
Delay analysis in synchronous programs t

Nicolas Halbwachs
IMAG Institute and Stanford University 2

Abstract: Linear relation analysis [CH78, Hal79] has been proposed a long time ago as
an abstract interpretation which permits to discover linear relations invarianfly satisfied
by the variables of a program. Here, we propose to apply this general method to variables
used to count delays in synchronous programs. The "regular" behavior of these counters
makes the results of the analysis especially precise. These results can be applied to code
optimization and to the verification of real-tlme properties of programs.

1 Introduction

Synchronous programming has been proposed [IEE91] as a useful approach to describe
real-time control kernels. A synchronous program is supposed to instantly and determin-
istically react to events coming from its environment, All synchronous languages share
the same abstract notion of time: the notion of physical (chronometric) time is replaced
by a simple order among events; the only relevant notions are the simultaneity and prece-
de, nee of events. Physical time does not play any special role; it is handled as an external
event, exactly as any other event coming from the program environment. This is called
the multiform notion of time: Simply by counting events, one can express delays counted
in "meters" as well as in "seconds".

The advantages of this approach have been pointed out elsewhere. Synchronous lan-
guages are simple and clean, they have been given simple and precise formal semantics,
they allow especially elegant programming style. They can be compiled into a very effi-
cient sequential code, using a specific compiling technique: The control structure of the
object code is a finite automaton which is synthesized by an exhaustive simulation of a
finite abstraction of the program.

Concerning program verification, it has been argued [BS91, HLR92] that the practical
goal, for real-time programs, is generally to verify some simple logical safety properties:
By a safety property, we mean, as usual, a property which expresses that something will
never happen, and by a simple logical property, we mean a property which depends on
logical dependences between events, rather than on complex relations between numerical
values. For the verification of such properties also, the synchronous approach has some
advantages: Since the parallel composition is synchronous, the desired properties of a
program can be easily and modularly expressed by means of an observer, i.e., another
program which observes the behavior of the first one and decides whether it is correct.
The verification then consists in checking that the parallel composition of the program
and its observer never causes the observer to complain. This verification can often be
performed by traversing the finite control automaton built by the compiler. Moreover,

l This work was supported by the Department of the Navy, Office of the Chief of Naval Research
under Grant N00014-91 -J-1901, and by a grant from the Stanford Office o[Technology Licensing.
This publication does not necessarily reflect the position or the policy of the U.S. Government
and no official endorsement of this work should be inferred.

2 Author's permanent adress: IMAG, B.P. 53X, 38041 Grenoble Cedex, France. This work was
performed while the author was on leave in Stanford University.

334

the automaton is generally much smaller than in the asynchronous case, where non-
deterministic interleaving of processes often results in state explosion.

However, the claim that usual critical properties of a real-time system do not depend
on numerical variable values can be disputed in one important aspect: they often depend
on the values of the delays involved in program control. Now, the finite automata built
by the compilers and considered in the verification do not reflect these delays: Delays
are counted by means of integer variables, described in the interpretation associated with
the automaton. For instance, the ESTEREL compiler doesn't know that the statement
"await 5 SECOND" takes more time than "await 3 SECOND", and neither does
any proposed verification tool. In that sense, one Can argue that these tools have nothing
to do with the verification of "real-time" properties.

This paper attempts to solve the problem of talcing numerical delays into account in
the generation of automata. Let us take a small example, in ESTEREL3: We consider a
car, about which we know that (1) it stops within 4 seconds, and (2) if i t doesn't stop
before 10 meters, it bumps into an obstacle. This simple behavior can be described as
follows in ESTEREL:

trap END in
await 4 SECOND; emit STOP; exit END;

I I await I0 METER; emit BUMP; exit END;
end.

This small program is made of two parallel proceses embedded Into a "trap" block.
The first process which stops waiting instantaneously emits a signal and performs an
"exit END" which terminates the whole block, thus killing the other process.

Now, assume we know also that the speed of the car is at most 2m/s. We can express
this knowledge in the program, by signaling an exception whenever 3 meters are perceived
within a second. The full program is as follows:

module car:
input METER, SECOND;
relation METER # SECOND;
ot~tput BUMP, STOP, TOO.FAST;
trap END in

loop await 3 METER; %mit TOO.FAST; exit END
each SECOND

II
do

await i0 METER; emit BUMP; exit END
II awas 4 sECOND; emit STOP; exit END
upto TOO.FAST

end.

The "loop ... each SECOND" is started ag~n each second. Thus, the exception
TOO-FAST iS only raised if three METER signals are received between two successive
SECOND signals. In that case, the whole program terminates because of the " e x i t END"
statement.

From this program, the ESTEREL compiler builds an interpreted automaton similar to
that of Fig. 1 (where X++ denotes the value of X after incrementing it). It introduces 3
counters: T for counting 4 seconds (the time), S for counting 3 meters each second (the

3 All the examples will be given in ESTEREL, on the one hand, because it is probably the best-
known synchronous language, and on the other hand, because it contains specific statements to
deal with delays. However, the method described here can be applied to other languages.

335

SECOND?T++<4 ? ~ SECOND?T++=4 ?

T:'S:'L: = 0 ~

METER?S+§ [/ METER?S++=3 ?
L++<I 0 ? k.../ TOO.FAST :

Fig. 1. An interpreted automaton

speed), and L for counting 10 meters (the length). The structure of the automaton doesn't
show that the emission of BUMP is impossible.

Now, this automaton is a sequential program, dealing with 3 bounded integer variables.
An exhaustive simulation can be performed, which leads to a detailed, non interpreted,
automaton with 49 states and 146 transitions, on which the property can be checked. This
solution has an obvious drawback: The size of the detailed automaton clearly increases
as the product of the delays. Counting a time delay in milliseconds rather than in seconds
will tremendously increase the size of the automaton. So, our goal is to detect that some
transitions of the interpreted automaton cannot occur because of delay counting, without
considering the detailed automaton. For that, we will apply a general method, that was
proposed quite a long time ago but little applied, to discover linear relations among
numerical variables of a program. After recalling in Section 2 the principles of this method,
together with specific optimizations (Section 3), we will see on some examples that it gives
particularly precise results when applied to counters (Section 4).

2 L i n e a r relation ana l y s i s

The linear relation analysis [CH78, Hal79] is an application of the general method of
abstract interpretation proposed by P. & R. Cousot [CC77, CC92a]. It is an approximate
analysis method which discovers invariant linear relations among numerical variables of
a program. We informally recall its principles in this section.

2.1 Abstract interpretation

Abstract interpretation is a general method to find approximate solutions of fixpoint
equations. Most program analysis problems come down to solving a fixpoint equation
x = F (z) . Solving such an equation generally raises two kinds of problems:

1. The solution must be computed in a complex ordered domain (typically, the powerset o f
the state space of a program). Elements of this domain must be efficiently represented and
normalized, together with functions defined on the domain. The ordering relation among
the domain must be computed. A first approximation can take place at this level: instead
of computing in the complex domain C o f concrete values, one can choose a simpler
abstract domain A, connected to C by means of two functions ~ : C ~ A , 7 : A ~ C
forming a Galois connection: Vz 6 C, Vg 6 A, a (z) <A Y ~ z < c 7(!t)
where < c , < a respectively denote the order relations on C and A. The approximation
of a function F, from C to C, will be the function a (F) = a o F o 7, from A to A.
The basic result is that, if C is a complete lattice, ff F is increasing from C to C, then

336

,~(gp(F)) <A gp(,~(F)) (where ep(F) denotes the least fixpoint of F). So, computing
the least fixpoint in the abstract domain provides an upper approximation of the fixpoint
in the concrete one.
2. The iterafive resolution of a fixpoint equation can involve infinite (or even transfinite)
iterations. In some cases, the abstraction performed in (1) is so strong that the abstract
domain is either finite or of finite depth (there is no infinite, strictly increasing chain
Y0 <A gl <`4 . . .) . In such a case, the resolution in the abstract domain converges in a
finite number of steps. However, requiring the abstract domain to satisfy such a finiteness
condition is very restrictive. Better results [CC77, CC92h] can often be obtained by per-
forming another kind of approximation: When the depth of the abstract domain is infinite,
specific operators may be defined to extrapolate the limit of a sequence of abstract values.
For an increasing sequence (computation of a least fixpoint) one uses a widening operator,
usually noted V, from A x A to A, satisfying the following properties:

�9 VFI ,B2EA, Yl <`4 ylVy2 and Y2 _<`4 y1Vy2

�9 For any increasing chain (Yo <A Yl _<,4 . . .) , the increasing chain defined by ~ = Yo,
~/+1 -- y[Vyi+I, is not strictly increasing (i.e., stabilizes after a finite number of terms).

Now, to approximate the least fixpoint .~ of a function G - - ~ = limi>o yl, with yo = _1_
(the least element of A) and yi+l = G(yi) ~ , we call compute an ascending approxima-
tion sequence (y[)i>_.o: ~0 = _1_, ~ + i = ~/VG(y[), which converges after a finite number

of steps towards an upper approximation ~ of ~ . This approximation can be made more

precise by computing a descending approximation sequence y~ = y , ~ - 1 = G (~ ') , ke.,

starting from ~ a standard sequence, without widening. Each term of the descending
sequence is an upper approximation of the least fixpoint ~ .

Parti t ioned systems: Assume the concrete domain C is the powerset of some set S of
states, and that S = K x S' , where K is a finite set. For each k E K , let C(k) =
{k} x 2 s ' , and for each z 6 C, let x(k) = z fl C(k). Clearly, for each x 6 C, the set
{z(k) [k E K} is a finite partition of z. Now, any fixpoint equation z = F (z) can
be written as a system of equations: /~k~r z(~) = F(t)(zO), x(2), "'" , z(IKI)) where
F(k)(z0) , z(2) , . . . , z(IKI)) = F (x 0) U x (2) U . . . U z(IKI)) fl C(k). This partitioning is
very common in sequential program analysis, where K often represents the set of control
points. It can be used to make the results more precise, as follows: The partition can
obviously be reflected in the abstract domain, by setting y(k) = a(x(k)), resulting in an
abstract system of equations /kk~K Y(~) = G(k)(Y 0), y(2) y(IKI)). We will say that
k depends on k ' if the value of G(k) (y0) ,y (2) y(IKI)) Can depend on the value of
y(k'). Let 7r be this dependence relation on K. Let Kv be a subset of K such that the
graph of Tea restricted to K \ Kv has no loop. Then the convergence of the ascending
approximation sequence is guaranteed even if the widening operator is only applied to
components belonging to Kv :

Vk E K, yo (k) = .1_
,(k) v,.(+)VG(k)(v!0 .!2) y~lKI)~ V k E I f v , Yi+1 = o , ~ , ,o, , "
,(k) ~ (k) (.0) .(2) ,,.(IKI))

V k E K \ l (v , Yi+l = - - ,oi ,~i , .

The advantage is that the widening operator, which is the one which looses information,
is applied less frequently.

337 ,, iiiiii' iiiiiii!iiiiiiiiii!iiiiiiiiiiiiiiiiiiiiii' ii!iiiii!l
3 :,,~iii~i!iiiii!iiiiiiiiNi!iiiii!i!!iiii!ii~!iiNi

~ :,::~;i!iNi::ili;iiii~}ii;~ii~i;~ii~iii~i!iiiiiiilNii!iiiili~ii~
2 4Niiiii~iliNiii!~!iii!iiii,N!i~ii~ ~
1

1)0

0
1 2 3

Fig.2. A convex polyhedron and its 2 representations

2.2 Convex polyhedra

P = (~-,~) I ~+y >
- ~ + ~ <

L=O

The linear relation analysis is used to deal with systems whose states include a numerical
part. Let us define the set of states to be S = N n x S ' , where N is a numerical set (e.g.,
1~1, 7/ or Q). A state s E S is a pair (X, s'), where X is a numerical vector and s' E S '
is the non-numerical part of the state (it can contain a numerical part which is kept out
of the analysis).

The concrete domain we consider is C = 2 s , and the abstract one is 7~(~n), the set of
convex polyhedra of O". Any subset x of S will be approximated by a convex polyhedron
c~(x) E 79(Q'~), such that (X, s') E x ~ X E ~(z) and any convex polyhedron
P E 7~(t~ n) will represent the set of states 7 (P) = { (X,s ') [X E P n N n , s' E S~}.

So, our abstract values are convex polyhedra. Let us recall that a convex polyhedron
P (a polyhedron, for short) has two representations (see Fig. 2):

�9 it is the set o f solutions of a system of linear inequalities P = { X [A X > B}, where
A is a m x n-matrix and B is a m-vector.

�9 it is the convex closure of a system of generators, i.e., three finite sets V, R, and L
(respectively for "vertices," "rays," and "lines") of n-vectors such that

e = + + I _ >_ 0, = i}
viEV rjER s i

These two representations are dual. There exist efficient algorithms [Che68, LeV92] for
translating each representation into the other; these algorithms also minimize the repre-
sentations. We will use the following basic operations on polyhedra (see Fig. 3 and 4):

Intersection: The intersection of two convex polyhedra P and Q is a convex polyhedron
whose system of linear inequalities is the conjunction of those of P and Q.

Convex hull: The convex hull of two polyhedra P and Q (noted P 12 Q) is the least
convex polyhedron containing both P and Q. Its system of generators is the union 'of
those of P and Q. The convex hull is used as an upper approximation of union, since
generally the union of two convex polyhedra is not convex.

Linear transformation: We will use linear transformations resulting of the substitution
of a linear expression to a variable. Here, we consider only very simple cases - - variable
reset, increment, and decrement ~ but the general case is similar.

�9 Let P[O/.Xi] = { (X 1 , X 2 , . . . ,X i - l ,O, Xi+l Xn) t X E P} be the result of
resetting to zero the i-th variable in a polyhedron P, The vertices (respectively, the rays,
the lines) of P[O/Xi] are obtained by setting to 0 the i-th Coordinate of the vertices (resp.,

338

r
PuQ

Fig.3. Intersection and convex hull

the rays, the lines) of P.

ID

Y l ~ + l/z]

P[Olv]

Fig. 4. Linear transformations

�9 The result P[Xi+I/XI] = {(X1,X2 Xi.l,Xi+l,Xi+l Xn) I X E P} of
incrementing the i-th variable in a polyhedron P can be computed easily on both repre-
sentations: if AX > B is the system of inequalities of P. then AX > (B + A(O) (where
A(0 is the i-th column of A) is the system of constraints of P[Xi+ 1/Xd. The vertices
of P[Xi+ 1/xd are obtained by incrementing the i-th coordinate of those of P, the rays
and the lines don't change. Variable decrement is performed symmetrically.

Test for emptyness: A polyhedron is empty if and only if it has no vertices.

Test for inclusion and equality: A polyhedron P, with system of generators (V, R, L),
is included in a polyhedron Q, defined by the system of inequalities AX > B, if and only
if Vv E V, Av > B A Vr 6 R, Ar > 0 A Vs E L, At = O. The equality of two
polyhedra is decided by showing the double inclusion.

Widening: While the basic operations on abstract values are determined by the choice of
tim abstract domain, the design of a widening operator is based on heuristics. The following
widening operator (hereafter called standard widening) was proposed in [Hal79]. Let P
and Q be two polyhedra. RougMy speaking, the widening PVQ is obtained by removing
from the system of P all the inequalities which are not satisfied by Q. Fig. 5.a shows an
example where P = {(z,y) [0 < Y < x < 1}, Q = {(x,y) [0 _< y < x < 2} and
PVQ = {(x, Y) [0 _< y < x}. The intuition is clear: whenever a constraint is translated or
rotated, it can do so infinitely many times, so it is removed. This operator clearly satisfies
the properties of a widening: the result contains both the operands, and since the system
of inequalities of PVQ is a subset of the one of P, the widening cannot be infinitely
iterated without convergence.

y j PVQ

(a)

Fig. 5. Widening operation

Y• PVQ

p w
Z

0~)

339

The actual operator is a bit more complicated: first, whenever P is empty, PVQ = Q.
Moreover, if P is included in a strict suhspace of Q", its minimal system of inequalities is
not canonical. It can be first rewritten into an equivalent system maximizing the number
of inequalities satisfied by Q, and thus kept in the result. For instance, consider:

P={(z ,y) I = = O ^ y = O } , Q={(z,y) I O < y < z < I }

The system of inequalities of P can be first rewritten into P = {(z, y) [0 < y < z _< 0}
before performing the widening, which evaluates to PVQ = {(x, y) [0 _< y _< x}
(see Fig. 5.b) instead of {(x, y) I 0 < y ^ 0 < z}, which would be obtained without
rewriting. This optimization preserves the widening properties. An efficient algorithm has
been proposed for it [Hal79].

3 Application to delay analysis
3.1 Automata

We will apply the linear relation analysis to automata produced by synchronous languages
compilers. Such an automaton is a finite set of states, each of which being associated with
a piece of sequential code. The sequential code executed in a smm is linear, in the sense
that it contains neither loop nor rccursion. It is made of three kinds of statements:

Assignments: Those which do not assign counter variables will be ignored in the analysis.
An assignment to a counter variable either increments it, or decrements it, or resets it to
zero.

Tests select statements to be performed according to some conditions. The only conditions
that will be taken into account in the analysis am comparisons of counter variables with
integers.

Branching statements select the next state of the automaton. These statements terminate
the code executed in a state.

Fig. 6 gives the code of the automaton shown in Fig. I.
We will take advantage of this control structure to get a partitioned system. A state

of the program is a triple (s, X, Y), where s is a state of the automaton, X is a vector
of counter values, and Y is a vector of values of other variables (e.g., those giving the
presence of external signals) which will be ignored. With each state s of the automaton,
we will associate a polyhedron P,, which will be an approximation of the set {X I
3Y, (s, X, Y) is a reachable state of the program}.

Since we are interested in determining what transitions can occur and what states can
be reached, we will also associate a polyhedron with each branching statement, which
will approximate the set of reachable states of the counters when executing those state-
ments: Let Pi,8,,, be the polyhedron associated with the i-th "gore state s" state-
ment appearing in the code of state s'. Fig. 6 shows the polyhedra to be computed for
our small example. Clearly P, is the convex hull of all the Pi,,,.,, and Pi,~,,, is com-
puted from P,, according to the statements executed along the branch leading to the i-th
"goto state s" appearing in the code of s'. The transformation of polyhedra result-
ing from assignments is straightforward. For tests, three cases occur: Let F,, F! be the
transformations corresponding respectively to entering the "then" and "else" branches of
a test, Then,

�9 if the condition is not a linear expression of the counters, it is ignored, and both F, and

340

State 1 . {.,P l}
T=0; L=0; S=0; goto State 2 {PL*#}

S t a t e 2 . {P 2}
if SECOND then S=0;

if T++=4 then emit STOP; goto State 3 {~,2,3}
end;
goto State 2 .. {PI,2#}

end;
if METER then

if 5++=3 then emit TOO_FAST; goto State 3 {~,2,3}
end;
if L++=I0 then emit BUMP; goto State 3 {8,2,3}
end;
goto State 2 .. {P2,2,2}

end;
goto State 2 .. {P3,2,2}

S t a t e 3 . {P 3}
goto State 3 ... {PI,3,~}

Fig. 6. The code of the automaton, with associated polyhedra

F! are the identity function AP.P.

�9 ff the condition is of the form "Xi < k", wherd 3(/ is a counter and k is an integer

constant, then Ft = AP.PN {X [Xi <_ k} , 1;'i = AP.PA {X [Xi > k + 1}.

�9 if the condition is of the form "Xi = k", then F, = AP.P N {X I Xi = k} , F! =
AP.(PA {X I Xl > k + 1}) U (P N {X I Xi < k - 1})

Notice that we lake advantage of the fact that counters are integer variables, by setting
-,(Xi < k) =_ (Xi > k+ 1) and that the non-convex set PN{ X [Xl # k} is approximated
by the convex hull of the two polyhedra PA {X I X i > k+ 1} and P N {X I Xi <_ k - 1}.
Here are the definitions of the polyhedra corresponding to our example:

PI = true (initial state)

P2 = Pl,l,2 U PL2,2 tJ P2.2.2 LI P3,2,2

/'3 = P1,2,3 U P2,2,3 U P~,2,3 U P~,3,3

eu,2 = e,[o/r][o/ s][o/ q

?~,2,3 = J%[O/S][T+ VT] n fiT, S, L) I T = 4}

P,,2,2 = (P2[OIS][T+ 1/T] N {(T, S, L) I T < 3}) U (P2[O/S][T+ l /T] n {(T, S, L) I T >_ 5})
P2,2.~ = P2[S+I/S] n {(T, S, L) I S = 3}
e3,2,s -- p[r,+i/q n {(T,S, L) I L = Io}

P2,2,2 = (Q[L+I/L] n {(T, S, L) I L < 9}) t.I (Q[L+I/L] n {(T, S, L) I Z > 11})
with Q = (&[S+ l/S] n {(T, S, L) I S _< 2}) u (P2[S+ 1/S] n {(T, S, L) I S _> 4})

P3,2,2 = Pz

P,,,,~ = / '3

341

3.2 Widening strategies
The points where the widening is performed are selected among state entry points. Al-
though the ESTEREL compiler generates a dummy transition looping on each state, we
do not have to perform a widening in each of these loops where no action is performed.
So, we consider only the transitions containing actions on counters, and we select a state
in each loop of such transitions. In our example, we select state 2, which belongs to any
loop, and change the equation of P2:P2 = P2 V (Pl,l,2 U P1,22 U 1'2,2,2 t_l P3,2,2).
Moreover, our experimentations show that both the precision and the performances of the
analysis are improved by the following modifications:

Widening "up to": One can choose a fixed set of linear constraints, say M, and define
a new "widening up to M" operator VM as follows: PVMQ is the intersection of the
stfindard widening P V Q with all the constraints in M that are satisfied by both P and Q.
For instance, if a counter z is declared to be of subrange type 0.. 10, if the domain of x is
first {z = 0} and then {0 __< z _< 1}, it is reasonable to widen this domain to {0 < x < 10}
instead of {0 < x }. It is a way of guessing an invariant-- a guess that can be found false at
a next step. This heuristic changes neither the property of the widening nor the correctness
of the result. In many cases, not only it avoids the necessity of the decreasing sequence

since the increasing sequence reaches a fixpoint-- but also it provides a more 9recise
result. In the case of our counters, a set of conslraints M is associated with each widening
state. This set is selected to be all the linear relations which make the control remain in
the state. The intuition behind this choice is the following: Assume s is a state whose only
outgoing transition is guarded by the condition "x++ffil 0" and that s is entered with x=0.
Then, since the control remains in S (possibly incrementing or decrementing x) unless x
becomes equal to 10, x is likely to remain smaller than 9 as long as the control is in s.
In our example, the state 2 is left when either T++---4 or S++=3 or r.++=10. The set of
constraints limiting the widening is {T < 3 , T >__ 5, S < 2 , S >__ 4 , L _< 9 , L >_ 11}.

Non-regular behavior: Any widening operator is chosen under the assumption that a
program behaves regularly: When we get {x = y = 0} at the first step, and {0 < y <
z < 1} at the second step, this assumption of regularity consists of guessing that we are
likely to get {0 < g < z < 2} at the third step, and so on; this is why the standard
widening extrapolates the limit to {0 < // < x}. Now, the assumption of regularity is
obviously abusive in one case: when a path in the loop becomes possible at step n,
the effect of this path is obviously out of the scope of the extrapolation before step n
(since the actions performed on this path have never been taken into account). So, if the
polyhedron associated with a widening point depends on some polyhedra which become
non-empty at step n, the extrapolation performed before can be questioned. In such a case,
the extrapolation will be performed from the first non-empty solution: In our example, if
one of p(n) p(n) p(n) p (,) is not empty whereas it was at step n - 1, we will take 112 122 222 3,2,2
e(n+l) --. P2 (1) V ~,~[D(n)l,l,2 II p(n)l,2,2 II ~(n)2,2,2 II "0(n)~3,2,2/ because P2 O) is the first non-empty
version of P2.

4 Examples
4.1 The "car" example
Let us detail the analysis of the very simple program we considered so far. The system of
equations has been given in w Let us recall (cf. w that the only widening state is

342

State 2, and that the widening is performed up to the following constraints: M = {T <
3 , T > 5 , S _< 2 , S > 4 , L < 9, L >_ 11 }. The successive computation steps are the
following:
Step 0: Initially, all the polyhedra am empty.
Step 12 The first iteration in the loop provides:

p = = _ _ s = L =

P,~,'~= P(O[T + IlT][OIS].n {T <_ 3}) u (~ 0 [T + 1/2'][0/8] n {T _> 5})
={T=I,S=L=O}

Q = (P~=I)[S + t/S] n {I S _< 2}) u (~ ') [S + US] n {S _> 4})
= { $ = I , T = L = O }

p.(l) = (Q[L + I/L]n {L < 9})u (Q[L + I/L]n {L > 11})
2 , 2 , 2 - - - -

: { $ = L = I ,T : 0}

and so ~(=) u p(i) u P.(') = {T > 0, S = L _> 0, S + T _< I}
1 ,1 ,2 1 ,2 ,2 2 , 2 , 2 - -

Step 2: The widening is applied, and we get:

P2 (2) = {T = $ = L = 0 }V~r {T _> 0, S = L > O,S+T<_ 1}
= {O<_SfL<_2 ,0<_T<3}

P,~=,)= = P(Z)[T +]/T][o/s] n {T < 3]) u (P~z')[T + 1/T][O/S] n { T > 5})
= {s = o,o_< L_< 2,1 _< T_< 3}

Q = (P=(=)[S + 1IS] n {I s _< 2})u (~2)[s + z/s] n {s > 4})
= { ~ < S = L + I _ < 2 , O < T < 3 }

P.(=)~2,= -- (Q[L + i l L] n {L _< 9}) u (OIL + 1/1;] n {1; >_ n })
= { I_<S=L_<2,0_<T_<S}

and P,~,2)2 U P,I(,27)= U P(,~2 = { 0 < $ < L < 2T 4" S ,L < 2, T < 3}

Step 3:

p(S) = {O< S <_L < 2 T + S , T < 3 , L <_2}
t~ (~) { S : O , O < L < 2 , 1 < T < 3 } p.~(~' =
2,2,:= {I <S <L <2T+S,T<_3, L <_3,S <_2}

and /~(3) o~(3) uP.(3) ={o< s< L<2T+S,L_< S+2,T<3,L <3,8<2} 1 ,1 ,2 1 ,2 ,2 2 ,2 ,2 - - - - - -

Step 4:

P(') = { 0 < S < L < 2 T + S , T < 3, S < 2}
R (') = { S : 0 , 0 _ < L < 2 T , I < T < 3 } 1 ,2 ,2 - - - - - - .

P.(~) {I<S<L<2T+S,T<3, S<2} 2 , 2 , 2 "~-

and since ~t(~!, u ~('),,:.2 u P.(()2.2.2 u P~((),.=.2 u P~('),.,.= = P~(') the sequence converges on a f ixpoint .

The polyhedra which do not belong to the loop evaluate to:

P,,2,, = {S = 0,0_< L_< $,T 24}
P2,2,3 = {S = 3,2 < L < 2T+ 2,T _< 3}

P,,2,, = i

The final results are shown on Fig. 7. From the fact that P3,2,3 is empty, we conclude
that the corresponding transition cannot occur, and that the BUMP signal is never emitted
in the ESTEREL program.

343

State 1
T-0; L-0; s-0;
gOtO State 2 . { T = $ = L = O)

State 2 . {0< S < L ~ 2T+ S,T_< 3,S < 2)
i f SECOND then S-0;

I f T++-4 then
emit STOP; (Jo~co State 3 {S = 0 , 0 ~ L < II, T = 4)

end;
goto S t a t e 2 . {S ----- 0,0 ~ r , < 2 T , | ~ T < ' ; }

end;
if METER then
if S++-3 then
emit TOO.FASTt goto State 3 {S = 3,2 < L < 2T+ 2,T < 3}

end;
if L++-I0 then

emit" BUMP; qoto State 3 {0}
end;
goto state 2 ;...{I<S<L<2T+S,T<3, S<2}

end;

State 3 {3T+S < 12<3T+4S, 2S<3r-<6T+2S, S<3}
gore State 3

Fig.7. Results of the analysis of the "car" example

4.2 The "train-gate controller" revisited

Let us complexify an example considered in [Alu91], introducing some multiform-time
problems: It is an automatic controller that opens and closes a gate at a railway track
intersection (We do not pretend it corresponds to a realistic system!).

When the train approaches the gate (see Fig. 8), it pushes a pedal. 800 meters farther,
it crosses a signal:

�9 if the signal is red, the wain puts on the brakes, and stops within 550m;

�9 otherwise, it crosses the gate 770m after the signal, and pushes an exit pedal 1000m
after the gate.

Two seconds after receiving a signal from the entry pedal, the controller commands the
gate closure. Normally, the gate closes within 7s, but it may fail. So, 8s after the closure
command:

�9 if the gate is not closed, the controller switches the signal on red, to stop the train;

�9 otherwise, it waits for the signal from the exit pedal and commands the gate openning.

The maximum speed of the train is 69m/s.

~br sk ing disumce
entry F 550m ~ gate exit
pedal / ,, ~ pedal

mm s i g n a l m s
BOOm 770m 1000m

Fig.& The Irain-gate example

344

- 1 0 < # b - # ~ < -1 - 9 < # b - # 8 _ ~ 9 1 < # b - # 8 ~ d + l O
08 _> 10 #b > 0 d + 10_< #b

#~>_0 0 < d < 9

Fig. 9. Result of the subway example, with one train

r~ -'f STOPPED)

1 < # b - # J <19
19 _< 9#8 -I- #b

#b >_ lo

From a program simulating this system, the ESTEKEL compiler generates an automa-
ton with 104 states and 451 Wansitions. The analysis finds that 82 of these states are
unreachable. Removing the unreachable part, we get an automaton with 22 staw.s and 56
transitions. Every transition on which ON_GATE is emitted also emits GATE_CLOSED.

So, this example shows that the analysis results can be used not only to prove program
properties, but also to reduce the size of the automaton and optimize the object code.

4.3 A subway speed regulation system

Our last example is extracted from an actual proposal for an automatic subway. It concerns
a (simplifiea version of a) speed regulation system avoiding collision. Each train detects
beacons that are placed along the track, and receives the "second" from a central clock.
Ideally, a train should encounter one beacon each second. So the space left between
beacons rules the speed of the train. Now, a train adjusts its speed as follows: Let #b
and #s be respectively the number of encountered beacons and the number of received
seconds.

�9 when #b _> #s + 10, the train notices it is early, and puts on the brake as long as #b > #s.
Continuously braking makes the train stop before encountering l0 beacons.

�9 when #b _< #s - 10, the train is late, and will be considered late as long as #b < #s. A
late train signals it to the central clock, which does not emit the "second" as long as at
least one train is late.

The results of the analysis of a simulation program for one train are shown in Fig. 9.
Notice that the absolute difference [#b - #s I is shown to be bounded. Notice also that
the bound 19 has been discovered, although it does not appear in any condition of the
program. For two trains, the analysis shows that the difference #bl - #b2 of the number
of beacons encountered by each train remains in the interval [-29, +29]. So, ff they are
initially separated by more than 29 beacons, no collision can occur.

5 C o n c l u s i o n

The symbolic program analysis methods were strongly studied in the late seventies; in
program verification, they were afterward almost completely abandoned because of the
first success of enumerative model-checking. Now, in view of the development of boolean
symbolic model-checking, thanks to Binary Decision Diagrams, many people are trying
again to apply symbolic techniques (e,g.,[DKK91, MPS92, Cor92]) to numerical systems.

345

Program number of Control automaton Detailed automaton 4 Result automaton Analysis

variables #states #trans. #states I #trans. #states[#1aans. time

Car 3 3 6 49 146 3 5 0.3s

Train 8 104 451 445,900 972,372 22 56 1.8s
Subway

4 g 41 66 103 5 27 0.7s
1 train

, .

Subway
7 37 297 4536 9340 17 71 16.6s

2 trains

Table I. Performances of the analysis

For taking delays into account in the analysis of synchronous program, our first
idea was to adapt the model-checking techniques developed for timed automata [ACDg0,
ACH+92]. Unfortunately, timed automata do not'take into account the multiform time
handled by synchronous programs [JMO93], and particularly the dependence relations
existing between different time scales.

So, we decided to apply an approximate method. The approximations we make seem
well-suited for that application field. As a matter of fact, fIom the reduced set of operations
allowed on counter variables, the range of these variables is very likely to be a convex
polyhedron w or, more precisely, the set of points with integer coordinates that belong to
a convex polyhedron (Notice that our computations are done in rational numbers, because
of the cost of linear programming in integer variables; once again, this constitutes an
upper approximation).

The proposed method is a combination of automata-based methods with abstract inter-
pretation: On the one hand, the analysis can reduce the size of the automaton, and on the
other hand the automaton is used for partitioning the analysis. So, it would be interesting
to combine the delay analysis and the automaton generation, both to avoid the generation
of unreachable states and to choose the best partition.

Up to now, only a rough prototype has been implemented, for experimentation pur-
poses. It is based on the very efficient implementation of Chernikova's algorithm provided
by [LeV92]. The Table 1 gives the analysis times for the considered examples. All our
examples have been presented in ESTgREL, but as soon as the analyzer will be fully
interfaced with the common intermediate code of synchronous languages [PS87], it will
be applicable to any language using this code.

R e f e r e n c e s

[ACD90] R. Alur, C. Coureoubetis, and D. Dill. Model checking of real-time systems. In Fifth
IEEE Symposium on Logic in Computer Science, Philadelphia, 1990.

[ACH+92] R. Alur, C. Coureoubetis, N. Halbwachs, D. Dill, and H, Wong-Toi. Minimization of
timed transition systems (extended abstract). In CONCUR'92, Stony Brook. LNCS 630,
Springer Verlag, August 1992.

4 The size of the detailed automata were determined by a state graph traversal using the tool
Murphi [DDHY92].

346

[Alu91] R. Alur. Techniques for automatic verification of real-time systems. Phd thesis, Stanford
University, August 1991.

[BS91] F. Boussinot and R. de Simone. The ESTEREL language. Proceedings of the IEEE,
79(9):1293-1304, September 1991.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of lixpoints. In #th ACM Symposium
on Principles of Programming Languages, January 1977.

[CC92a] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.
Research Report LIX/RR/92/08, Ecole Polytechnique, March 1992. (to appear in the
Journal of Logic Programming, special issue on Abstract Interpretation).

[CC92b] E Cousot and R. Cousot. Comparing the Galois connection and widenning/narrowing
approaches to abstract interpretation. Research Report UX/RR/92/09, Ecole Polytech-
nique, June 1992.

[C'H78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables
of a program. In 5th ACM Symposium on Princ~les of Programming Languages, Tucson
(Arizona), January 1978.

[Che68] N.V. Charnikova. Algorithm for discovering the set of all' solutions of a linear pro-
gramming problem. U.S.S.R. Computational Mathematics and Mathematical Physics,
8(6):282-293, 1968.

[Cor92] J.C. Corhett. Verifying general safety and liveness properties with integer programming.
In G. Bochmann, editor, 4th Int. Workshop on Computer Aided Verijfcation, Montreal,
1992.

[DDHY92] D. Dill, A. J. Drexlar, A. L Hu, and C. H. Yang. Protocol verification as a hardware
design aid. In]992 IEEE Int. Conference on Computer Design: VLSI in Computers and
Processors, 1992.

[DKK91] S. Devadas, K. Kreutzer, and A. S. Krishnakumar. Design varification ansd teachability
analysis using algebraic manipulation. In ICCD'91, 1991.

[Hal79] N. Halbwachs. D~terrnination automatique de relations lin6aires v6rifi,Ses par les vari-
ables d'un programme. Th~se de 3e cycle, University of Grenoble, March 1979.

[HLR92] N. Halbwachs, E Lagnier, and C. Ratel. An experience in proving regular networks of
processes by modular model checking. Acta Informatica, 29(6/7), 1992.

[IEE91] Another look at real-time programming. Special Section of the Proceedings of the IEEE,
79(9):1293-1304, September 1991.

[JMO93] M. Jourdan, E Maraninchi, and A. Olivero. Varifying quantitative real-time properties Of
synchronous programs. In Fifth Int. Workshop on Computer Aided Verifzc~ion, Elounda
(Crete), July 1993.
H. LeVerge. A note on Chemikova's algorithm. Research Report 635, IRISA, February
1992.
E. Macii, B. Plessiar, and F. Somenzi. Verification of systems containing counters. In
ICCAD'92, 1992.
J.A. Plaice and J-B. Saint. The LUSTRE-ESTER.EL portable format. Unpublished
Report, INRIA, Sophia Antipolis, 1987.

[Lev92]

[MPS92]

[PS87]

