forming another kind of  approximation: When the depth of the abstract domain is infinite, 
specific operators may be defined to extrapolate the limit of  a sequence of  abstract values. 
For an increasing sequence (computation of a least fixpoint) one uses a widening operator, 
usually noted V, from A x A to A, satisfying the following properties: 

�9 VFI ,B2EA,  Yl <`4 ylVy2 and Y2 _<`4 y1Vy2 

�9 For any increasing chain (Yo <A Yl _<,4 . . . ) ,  the increasing chain defined by ~ = Yo, 
~/+1 -- y[Vyi+I,  is not strictly increasing (i.e., stabilizes after a finite number of terms). 

Now, to approximate the least fixpoint .~ of a function G - -  ~ = limi>o yl, with yo = _1_ 
(the least element of  A) and yi+l = G(yi)  ~ ,  we call compute an ascending approxima- 
tion sequence (y[)i>_.o: ~0 = _1_, ~ + i  = ~/VG(y[),  which converges after a finite number 

of  steps towards an upper approximation ~ of ~ .  This approximation can be made more 

precise by computing a descending approximation sequence y~ = y ,  ~ - 1  = G ( ~ ' ) ,  ke., 

starting from ~ a standard sequence, without widening. Each term of the descending 
sequence is an upper approximation of the least fixpoint ~ .  

Parti t ioned systems: Assume the concrete domain C is the powerset of  some set S of  
states, and that S = K x S' ,  where K is a finite set. For each k E K ,  let C(k) = 
{k} x 2 s ' ,  and for each z 6 C, let x(k) = z fl C(k). Clearly, for each x 6 C, the set 
{z(k) [ k E K} is a finite partition of  z. Now, any fixpoint equation z = F ( z )  can 
be written as a system of equations: /~k~r  z(~) = F(t)(zO),  x(2), "'" , z(IKI)) where 
F(k)(z0) ,  z(2) , . . . ,  z(IKI)) = F ( x 0 )  U x (2) U . . .  U z(IKI)) fl C(k). This partitioning is 
very common in sequential program analysis, where K often represents the set of control 
points. It can be used to make the results more precise, as follows: The partition can 
obviously be reflected in the abstract domain, by setting y(k) = a(x(k)),  resulting in an 
abstract system of equations /kk~K Y(~) = G(k)(Y 0),  y(2) . . . . .  y(IKI)). We will say that 
k depends on k '  if the value of G(k) (y0) ,y  (2) . . . . .  y(IKI)) Can depend on the value of 
y(k'). Let 7r be this dependence relation on K.  Let Kv be a subset of  K such that the 
graph of Tea restricted to K \ Kv has no loop. Then the convergence of the ascending 
approximation sequence is guaranteed even if the widening operator is only applied to 
components belonging to Kv :  

Vk E K, yo (k) = .1_ 
,(k) v,.(+)VG(k)(v!0 .!2) y~lKI)~ V k E I f v ,  Yi+1 = o ,  ~ ,  ,o, , . . . .  " 
,(k) ~ (k ) ( .0 )  .(2) ,,.(IKI)) 

V k E K \ l ( v ,  Yi+l = - -  ,oi ,~i . . . . . .  , . 

The advantage is that the widening operator, which is the one which looses information, 
is applied less frequently. 
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Fig.2. A convex polyhedron and its 2 representations 

2.2 Convex polyhedra 

P =  (~-,~) I ~+y  > 
- ~ + ~ <  

L=O 

The linear relation analysis is used to deal with systems whose states include a numerical 
part. Let us define the set of states to be S = N n x S ' ,  where N is a numerical set (e.g., 
1~1, 7/ or Q). A state s E S is a pair (X, s'),  where X is a numerical vector and s' E S '  
is the non-numerical part of the state (it can contain a numerical part which is kept out 
of the analysis). 

The concrete domain we consider is C = 2 s ,  and the abstract one is 7~(~n), the set of  
convex polyhedra of  O". Any subset x of S will be approximated by a convex polyhedron 
c~(x) E 79(Q'~), such that (X, s') E x ~ X E ~(z)  and any convex polyhedron 
P E 7~(t~ n) will represent the set of states 7 (P)  = { (X,s ' )  [ X E P n  N n , s' E S~}.  

So, our abstract values are convex polyhedra. Let us recall that a convex polyhedron 
P (a polyhedron, for short) has two representations (see Fig. 2): 

�9 it is the set o f  solutions of  a system of linear inequalities P = { X  [ A X  > B}, where 
A is a m x n-matrix and B is a m-vector. 

�9 it is the convex closure of  a system of generators, i.e., three finite sets V, R, and L 
(respectively for "vertices," "rays," and "lines") of n-vectors such that 

e = + + I _ >_ 0, = i} 
viEV rjER s i 

These two representations are dual. There exist efficient algorithms [Che68, LeV92] for 
translating each representation into the other; these algorithms also minimize the repre- 
sentations. We will use the following basic operations on polyhedra (see Fig. 3 and 4): 

Intersection: The intersection of  two convex polyhedra P and Q is a convex polyhedron 
whose system of linear inequalities is the conjunction of those of P and Q. 

Convex hull: The convex hull of two polyhedra P and Q (noted P 12 Q) is the least 
convex polyhedron containing both P and Q. Its system of generators is the union 'of 
those of P and Q. The convex hull is used as an upper approximation of union, since 
generally the union of  two convex polyhedra is not convex. 

Linear transformation: We will use linear transformations resulting of  the substitution 
of  a linear expression to a variable. Here, we consider only very simple cases - -  variable 
reset, increment, and decrement ~ but the general case is similar. 

�9 Let P[O/.Xi] = { ( X 1 , X 2 , . . .  ,X i - l ,O,  Xi+l . . . . .  Xn)  t X E P}  be the result of  
resetting to zero the i-th variable in a polyhedron P,  The vertices (respectively, the rays, 
the lines) of  P[O/Xi] are obtained by setting to 0 the i-th Coordinate of the vertices (resp., 
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r 
PuQ 

Fig.3. Intersection and convex hull 

the rays, the lines) of P. 

ID 

Y l ~ +  l/z] 

P[Olv] 

Fig. 4. Linear transformations 

�9 The result P[Xi+I/XI] = {(X1,X2 . . . . .  Xi.l,Xi+l,Xi+l ..... Xn) I X E P} of 
incrementing the i-th variable in a polyhedron P can be computed easily on both repre- 
sentations: if AX > B is the system of inequalities of P.  then AX > (B + A(O) (where 
A(0 is the i-th column of A) is the system of constraints of P[Xi+ 1/Xd. The vertices 
of P[Xi+ 1/xd are obtained by incrementing the i-th coordinate of those of P,  the rays 
and the lines don't change. Variable decrement is performed symmetrically. 

Test for emptyness: A polyhedron is empty if and only if it has no vertices. 

Test for inclusion and equality: A polyhedron P, with system of generators (V, R, L), 
is included in a polyhedron Q, defined by the system of inequalities AX > B, if and only 
if Vv E V, Av > B A Vr 6 R, Ar > 0 A Vs E L, At  = O. The equality of two 
polyhedra is decided by showing the double inclusion. 

Widening: While the basic operations on abstract values are determined by the choice of 
tim abstract domain, the design of a widening operator is based on heuristics. The following 
widening operator (hereafter called standard widening) was proposed in [Hal79]. Let P 
and Q be two polyhedra. RougMy speaking, the widening PVQ is obtained by removing 
from the system of P all the inequalities which are not satisfied by Q. Fig. 5.a shows an 
example where P = {(z,y) [0  < Y < x < 1}, Q = {(x,y) [ 0  _< y < x < 2} and 
PVQ = {(x, Y) [ 0 _< y < x}. The intuition is clear: whenever a constraint is translated or 
rotated, it can do so infinitely many times, so it is removed. This operator clearly satisfies 
the properties of a widening: the result contains both the operands, and since the system 
of inequalities of PVQ is a subset of the one of P,  the widening cannot be infinitely 
iterated without convergence. 

y j PVQ 

(a) 

Fig. 5. Widening operation 

Y• PVQ 

p w  
Z 

0~) 
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The actual operator is a bit more complicated: first, whenever P is empty, PVQ = Q. 
Moreover, if P is included in a strict suhspace of Q", its minimal system of inequalities is 
not canonical. It can be first rewritten into an equivalent system maximizing the number 
of inequalities satisfied by Q, and thus kept in the result. For instance, consider: 

P={(z ,y)  I = = O ^ y = O } ,  Q={(z,y) I O < y < z < I }  

The system of inequalities of P can be first rewritten into P = {(z, y) [ 0 < y < z _< 0} 
before performing the widening, which evaluates to PVQ = {(x, y) [ 0 _< y _< x} 
(see Fig. 5.b) instead of {(x, y) I 0 < y ^ 0 < z}, which would be obtained without 
rewriting. This optimization preserves the widening properties. An efficient algorithm has 
been proposed for it [Hal79]. 

3 Application to delay analysis 
3.1 Automata 

We will apply the linear relation analysis to automata produced by synchronous languages 
compilers. Such an automaton is a finite set of states, each of which being associated with 
a piece of sequential code. The sequential code executed in a smm is linear, in the sense 
that it contains neither loop nor rccursion. It is made of three kinds of statements: 

Assignments: Those which do not assign counter variables will be ignored in the analysis. 
An assignment to a counter variable either increments it, or decrements it, or resets it to 
zero. 

Tests select statements to be performed according to some conditions. The only conditions 
that will be taken into account in the analysis am comparisons of counter variables with 
integers. 

Branching statements select the next state of the automaton. These statements terminate 
the code executed in a state. 

Fig. 6 gives the code of the automaton shown in Fig. I. 
We will take advantage of this control structure to get a partitioned system. A state 

of the program is a triple (s, X, Y), where s is a state of the automaton, X is a vector 
of counter values, and Y is a vector of values of other variables (e.g., those giving the 
presence of external signals) which will be ignored. With each state s of the automaton, 
we will associate a polyhedron P,, which will be an approximation of the set {X I 
3Y, (s, X, Y) is a reachable state of the program}. 

Since we are interested in determining what transitions can occur and what states can 
be reached, we will also associate a polyhedron with each branching statement, which 
will approximate the set of reachable states of the counters when executing those state- 
ments: Let Pi,8,,, be the polyhedron associated with the i-th "gore state s" state- 
ment appearing in the code of state s'. Fig. 6 shows the polyhedra to be computed for 
our small example. Clearly P, is the convex hull of all the Pi,,,.,, and Pi,~,,, is com- 
puted from P,, according to the statements executed along the branch leading to the i-th 
"goto state s" appearing in the code of s'. The transformation of polyhedra result- 
ing from assignments is straightforward. For tests, three cases occur: Let F,, F! be the 
transformations corresponding respectively to entering the "then" and "else" branches of 
a test, Then, 

�9 if the condition is not a linear expression of the counters, it is ignored, and both F, and 
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State 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  {.,P l} 
T=0; L=0; S=0; goto State 2 ............................. {PL*#} 

S t a t e  2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  {P 2} 
if SECOND then S=0; 

if T++=4 then emit STOP; goto State 3 ............ {~,2,3} 
end; 
goto State 2 .............................................. {PI,2#} 

end; 
if METER then 

if 5++=3 then emit TOO_FAST; goto State 3 ....... {~,2,3} 
end; 
if L++=I0 then emit BUMP; goto State 3 ............ {8,2,3} 
end; 
goto State 2 .............................................. {P2,2,2} 

end; 
goto State 2 ................................................ {P3,2,2} 

S t a t e  3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  {P 3} 
goto State 3 ............................................... {PI,3,~} 

Fig. 6. The code of the automaton, with associated polyhedra 

F! are the identity function AP.P. 

�9 ff the condition is of the form "Xi < k", wherd 3(/ is a counter and k is an integer 

constant, then Ft = AP.PN {X [ Xi <_ k} , 1;'i = AP.PA {X  [ Xi > k + 1}. 

�9 if the condition is of the form "Xi  = k", then F, = AP.P N {X  I Xi  = k} , F! = 
AP.(PA {X I Xl > k + 1}) U ( P N  {X I Xi < k -  1}) 

Notice that we lake advantage of  the fact that counters are integer variables, by setting 
-,( Xi < k) =_ ( Xi > k+ 1) and that the non-convex set PN{ X [ Xl  # k} is approximated 
by the convex hull of the two polyhedra PA {X I X i  > k+ 1} and P N  {X I Xi <_ k -  1}. 
Here are the definitions of the polyhedra corresponding to our example: 

PI = true (initial state) 

P2 = Pl,l,2 U PL2,2 tJ P2.2.2 LI P3,2,2 

/'3 = P1,2,3 U P2,2,3 U P~,2,3 U P~,3,3 

eu,2 = e,[o/r][o/ s][o/ q 

?~,2,3 = J%[O/S][T+ VT] n fiT, S, L) I T = 4} 

P,,2,2 = (P2[OIS][T+ 1/T] N {(T, S, L) I T < 3}) U (P2[O/S][T+ l /T] n {(T, S, L) I T >_ 5}) 
P2,2.~ = P2[S+I/S] n {(T, S, L) I S = 3} 
e3,2,s -- p[r,+i/q n {(T,S, L) I L = Io} 

P2,2,2 = (Q[L+I/L] n {(T, S, L) I L < 9}) t.I (Q[L+I/L] n {(T, S, L) I Z > 11}) 
with Q = (&[S+ l/S] n {(T, S, L) I S _< 2}) u (P2[S+ 1/S] n {(T, S, L) I S _> 4}) 

P3,2,2 = Pz  

P,,,,~ = / '3  
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3.2 Widening strategies 
The points where the widening is performed are selected among state entry points. Al- 
though the ESTEREL compiler generates a dummy transition looping on each state, we 
do not have to perform a widening in each of these loops where no action is performed. 
So, we consider only the transitions containing actions on counters, and we select a state 
in each loop of such transitions. In our example, we select state 2, which belongs to any 
loop, and change the equation of P2:P2 = P2 V (Pl,l,2 U P1,22 U 1'2,2,2 t_l P3,2,2). 
Moreover, our experimentations show that both the precision and the performances of the 
analysis are improved by the following modifications: 

Widening "up to": One can choose a fixed set of linear constraints, say M,  and define 
a new "widening up to M"  operator VM as follows: PVMQ is the intersection of the 
stfindard widening P V Q  with all the constraints in M that are satisfied by both P and Q. 
For instance, if a counter z is declared to be of subrange type 0.. 10, if the domain of x is 
first {z = 0} and then {0 __< z _< 1}, it is reasonable to widen this domain to {0 < x < 10} 
instead of {0 < x }. It is a way of guessing an invariant-- a guess that can be found false at 
a next step. This heuristic changes neither the property of the widening nor the correctness 
of the result. In many cases, not only it avoids the necessity of the decreasing sequence 

since the increasing sequence reaches a fixpoint-- but also it provides a more 9recise 
result. In the case of our counters, a set of conslraints M is associated with each widening 
state. This set is selected to be all the linear relations which make the control remain in 
the state. The intuition behind this choice is the following: Assume s is a state whose only 
outgoing transition is guarded by the condition "x++ffil 0" and that s is entered with x=0. 
Then, since the control remains in S (possibly incrementing or decrementing x) unless x 
becomes equal to 10, x is likely to remain smaller than 9 as long as the control is in s. 
In our example, the state 2 is left when either T++---4 or S++=3 or r.++=10. The set of 
constraints limiting the widening is {T < 3 ,  T >__ 5,  S < 2 ,  S >__ 4 ,  L _< 9 ,  L >_ 11}. 

Non-regular behavior: Any widening operator is chosen under the assumption that a 
program behaves regularly: When we get {x = y = 0} at the first step, and {0 < y < 
z < 1} at the second step, this assumption of regularity consists of guessing that we are 
likely to get {0 < g < z < 2} at the third step, and so on; this is why the standard 
widening extrapolates the limit to {0 < // < x}. Now, the assumption of regularity is 
obviously abusive in one case: when a path in the loop becomes possible at step n, 
the effect of this path is obviously out of the scope of the extrapolation before step n 
(since the actions performed on this path have never been taken into account). So, if the 
polyhedron associated with a widening point depends on some polyhedra which become 
non-empty at step n, the extrapolation performed before can be questioned. In such a case, 
the extrapolation will be performed from the first non-empty solution: In our example, if 
one of p(n) p(n) p(n) p ( , )  is not empty whereas it was at step n - 1, we will take 112 122 222 3,2,2 
e(n+l) --. P2 (1) V ~,~[D(n)l,l,2 II p(n)l,2,2 II ~(n)2,2,2 II "0(n)~3,2,2/ because P2 O) is the first non-empty 
version of P2. 

4 Examples 
4.1 The "car" example 
Let us detail the analysis of the very simple program we considered so far. The system of 
equations has been given in w Let us recall (cf. w that the only widening state is 
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State 2, and that the widening is performed up to the following constraints: M = {T < 
3 ,  T > 5 ,  S _< 2 ,  S > 4 ,  L < 9,  L >_ 11 }. The successive computation steps are the 
following: 
Step 0: Initially, all the polyhedra am empty. 
Step 12 The first iteration in the loop provides: 

p = = _ _  s = L = 

P,~,'~= P(O[T + IlT][OIS].n {T <_ 3}) u ( ~ 0 [ T  + 1/2'][0/8] n {T _> 5}) 
={T=I,S=L=O} 

Q = (P~=I)[S + t/S] n {I S _< 2}) u (~ ' ) [S  + US] n {S _> 4}) 
= { $ = I , T = L = O }  

p.(l) = (Q[L + I/L]n {L < 9})u (Q[L + I/L]n {L > 11}) 
2 , 2 , 2  - -  - -  

: { $ = L =  I ,T : 0} 

and so ~(=) u p(i) u P.(') = {T  > 0, S = L _> 0, S + T _< I} 
1 ,1 ,2  1 ,2 ,2  2 , 2 , 2  - -  

Step 2: The widening is applied, and we get: 

P2 (2) = {T  = $ = L = 0 }V~r {T  _> 0, S =  L > O,S+T<_ 1} 
= {O<_SfL<_2 ,0<_T<3}  

P,~=,)= = P(Z)[T + ]/T][o/s] n {T < 3 ] ) u  (P~z')[T + 1/T][O/S] n { T >  5}) 
= {s  = o,o_< L_< 2,1 _< T_< 3} 

Q = (P=(=)[S + 1IS] n {I s _< 2})u (~2)[s + z/s] n {s > 4}) 
= { ~ < S = L + I _ < 2 , O < T < 3 }  

P.(=)~2,= -- (Q[L + i l L ]  n {L _< 9}) u (OIL + 1/1;] n {1; >_ n } )  
= { I_<S=L_<2,0_<T_<S}  

and  P,~,2)2 U P,I(,27)= U P(,~2 = { 0 <  $ < L < 2T 4" S ,L  < 2, T < 3} 

Step 3: 

p(S) = {O< S <_L < 2 T + S , T < 3 ,  L <_2} 
t~ (~) { S : O , O < L < 2 , 1 < T < 3 }  p.~(~' = . . . .  
2,2,:= {I <S <L <2T+S,T<_3, L <_3,S <_2} 

and /~(3) o~(3) uP.(3) ={o< s< L<2T+S,L_< S+2,T<3,L <3,8<2} 1 ,1 ,2  1 ,2 ,2  2 ,2 ,2  - -  - -  - -  

Step 4: 

P(')  = { 0 <  S <  L < 2 T + S , T <  3, S < 2} 
R (') = { S : 0 , 0 _ <  L < 2 T ,  I < T < 3 }  1 ,2 ,2  - -  - -  - -  . 

P.(~) {I<S<L<2T+S,T<3, S<2} 2 , 2 , 2  "~- 

and since ~t(~!, u ~('),,:.2 u P.(()2.2.2 u P~((),.=.2 u P~('),.,.= = P~(') the sequence converges on a f ixpoint .  

The polyhedra which do not belong to the loop evaluate to: 

P,,2,, = {S = 0,0_< L_< $,T 24} 
P2,2,3 = {S = 3,2 < L < 2T+ 2,T _< 3} 

P,,2,, = i 

The final results are shown on Fig. 7. From the fact that P3,2,3 is empty, we conclude 
that the corresponding transition cannot occur, and that the BUMP signal is never emitted 
in the ESTEREL program. 
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State 1 
T-0;  L-0;  s-0;  
gOtO State 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  { T  = $ = L = O) 

State 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  {0<  S < L ~ 2T+ S,T_< 3,S < 2) 
i f  SECOND then  S-0; 

I f  T++-4 then 
emit STOP; (Jo~co State 3 . . . . . . . . . . . . . . . . .  {S = 0 , 0 ~  L < II, T = 4 )  

end; 
goto S t a t e  2 . . . . . . . . . . . . . . . . . . . . . . . . . . .  {S ----- 0,0 ~ r , < 2 T , | ~ T < ' ; }  

end; 
if METER then  
if S++-3 then 
emit TOO.FASTt goto State 3 . . . . . . . .  {S = 3,2 < L < 2T+ 2,T < 3} 

end; 
if L++-I0 then 

emit" BUMP; qoto State 3 ....................................... {0} 
end; 
goto state 2 ................... ;...{I<S<L<2T+S,T<3, S<2} 

end; 

State 3 ................. {3T+S < 12<3T+4S, 2S<3r-<6T+2S, S<3} 
gore State 3 

Fig.7. Results of the analysis of the "car" example 

4.2 The "train-gate controller" revisited 

Let us complexify an example considered in [Alu91], introducing some multiform-time 
problems: It is an automatic controller that opens and closes a gate at a railway track 
intersection (We do not pretend it corresponds to a realistic system!). 

When the train approaches the gate (see Fig. 8), it pushes a pedal. 800 meters farther, 
it crosses a signal: 

�9 if the signal is red, the wain puts on the brakes, and stops within 550m; 

�9 otherwise, it crosses the gate 770m after the signal, and pushes an exit pedal 1000m 
after the gate. 

Two seconds after receiving a signal from the entry pedal, the controller commands the 
gate closure. Normally, the gate closes within 7s, but it may fail. So, 8s after the closure 
command: 

�9 if the gate is not closed, the controller switches the signal on red, to stop the train; 

�9 otherwise, it waits for the signal from the exit pedal and commands the gate openning. 

The maximum speed of the train is 69m/s. 

~br sk ing  disumce 
entry F 550m ~ gate exit 
pedal / ,, ~ . . . . .  pedal 

mm s i g n a l  m s  
BOOm 770m 1000m 

Fig.& The Irain-gate example 
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- 1 0 <  # b - # ~  < -1  - 9 < # b - # 8 _ ~  9 1 < # b - # 8  ~ d + l O  
08 _> 10 #b > 0 d +  10_< #b 

#~>_0 0 < d < 9  

Fig. 9. Result of the subway example, with one train 

r~ -'f STOPPED ) 

1 < # b - # J  <19 
19 _< 9#8 -I- #b 

#b >_ lo 

From a program simulating this system, the ESTEKEL compiler generates an automa- 
ton with 104 states and 451 Wansitions. The analysis finds that 82 of these states are 
unreachable. Removing the unreachable part, we get an automaton with 22 staw.s and 56 
transitions. Every transition on which ON_GATE is emitted also emits GATE_CLOSED. 

So, this example shows that the analysis results can be used not only to prove program 
properties, but also to reduce the size of the automaton and optimize the object code. 

4.3 A subway speed regulation system 

Our last example is extracted from an actual proposal for an automatic subway. It concerns 
a (simplifiea version of a) speed regulation system avoiding collision. Each train detects 
beacons that are placed along the track, and receives the "second" from a central clock. 
Ideally, a train should encounter one beacon each second. So the space left between 
beacons rules the speed of the train. Now, a train adjusts its speed as follows: Let #b 
and #s be respectively the number of encountered beacons and the number of received 
seconds. 

�9 when #b _> #s + 10, the train notices it is early, and puts on the brake as long as #b > #s. 
Continuously braking makes the train stop before encountering l0 beacons. 

�9 when #b _< #s - 10, the train is late, and will be considered late as long as #b < #s. A 
late train signals it to the central clock, which does not emit the "second" as long as at 
least one train is late. 

The results of the analysis of a simulation program for one train are shown in Fig. 9. 
Notice that the absolute difference [#b - #s I is shown to be bounded. Notice also that 
the bound 19 has been discovered, although it does not appear in any condition of the 
program. For two trains, the analysis shows that the difference #bl - #b2 of the number 
of beacons encountered by each train remains in the interval [-29, +29]. So, ff they are 
initially separated by more than 29 beacons, no collision can occur. 

5 C o n c l u s i o n  

The symbolic program analysis methods were strongly studied in the late seventies; in 
program verification, they were afterward almost completely abandoned because of the 
first success of enumerative model-checking. Now, in view of the development of boolean 
symbolic model-checking, thanks to Binary Decision Diagrams, many people are trying 
again to apply symbolic techniques (e,g.,[DKK91, MPS92, Cor92]) to numerical systems. 
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Program number of Control automaton Detailed automaton 4 Result automaton Analysis 

variables #states #trans. #states I #trans. #states[ #1aans. time 

Car 3 3 6 49 146 3 5 0.3s 

Train 8 104 451 445,900 972,372 22 56 1.8s 
Subway 

4 g 41 66 103 5 27 0.7s 
1 train 

, .  

Subway 
7 37 297 4536 9340 17 71 16.6s 

2 trains 

Table I. Performances of the analysis 

For taking delays into account in the analysis of synchronous program, our first 
idea was to adapt the model-checking techniques developed for timed automata [ACDg0, 
ACH+92]. Unfortunately, timed automata do not'take into account the multiform time 
handled by synchronous programs [JMO93], and particularly the dependence relations 
existing between different time scales. 

So, we decided to apply an approximate method. The approximations we make seem 
well-suited for that application field. As a matter of fact, fIom the reduced set of operations 
allowed on counter variables, the range of these variables is very likely to be a convex 
polyhedron w or, more precisely, the set of  points with integer coordinates that belong to 
a convex polyhedron (Notice that our computations are done in rational numbers, because 
of  the cost of  linear programming in integer variables; once again, this constitutes an 
upper approximation). 

The proposed method is a combination of automata-based methods with abstract inter- 
pretation: On the one hand, the analysis can reduce the size of the automaton, and on the 
other hand the automaton is used for partitioning the analysis. So, it would be interesting 
to combine the delay analysis and the automaton generation, both to avoid the generation 
of unreachable states and to choose the best partition. 

Up to now, only a rough prototype has been implemented, for experimentation pur- 
poses. It is based on the very efficient implementation of Chernikova's algorithm provided 
by [LeV92]. The Table 1 gives the analysis times for the considered examples. All our 
examples have been presented in ESTgREL, but as soon as the analyzer will be fully 
interfaced with the common intermediate code of synchronous languages [PS87], it will 
be applicable to any language using this code. 
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