
Computer-Assisted Simulation Proofs

JCrgen F, Sogaard-Andersen 1., Stephen J. Garland, John V. Guttag,
Nancy A. Lynch, and Anna Pogosyants 2.*

Technical University of Denmark, Building 344, DK-2800 Lyngby, Denmark
2 MIT Laboratory for Computer Science, Cambridge, MA 02139, USA

Abs t rac t . This paper presents a scalable approach to reasoning for-
mally about distributed algorithms. It uses results about I/O automata
to extract a set of proof obligations for showing that the behaviors of o n e

algorithm are among those of another, and it uses the Larch tools for
specification and deduction to discharge these obligations in a natural
and easy-to-read fashionl The approach is demonstrated by proving the
behavior equivalence of two high-level specifications for a communication
protocol.

1 I n t r o d u c t i o n

When showing that two distributed algorithms or protocols are equivalent, or
tha t one is an implementation of another, we are often faced with a choice be-
tween intuitive arguments and careful proofs. Intuitive arguments highlight es-
sentiM ideas, but are often flawed or depend upon unstated assumptions. Careful
proofs provide a higher level of confidence, but tend to be long and tedious. At
best, t h e y are t ime consuming to construct; at worst, they too are error prone.

One way to strike a better bMance is t ouse the computer to help move from
intuitive arguments to formal proofs. There are two distinct stages to doing this:
first, constructing a formal description of the artifacts being reasoned about, and,
second, constructing a proof that the desired relationship holds. In performing
these steps, it is important to consider at least the following questions:
(1) How confident is one that the formal description of a specification or algo-
r i thm corresponds to the artifact (e.g., software or hardware) in which one is
actually interested?

i

(2) Does the formal argument convey the intuition of a good informal argument?
(3) How much can be reused if one changes the specification, algorithm, or proof?

The answers to these questions vary greatly, depending upon the descriptive
and proof techniques used. In this paper, we present an approach to reasoning
formally about distributed algorithms that we feel addresses these questions in

* Research supported in part by the Danish Research Academy.
** Research supported in part by the Advanced Research Projects Agency of the De-

partment of Defense, monitored by the Office of Naval Research under contracts
N00014-92-J-1795 and N00014-92-J-4033, by the National Science Foundation under
grants 9115797-CCR and 8915206-CCR, and by the Office of Naval Research under
contract N00014-91-3-1046.

306

a reasonable way. This approach brings together the work that some of us have
done using I/O automata to reason about distributed algorithms [7] and the
work that others of us have done to provide tools for formalizing specifications
[4] and for automating deductions [3].

Our approach uses forward and backward simulation methods, described in
[1, 8], to isolate sets of proof obligations that guarantee that the traces of one
automaton are included in the traces of another. We formalize the automata
using the Larch Shared Language (LSL) [4] and then use LP, the Larch Proof
Assistant [3], to construct simulation proofs.

We use simulation proofs because we believe that this method captures for-
mally the natural structure of many informal correctness proofs for both finite
and infinite state systems. In particular, it captures and generalizes the structure
of proofs based on successive refinements. Proofs using simulations are generally
based on key intuitions about the execution of algorithms. Simulation relations,
like invariants, tend to capture central ideas; hence they provide important doc-
umentation for algorithms. Simulations also tend to be readily modifiable when
implementations are modified or when related algorithms are considered.

Using LSL, we are able to describe automata in a way that corresponds
closely to the way they are usually described. LSL's syntactic amenities and
facilities for modularizing specifications are particularly useful. Using LP, we are
able to construct proofs whose structure is identical to that of the usual careful
hand proofs. We supply the same invariants,, simulation relations, and lemmas
that appear in hand p~oofs; LP saves us from supplying the tedious details. The
process of inventing invariants, simulation relations, and lemmas can involve
considerable intellectual effort, bu t we believe that this effort is worthwhile: it
yields considerable insight into why algorithms work. Once an LP proof has been
completed, the proof script is easily read by a person, and it contains enough
information for the reader to reproduce the elided steps, given access to LP or
another sufficiently powerful theorem prover [2, 6, 9].

The remainder of this paper describes our approach in more detail and
provides an illustrative example. Section 2 provides background about I /O au-
tomata and simulation proofs. Section 3 contains part of a careful hand proof
that two example automata simulate each other. Section 4 shows how we for-
malize the definitions of these automata in LSL, and Section 5 presents the LP
proof scripts. Finally, Section 6 draws some conclusions about this approach.

2 A u t o m a t a

In this paper we consider simplified versions of I /O automata [7]. The major
simplification is that we do not deal with fairness or other types ofliveness; hence
our automata lack a component that defines what it means for an execution to
be fair. We also do not distinguish between input and output actions, which
we group together into a single set of external actions. In fact, our notion of
automata is the same as that of untimed automata in [8], except that we allow
multiple internal actions.

307

D e f i n i t i o n 1 (A u t o m a t o n) . An automaton A consists of four components:

- states(A) is a (finite or infinite) set of states.
- start(A) is a nonempty set of start states (start(A) C states(A)).
- sig(A) is an action signature (ext(A), tat(A)), where ext(A) and tat(A) are

disjoint sets of external and internal actions. The set acts(A) of actions of
A is tat(A) U ext(A).

- steps(A) is a transition relation (steps(A) C_ states(A) • acts(A) • states(A)).

An execution fragment a = so, 7rl, sl, r2, s2 , . . , of an automaton A is a (finite
or infinite) sequence of alternating states and actions starting with a state so,
ending in a state sn if the sequence isfinite, and such that (si,Tri+l,si+l) E
steps(A) for all 'i (less than n if ~ is finite).

The function first gives the first state of an execution fragment, i.e., first (~) =
so. For finite execution fragments, the function last gives the final state. An
execution of A is an execution fragment that begins with a start state, i.e., an

for which first(a) e start(A).
The trace (sometimes also known as the behavior) of an execution fragment

c~, written trace(c~), is the sequer~ce of external actions occurring in a. Likewise,
the trace of a sequence w of actions, written trace(w), is the restriction of w
to ext(A). A sequence /3 of actions is a trace of an automaton A if there is
an execution a of A with trace(a) = 13. The set of traces of A is denoted by
traces(A); the set of finite traces is denoted by finite-traces(A).

C o r r e c t n e s s a n d Trace Inc lus ion . In this paper, we concentrate on tech-
niques for showing that the traces of one automaton (the implementation) are
included among the traces of another (the specification). By itself, trace inclu-
sion is not sufficient to express a notion of correct implementation, because it
does not rule out trivial implementations that do nothing.

The definition of I /O automata [7] rules out automata with trivial trace sets
by partitioning the external actions into input actions and output actions and
by requiring that some step with every input action be enabled in every state.
The definition also imposes additional fairness requirements on executions. An
I /O automaton A is said to be an implementation of another I /O automaton
B if the set of fair traces of A is a subset of the set of fair traces of B, where
fair traces are traces of fair executions, i.e., of executions that satisfy the extra
fairness requirements.

This form of correctness for I /O automata is usually proved in two steps.
First, a simulation proof technique is used to prove trace inclusion. Second,
other proof techniques, e.g., based on a temporal logic, use the simulation result
and fairness requirements to prove fair trace inclusion. Examples like that in [5]
show that the simulation step can be complex. Hence the techniques described
in this paper for proving trace inclusion can provide significant help in this first
step of a correctness proof.

T e c h n i q u e s for P r o v i n g Trace Inc lus ion . Several simulation proof tech-
niques can be used to show trace inclusion. We define two: forward and backward
simulations. Other simulation proof techniques are defined in [8].

308

D e f i n i t i o n 2 (F o r w a r d S imu la t i on) . Let A and B be automata with the
same external actions. A forward simulation from A to B is a relation f over
states(A) • states(B) such that:

1. If s E start(A), then there is a u E start(B) such that (s, u) E f .
2: If (s', 7r, s) E steps(A), u' E states(B), and (s', u') E f , then there is a finite

execution fragment a of B such that first(a) = u', (s, last(a)) E f , and
trace() = trace(a).

D e f i n i t i o n 3 (B a c k w a r d S imu la t i on) . Let A and B be automata with the
same external actions. A backward simulation from A to B is a relation b over
states(A) • states(B) such that:

1. If s E states(A), then there is a u E states(B) such that (s, u) E b.
2. If s E start(A) and (s, u) E b, then u E start(B).
3. If (s', ~r, s) E steps(A), u e states(B), and (s, u) E b, then there is a finite

execution fragment a of B such that last(a) = u, (s',first(a)) E b, and
trace() = trace(a).

To state a soundness result for these simulations, we need the following defi-
nition: A relation r over $1 • 5:2 is image-finite if for all elements sl of $1 there
are only finitely many elements s~ of S~ such that (sl, s2) E r.

T h e o r e m 4 (S o u n d n e s s o f S i m u l a t i o n s [8]). Let [4 and B be automata with
the same external actions.

1. I f there is a forward simulation from A to B, then traces(A) C_ traces(B).
2. I f there is a backward simulation from A to B, then finite-traces(A) C_

finite-traces(B). I f there is an image-finite backward simulation from A to
B, then traces(A) C traces(B). D

Even though both forward and backward simulation techniques are sound
with respect to trace inclusion, they are not complete: there exist automata
such that the traces of one are included among those Of the other, but for which
no forward or backward simulations exist. Combinations of forward and back-
ward simulations involving intermediate automata, however, can be shown to be
complete [8].

3 A n E x a m p l e : T h e L o s s y M e s s a g e Q u e u e

This section describes two specific automata and presents part of a careful man-
ual proof of the existence of a forward simulation from one automaton to the
other, and the existence an image-finite backward simulation in the opposite
direction. The soundness result of Theorem 4 allows us to conclude that the two
automata have the same traces.

These automata are slight simplifications of the top two levels of the correct-
ness proofs in [5]. The first protocol, S, is the specification of the at-most-once
message delivery problem. It describes a "lossy message queue" - - a queue for

309

which special crash events can cause the loss of any of the messages in the
queue. All proofs in [5] can be done directly via simulations of S; however, doing
this requires very complicated combinations of forward and backward simula-
tions. The reason that backward simulations are required is that , while a crash
can "cause" loss of messages, the decision as to which messages actually get lost
might not be made until long after the time of the crash (depending on certain
race conditions in the algorithms).

The method used in [5] to reduce the complexity of the simulations is to split
up the mapping into two parts. A new version D of the specification is defined;
this is similar to S, except that it delays the decision about which messages are
lost because of a crash. Thus, in D, a crash event merely marks the messages
in ' the queue, and an internal lose event is permit ted to remove any marked
messages from the queue at any time. A backward simulation is shown from D
to S, and then simpler forward simulations suffice between the actual algorithms
and D.

Both S and D have a queue as their only state variable. An external action
insert(m) inserts a message m at the e n d o f the queue, and an external action
remove(m) removes the message at the head of the queue, provided this mes-
sage is m. Both automata also have an external crash action..In S this action
can remove any number of messages from the queue; in D, it merely marks all
messages in the queue. An internal lose action in D is allowed, at any time, to
remove any number of marked messages from the queue.

A u t o m a t o n S: A S i m p l e S p e c i f i c a t i o n fo r t h e Lo s sy Q u e u e . The only
state variable in S is queue, which ranges over finite sequences 3 of elements from
some arbitrary set Msg. Initially, queue is empty. We refer to the queue in state
s by s.queue.

We specify the allowable steps of S by giving preconditions and effects for
the three different kinds of actions. A triple (s', r , s) is in steps(S) provided s/
satisfies the precondition for rr and s can be obtained from s' by the changes
given in the corresponding effect clause. We omit the precondition if it is "true."

insert(m)
Eft: queue:= queue'm

crash
Eft: Delete any number of

elements from queue

remote(m)
Pre: ~empty(queue) A

hdqueue =m
Eft: queue:=tlqueue

A u t o m a t o n D: A D e l a y e d I m p l e m e n t a t i o n o f t h e Lossy Q u e u e . As in
S, the only state variable is queue. However, in D, queue ranges over finite
sequences of pairs of Msg and Mark, where Mark = Bool. Initially, queue is

3 We use the following basic operators on sequences: s^e and e's denote appending the
element e to the end and beginning of the sequence s. For any nonempty sequence s,
we let h__dds and last s denote the first a~d last element of s, and we let t l s and ini t s
denote the sequences of all but the first and all but the last element of s. Finally,
empty(s) is true iff s is the empty sequence.

310

empty. To get the components of a pair, we use the normal record notation.
Thus, if e = (m, b), then e.msg = m and e.mark = b. We say that e is marked if
b is true and unmarked otherwise.

insert(m) crash
Eft: queue := queue" (re,false) Eft: queue :--- mark(queue)

remove(m) lose
Pre: -~empty(queue) ^ Eft: Delete any number of marked

(hd queue).msg = m elements from queue
Eft: queue := t l queue

In the specification of the crash action, the function mark is intended to
change the mark of all the elements of its argument to true. In the following
proofs, we use subseq and subseqMarked to denote the relations between queues
before and after the crash and lose actions of S and D, respectively.

Simulat ion Relat ions be tween D and S.

D e f i n i t i o n 5 (F o r w a r d S i m u l a t i o n f r o m S t o D) . Let s be as tu te of S and
u be a state of D. Define (s, u) E f iff messages(u.qneue) = s.queue.

In this definition the function messages is intended to take a queue of the au-
tomaton D and throw away all the marks, i.e., to return the sequence of message
components of the queue.

D e f i n i t i o n 6 (B a c k w a r d S i m u l a t i o n f r o m D t o S). Let s be a state of D
and u be a state of S. Define (s, u) E b iff u. queue consists of the message compo-
nents of a subsequence of s.queue that contains at least all unmarked messages,
i.e., iff there is a q such that u.queue = messages(q)A subseqMarked(q, s. queue).

H a n d P r o o f s T h a t S i m u l a t i o n s A r e C o r r e c t . Here we present part of our
hand proofs of the forward and backward simulations between S and D. We will
no t - - and cannot - -be strictly formal because we have not presented formal defi-
nitions for the functions we used to describe the automata and the simulations.
Instead, we will rely on our intuitions concerning these functions. For example,
we will use facts such as messages(q ^ (m, b)) = messages(q) ^ m. Despite this,
we have carefully written down 'all interesting steps in the proofs, and we be-
lieve that the level of detail in these proofs is typical of careful hand-writ ten
simulation proofs.

T h e o r e m 7. f is a forward simulation from S to D.

Proof. We check the two conditions from Definition 2.
1. InitiMly both queues are empty, and empty queues correspond.
2. Let (sl, lr, s) be any step of S. Let u I be an arbitrary state of D such

that (s ~, u ~) E f . We must show that there is a finite execution fragment ~ of
D starting in u' such that (s, last(~)) E f and trace(s) = trace(Tr). We divide
the proof into cases, one for each action. Here we show the proof for the crash

311

action only. The proofs for the insert and remove actions are similar in style and
length.

Define a = (u ~, crash,u", lose,u), where u" is defined to be the state with
u".queue = mark(u~.queue), and u is defined to be the state with u.queue =
addMarks(s.queue), where addMarks adds a mark of true to each message in
a sequence of unmarked messages. Obviously, trace(a) = trace(r) = crash. We
must show that a is indeed an execution fragment of D and that (s, u) E f .

It is easy to see that (u', crash, u") is a step of D. We show that (u", lose, u)
is also a step of D. By the definition of crash in S, subseq(s.queue, s~.queue).
Because (s', u') is in f , subseq(s.queue, messages(u'.queue)). Because changing
marks does not affect messages, subseq(s.queue, messaoes(mark(u'.queue))); and
suq~seqMarked (addMarks (s. queue), mark(u(queue)) holds because everything in
mark(u~.queue) is marked. Hence, by the definitions of u and u", it follows that
subseqMarked(u.queue, u".queue), so that (u", lose, u) is a step of D and a is an
execution fragment of D.

Also, messages(u.queue) = messages(addMarks(s.queue)) = s.queue, and so
(s, u) E f- []

T h e o r e m 8. b is an image-finite backward simulation from D to S.

Proof. We first observe that b is image-finite. For any state s of D there are only
a finite number of queues q such that subseqMarked(q, s. queue). Hence there are
only finitely many states u of Ssuch that u.queue = messages(q). This suffices.

To show that b is a backward simulation, we check the three conditions from
Definition 3. We do not include that proof here, but note that it is similar in
style to, and about twice as long as, the forward simulation proof. []

4 F o r m a l i z i n g A u t o m a t a i n t h e L a r c h S h a r e d L a n g u a g e

In order to formalize our simulation proofs, we must first formalize the definitions
and abstractions used in the informal proofs. Here we use the Larch Shared Lan:
guage (LSL), which provides suitable notational and parametrization facilities,
and which is supported by a tool that produces input for LP.

The basic unit of specification in LSL is a trait. We begin by defining a
generic trait Automaton that introduces notations and definitions common to all
automata, e.g., an encoding of an automaton's start states as a unary predicate
and a definition of what it means to be an execution fragment. Later we use
LSL's facilities for combining traits to provide two specializations AutomatoaD
and Automatons of this trait.

A trait introduces two kinds of symbols, sorts and operators, and defines their
properties. Sort symbols denote disjoint nonempty sets of values. An operator
symbol denotes a total mapping from tuples of values (of the same or different
sorts) to a value.

The trait ExteraalActions in Figure 1 defines a sort consisting of the ex-
ternal actions for the lossy queue~ This trait is similar to specifications in many
"algebraic" specification languages. The part following the keyword in t roduces
declares a set of operators and provides each with its signature (the sorts of

312

ExternalActions: trait

introduces

insert : Msg --+ ExternalActions

remove : Msg --+ ExternalActions

crash : --~ ExternalAetions

asserts

ExternalActionsgenerated by
insert, remove, crash

CommonActions (A): t r a i t
includes ExternalActions
introduces

insert

remove

crash

external

: Msg -+ A$Actions

: Msg -+ A$Actions

: -+ A$Actions

: A$Actions-*

ExternalActions

isExternal : A$Actions -+ Bool

asserts V m: Msg

external(insert(m)) == insert(m);

external(remove(m)) == remove(m);

external(crash) == crash;

isExternal(insert(m));

isExternal(remove(m));

isExternal(crash)

Fig. 1. LSL traits defining external actions for lossy queue

its domain and range). Sorts are declared implicitly by their appearance in sig-
natures, and their names need have no relation to the n.ame of the trait. The
part of the trait following the keyword a s s e r t s constrains the operators, in this
case by an assertion that all values of sort E x t e r n a l A c t i o n s can be obtained as
values of one of the three listed functions. In general, a g e n e r a t e d by assertion
(such as Nat g e n e r a t e d by 0, succ) corresponds to a principle of induction.

Two technicM problems arise when we try to extend the E x t e r n a l A c t i o n s
trait to a general LSL definition for an automaton. Because LSL requires sorts to
represent disjoint nonempty sets, we cannot represent (possibly empty) sets of
internM actions as sorts, and we cannot have the sorts D$Actions and SSActions
for two automata D and S overlap in a common set of external actions. Instead,
we encode the sets of all actions of D and S as sorts DSActions and SSActions,
we encode a copy of their external actions as another sort ~ .x te rna lAc t ions ,
and we define predicates to recognize their external actions and to map them
onto this third sort.

The trait CormonActions in Figure 1 shows how we do this for the lossy
queue by defining a single trait. This trait extends the trait ~ .x t e rna lAc t ions
(which it i n c l u d e s) by introducing additional sorts and operators, and also by
constraining the values of these operators. The new constraints are expressed
by equations 4 and by Boolean-valued predicates. The parameter A in the trait
definition can be specialized whenever the trait is used, for example, by including
CommonActions(S) to define the common actions for the automaton S and by
including CommonActions (D) to define the common actions for the automaton
D.

Note that each of the operators i n s e r t , remove, and c r a s h has two over-
loadings in the trait CommonActions, one with range sort E x t e r n a l A c t i o n s and

4 An equation consists of two terms of the same sort, separated by = or ==. The
operators ffi and •ffi are semantically equivalent, but have a different precedence: =ffi
is the main connective in an equation.

313

one with range sort A$Actions. The ability to use overloaded operators in LSL,
together with LSL's ability to disambiguate them in most contexts, contributes
substantially to the readability of specifications.

The trait Automaton in Figure 2 provides a generic LSL definition for an
automaton A. The states of A are encoded as a sort A$States. When we encode
a specific automaton in LSL, we will define an appropriate structure for the
state space A$States , usually as a tuple of finitely many state components.
The transition relation of A is encoded, quite naturally, as a ternary predicate
• Again, the actual definition of this predicate is given when a specific
automaton is encoded.

Automaton (A): trait

includes CommonActions(A)

introduces

start : A$States -+ Bool

isStep : A$States, ASActions, A$States -~ Bool

null : A$States -~ A$StepSeq

__~__,__m : A$StepSeq, ASActions, ASStates --+ A$StepSeq

execFrag : A$StepSeq -~ Bool

first, last : A$StepSeq --+ A$States

empty : --+ Trace

: Trace, ExternalActions -~ Trace

trace : A$Actions -+ Trace

trace : A$StepSeq -~ Trace

asserts V s, s': A$States, a, a': A$Actions, ss: A$StepSeq

execFrag (null (s)) ;

execFrag(null(s')<<a,s>>) == isStep(s', a, s);

execFrag((ss<<a' ,s' >>) <<a,s>>) ==

execFrag(ss<<a',s'>>) A isStep(s', a, s);

first (null(s)) == s;

last(null(s)) == s;

first(ss<<a,s>>) == first(ss);

last(ss<<a,s>>) == s;

trace(a) --= if isExternal(a) then empty ^ external(a) else empty;

trace(null(s)) == empty;

trace (ss <<a, s >>) ==

if isExternal(a) then trace(ss) ^ external(a) else trace(ss)

Fig. 2. LSL trait defining the notion of an automaton

The execution fragments of A are defined by its transition relation. The
Automaton trait introduces a sort tSStepSeq (for Step Sequences of A) that
contains finite sequences of alternating states and actions of A. The n u l l function
produces a step sequence consisting of a single state and no actions; the ternary
operator __<< _ , _>> extends a step sequence by appending an action and a state.
Double underscores (_) in an operator declaration indicate that the operator will
be used in mixfix terms. Infix, prefix, postfix, and mixfix operators (such as _+_ ,
- _ , _ ! , {--~, and __[_.]) are integral parts of many familiar notations, and their

314

availability in LSL enables us to write readable specifications.
The Automaton trait also defines a unary predicate execFrag that identifies

which elements of the sort A$StepSeq are legal execution fragments of A, as
well as functions f i r s t and l a s t that extract the first and the last states from
execution fragments.

LSL Def in i t ions for t h e Lossy Q u e u e A u t o m a t a . We now encode the two
lossy queue automata in LSL by writing two specializations of the Automaton
trait. The trait Automatons in Figure 3 defines the simple automaton S for the
lossy queue. This automaton has no internal actions, and its state consists of a
queue of messages.

Automatons: trait
includes Sequence (Msg), Automaton(S)
S$States tuple of queue: Msg$Seq
asserts

S$Actions generated by insert, remove, crash
V s, s': S$States, m: Meg

s t a r t (s) ffi= isEmpty(s.queue) ;
i sS tep (s ' , insert(m), s) == s.queue = s~.queue m;
i sS tep(s ' , remove(m), s) ==

-~isEmpty(s'.queue) A hd(s ' .queue) = m A s.queue = t l (s ' . q u e u e) ;
i sS tep (s ' , crash, s) •ffi subseq(s.queue, s ' . queue)

Fig. 3. LSL trait defining automaton S

The trait defines the properties of queues of messages by including a library
trait Sequence (not shown here), which defines the properties of operators (such
as ^, isEmpty, hal, t l , and subseq) on finite sequences (of sort E$Seq) of elements
of some sort E. By instantiating E, we can talk about messages (of sort Meg) and
sequences of messages (of sort Msg$Seq) in the specification of Automal;onS.
Elements of sort S$Sta te are one-tuples whose only component is a queue of
messages.

The trait also defines the s t a r t and i sS t e p predicates. In the definition
of the i n s e r t action, which we characterized earlier in less formal and more
operational terms as queue := queue m, we now make explicit the fact that
the first occurrence of queue refers to the prestate s ' and the second to the
poststate s.

Figure 4 defines the delayed-action automaton D for the lossy queue. This
automaton has a single internal action lose , and its state consists of a queue
of marked messages. The trait AutomatonD defines the properties of marked
messages by including a trait MarkedMessages (also not shown here). This trait
defines the sort Mmsg of marked messages, introduces the notation Ira, b] to
construct an element of this sort from a value m of sort Msg and a value b of sort
Bool, defines the sort Mmsg$Seq of sequences of marked messages (by reusing
the Sequence trait), and provides precise definitions for the operators mark and
subseqMarked used in our informal proofs.

315

AutomatonD: trait
includes Automaton(D), MarkedMessages
D$States tuple of queue: Mmsg$Seq

introduces lose: -~ DSActions
asserts

D$Actions generated by insert, remove, crash, lose
V s, s': D$States, m: Msg

isExternal(lose);
start(s) == isEmpty(s.queue);
isStep(s', insert(m), s) == s.queue = s'.queue ^ [m, false];
isStep(s', remove(m), s) ==

isEmpty(s'.queue) A hd(s'.queue).msg = m A
s.queue = tl(s'.queue);

isStep(s', crash, s) == s.queue = mark(s'.queue);
isStep(s', lose, s) =ffi subseqMarked(s.queue, s'.queue)

Fig. 4. LSL trait defining automaton D

5 Automating Simulation Proofs Using LP
LP is a theorem prover for first-order logic. It differs from many other provers
in that its design is based on the assumption that initial attempts to state con-
jectures correctly, and then prove them, usually fail. As a result, LP is designed
to carry out routine (and possibly lengthy) steps in a proof automatically and
to provide useful information about why proofs fail, if and when they do. LP
is not designed to find difficult proofs automatically. Instead, it is designed to
assist users who employ standard techniques such as proofs by cases, induction,
and contradiction.

In this section we use LP to prove both Theorem 7, which shows that there
is a forward simulation from S to D, and Theorem 8, which shows that there
is a backward simulation from D to S. From Theorem 4 and the fact that the
backward simulation is image-finite, it follows that D and S have the same traces.
We do not use LP to prove Theorem 4 or the fact that the backward simulation
is image-finite. Proofs of these theorems do not involve the kind of detail that
demands machine assistance or that benefits from it. In particular, Theorem 4
only needs to be proved once (not once for each simulation).

L e m m a s for S imula t ion Proofs. In order to prove the simulation theorems,
we need two lemmas that relate queues of marked messages to queues of un-
marked messages. These lemmas are supplied by the trait Mark in Figure 5.
This trait defines the operators m e s s a g e s and addMaxks by using the library
trait SequenceMap (not shown here) to extend the operations . msg and addMark
on messages to operations on sequences of messages. It lists the two lemmas
following the keyword implies.

We illustrate LP by showing how it is used to prove the first lemma in the
trait Mark. If the user types

prove messages (addMarks (ms)) == ms by induction

LP generates and automatically discharges the appropriate subgoals for a proof
by induction based on the assertion that all sequences are generated by empty

316

Mark: trait
includes MarkedMessages, Sequence(Meg)
includes SequenceMap(Mmsg, Meg, .meg, messages)
includes SequenceMap(Msg, Mmsg, addMark, addMarks)
implies V m: Meg, ms: Msg$Seq, rams, mms': Mmsg$Seq
messages (addMarks (ms)) == ms ;
subseqMarked (rams, mark (mms ')) == subseq (messages (rams), messages (rams'))

Fig. 5. LSL trait relating marked messages to unmarked messages

and ^ :Msg$Seq,Msg--*Msg$Seq. First, it uses the axioms addMarks(empty) =-
empty and messages(empty) == empty from the trait SequenceMap to estab-
lish the basis case messages(addMarks(empty)) == empty. Then it introduces

a new constant msc, assumes messages(addNarks(msc)) == msc as an induc-
tion hypothesis, and uses the facts in the subsidiary traits of Mark to prove
messages(addMarks(msc^m)) == rose^re. This completes the proof by induc-
tion.

Forward Simulation from S to D. We use the LSL Checker to create an in-
put file for LP from the files containing the LSL traits gutomatonl), AutomatonS,
and Mark. This input file contains LP commands that declare appropriate sorts,
operators, and variables, ~/nd that assert facts known to be in the theories of the
traits (i.e., facts that are either asserted or implied in these traits).

The following LP commands declare variables for use in the simulation proof

and define the forward simulation relation f. (The line containing .. terminates
a multiple-line command.)

declare variables
s, s' : S$States
u, u' : D$States
pi : S$Actions
alpha : D$StepSeq

declare operator f: S$States, D$States --+ Bool
assert f(s, u) == messages(u.queue) = s.queue

We prove first that for every start state of S there is a corresponding start
state of D by typing the following LP commands:

prove s t a r t (s) =~ 3 u (s t a r t (u) A f (s , u))
resume by specializing u to [empty]
qed

The first line introduces the conjecture we wish to prove~ the second guides LP in
instantiating the existential quantifier in the conjecture, and the third requests
that LP confirm that the proof is indeed complete. The guidance in the second
line is the formal counterpart of the statement "initially both queues are empty"
in the hand proof.

We prove now that each action of S can be simulated by a sequence of
actions of D. Three forms of user guidance are required for the proof. The first

317

concerns generM proof strategy. The set proof-methods command directs LP
to attempt to prove conjectures by rewriting them to normal form after assuming
the hypotheses of any conjecture that is an implication (and after replacing
variables such as s and u ' in the hypotheses by constants sc and u 'c) . The
prove command itself directs LP to proceed by dividing the proof into cases
based on the action pi of automaton S being simulated (expressed here as a proof
"by induction" because the sort SSActions is generated by in se r t , remove,
and crash). The second form of guidance is to supply the simulating execution
fragment alpha of D in each case in the proof; this guidance is the same as that
contained in three sentences starting with "Define a = " in the hand proof. The
third form is to suggest that LP perform additional forward inferences (by the
c r i t i c a l - p a i r s operation, which derives equationM consequences from rewrite
rules) involving the hypotheses of the conjecture (named by *Hyp) and all other
known facts (named by *).

set proof-methods ~, normalization
prove

(isStep(s', pi, s) A f(s', u')) =~
3 alpha (execFrag(alpha) A first(alpha) = u' A

f (s , last(alpha)) A trace(pi) = trace(alpha))
by induction on pi
�9 o

7. Simulate "insert" action
resume by specializing alpha to

null(u'c) << insert(mc), [u'c.queue ^ [mc, false]] >>

Y, Simulate "remove" action
resume by specializing alpha to

null(u'c) << remove(mc), [tl(u'c.queue)] >>

critical-pairs *Hyp with *

~, Simulate "crash" action
resume by specializing alpha to

(null(u'c) << crash, [mark(u'c.queue)] >>)
<< lose, [addMarks(sc.queue)] >>

qed

We emphasize that what appears above is the entire interaction between the

user and the prover, In particular, we note that the LP proof is considerably
shorter than the hand proof.

B a c k w a r d S imula t ion f rom D to S. The soundness proof for the backward
simulation is more complicated than that for the forward simulation because
the simulation relation b is defined using an existential quantifier. However, the
general style of user interaction with the prover is the same. Once again, the LP
proof follows the hand proof, but is considerably shorter,

318

6 Conclusions

In this paper, we described, largely by way of an example, a semi-automated
approach to constructing formal proofs of the equivalence of two protocols. The
proofs shown involve a forward simulation in one direction and a backward sim-
ulation in the other direction. We used LSL to represent the protocols and the
simulations, and LP to show that the simulations work.

In some places, the LP proofs involved more work than the hand proofs;
in other places, it involved less. More work was required to define the under-
lying data types axiomatically rather than informally in set theory. Axiomati-
zations for standard data types, such a finite sequences, can be found in data
type libraries and need not be redone for each application. But axiomatizing
customized data types in the stylized way required by the prover can take a
significant amount of extra time. We believe that the burden of this extra work
will decrease as the Size of data type libraries increases. Additional work was also
required in producing formal definitions for basic concepts related to automata.
However, this is a one-time cost, and the LSL definitions in this paper can be
reused in other simulation proofs.

Once the basic data types had been defined, the automated proof using LP
required considerably less work on the part of the user than did the hand proof.
LP was able to fill in many of the details that had previously been done by hand.
The little guidance LP required took the following forms:

(1) a way of instantiating each existential quantifier, and
(2) a small amount of guidance during the proof procedure, to suggest which

facts might be relevant to apply.
The first type of guidance contains key insights about the proof, and we think

that it is both reasonable and desirable for the user to supply these. The second
type of guidance generally takes a very stylized form (e.g., "use the hypotheses")
that is easy to learn.

Although the example presented here is fairly small, it is typical of the kinds
of proofs that are usually done in the distributed algorithms and verification
community. Our proofs involve many of the complexities of "practical" proofs,
including multivalued relations, both forward and backward simulations, and
extensive nondeterminism. Because of these complexities, we believe that our
methods will scale to larger examples. Even though larger examples typically
involve a larger number of state components and actions, so that a larger num-
ber of cases must be considered, each case appears to be no more complicated
than the cases of the proofs in this paper, and the number of cases appears to
remain manageable. Indeed, we have separate evidence that hand proofs for I /O
automata and LP proofs about circuits [10] scale to larger examples.

Larger examples tend to utilize invariants, i.e., state predicates that are true
for all reachable states, to restrict the states that need to be considered in a
simulation proof. Proofs of such invariants, like proofs of simulations, involve
checking cases based on the actions of the automaton. Such proofs can easily be
incorporated into our approach. Work such as that in [11] shows how LP-based
proofs of invariants can scale to larger examples.

319

We are currently working on incorporating proofs of timing-based systems
into our approach. This involves reasoning about reals but seems, at this point,
to be feasible with minor extensions to the work presented in this paper.

References

1. M. Abadi and L. Laznport. The existence of refinement mappings. Theoretical
Computer Science, 2(82):253-284, 1992.

2. It. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
1988.

3. S. J. Garland and J. V. Guttag. A guide t o LP, the Larch Prover. Technical
Report 82, DEC Systems Research Center, December 1991.

4. J. V. Guttag and J. J. Horning. Larch: Languages and Tools]or Formal Specifica-
tion. Springer-Verlag, 1993.

5. B. Lampson, N. Lynch, and J. F. Scgaard-Andersen. Reliable at-most-once mes-
sage delivery protocols. Tech. report under preparation, Laboratory for Computer
Science, Massachusetts Institute Technology, 1993.

6. P. Loewenstein and D. L. Dill. Verification of a multiprocessor cache protocol using
simulation relations and higher-order logic. In E. M. Clarke and R. P. Kurshan,
editors, Computer-Aided Verification '90, number 531 in LNCS, pages 302-311.
Springer-Verlag, 1990.

7. N. Lynch and M. Turtle. An introduction to input/output automata. CWI.
Quarterly, 2(3):219-246, September 1989.

8. N. Lynch and F. Vaandrager. Forward and backward simulations for timing-based
systems. In J: W. de Bakker, C. Huizing, and G. Itozenberg, editors, Proceedings
ojf REX Workshop "Real-Time: Theory in Practice", number 600 in LNCS, pages
397-446. Springer-Verlag, 1992.

9. T. Nipkow. Formal verification of data type refinement. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems,
number 430 in LNCS, pages 561-589. Springer-Verlag, 1990.

10. J. B. Saxe, S. J. Garland, J. V. Guttag, and J. J. Homing. Using transformations
and verification in circuit design. In J. Stannstrup and It. Sharp, editors, Interna-
tional Workshop on Designing Correct Circuits. North-Holland, IFIP Transactions
A-5, 1992. Also published as DEC Systems Research Center Report 78, September
1991.

11. J. A. Stannstrup, S. J. Garland, and J. V. Guttag. Localized verification of circuit
descriptions. In International Workshop on Automatic Verification Methods for
Finite State Systems, number 407 in LNCS, pages 349-364, Grenoble, June 1989.
Springer-Verlag.

