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Abs t r ac t .  In this paper we present new results on the verification of 
iterative sequential systems. We address bilateral interconnecfions and 
circular arrangements of cells, and extend our previous treatment [13] 
of unilateral systems. Our approach is based on the new definition of 
boundedness, given in terms of regularity of the union of an infinite 
number of languages. The definition of boundedness provides sufficient 
conditions for the equivalence ofiterafive systems to be decidable. It also 
provides network invariants for inductive proofs. This new framework 
allows the derivation of some previously known results as well as the 
new ones presented here. 

1 I n t r o d u c t i o n  

In the verification of finite state systems, one of the most  difficult problems is 
how to avoid the so-called state explosion problem. In general, composit ional  
minimizat ion techniques [4, 7, 12] can be used to reduce the size of the problem 
or the search space. When a finite system is composed of an arbi t rary number  of 
instances of the same basic cell, it is interesting to decide whether the verification 
can be reduced to a finite problem regardless of the size of the system. I t  is well 
known tha t  this problem is undecidable [9]. We present new techniques to check 
whether there exists an invariant and, if so, to generate it automatically.  A finite 
state system can be characterized by the set of strings it generates or accepts. 
We show that  the verification of a system with an arbi t rary number  of cells can 
be done in a finite amount  of t ime if the union of the sets of strings generated or 
accepted by any cell can be represented by a finite state system. The resulting 
finite state system is a network invariant. 

Inductive proofs have been proposed for various problems concerning the 
properties of finite sets. However, it is difficult to au tomate  such proofs. Kur- 
shah and McMillan [11] discuss a structural  induction procedure that  requires 
an invariant produced manually. Wolper and Lovinfosse [17] have similar r e -  
suits based on process theory. Results also have been obtained in the context of 
model-checking [16, 1, 14]. 

* This work was supported in part by NSF/DARPA grant MIP-9115432 and by SRC 
contract 91-DJ-206. 
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In this paper, we mainly concentrate on the problem of verifying sequen- 
tial iterative systems. The relation between binary decision diagrams (BDD's) 
and finite automata  is investigated and exploited for that  purpose. In [13], we 
studied the properties of unilateral iterative systems, based on the transpose of 
the iterative system and on language convergence. We extend our t reatment  to 
bidirectional and circular systems and provide new results for unilateral systems. 

Even if we are interested in the properties of finite iterative networks, we 
may want to consider iterative networks with a countably infinite number of 
cells to guarantee that the properties hold regardless of the number of cells. 
Such properties, network invariants, are interesting to us only if they can be 
represented by another finite state system. For instance, the equivalence of two 
iterative networks can be decided if the set of strings that  can be generated by 
any cell of the networks can be represented by a finite automaton.  

The language of an iterative system is defined as the union of the countably 
infinite languages that are generated or accepted by any cell of the system. 
The iterative system is bounded if the language of the system is regular. The 
boundedness conditions identify classes of decidable equivalence problems for 
iterative systems. 

After the preliminaries of Section 2, the relation between BDD's and finite 
au tomata  is examined in Section 3. In Section 4, we present the concept of lan- 
guage boundedness and its application to unilateral systems, followed by the 
results for bilateral and circular systems. Section 5 describes how to apply the 
proposed techniques to an example. Finally, we present conclusions in Section 6. 

2 P r e l i m i n a r i e s  

Binary Decision Diagrams (BDD's) [2] provide a convenient representation for 
logic functions. A BDD is a directed acyclic graph representing a multiple-output 
logic function f .  In what follows, a finite state machine (FSM) is a 6-tuple 
<I, S, O, 6, ~, so>, where I is an input alphabet, S is a set of states, O is a output  
alphabet, 6 and ~ are the next-state and output  functions, respectively~ and S o 
is the set of initial states. A. finite automaton is a 5-tuple <K, ~ ,  z~, F, S~ where 
K is a finite set of states, E is an alphabet, z~ is a finite subset of K • 2 ~* • K,  
S ~ C K is the set of initial states, and F C K is the set of final or acceptihg 
states. An automaton is deterministic i f  S ~ is a singleton, z~ is right-unique, 
and for kl, k2 E K, P1, P2 E 2 "~*, sz E P1, s2 E P2, and s2 a prefix of sl,  
(/~1, P~, k2) E A implies that  -~3k3 such that  (kl, P~., k3) E A. Defining A over 
finite strings instead of over elements of the Mphabet does not affect finiteness, 
and provides more concise representations. 

A state cr is reachable if there exist a sequence of states s l , . . . ,  s~ and 
a sequence of strings i o , . . . , i ~  (possibly repeated), such that  6(s ~ = sl, 
6(sj, ij) = sj+l ,  j - 1 , . . . ,  k -  1, and 6(s~, i~) = or. The set of reachable states 
of a finite state machine or an automaton is of interest in verification and efficient 
algorithms have been developed to find it [5, 15, 8, 3]. 
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Fig. 1. Iterative Network. 

Let ~F( ' )  be the language transfer function of an FSM F.  The language 
produced by an FSM F when language U is applied to its inputs, ~ r ( U ) ,  is 
the set of output  strings produced by the machine when started in any state of 
S ~ When U is a regular language, ~ r ( U )  is also regular. The language transfer 
function of an FSM is monotonic, i.e., for U, V C_ E*, if U C_ V, then ~v (U )  C_ 
�9 r ( V ) .  The language accepted by a finite automaton is the set of all the input 
strings that  drive the automaton from any initial state to one of the accepting 
states. 

An itera~ive network is a circuit obtained by interconnecting multiple in- 
stances of the same basic cell, ~s in Figure 1. The signals entering the network 
from the left and the right are called boundary conditions. The inputs of a cell 
coming from an adjacent cell are called communication inputs and the externally 
controllable inputs are called local inputs. An iterative network is unilateral if 
the communication inputs carry signals in only one direction; otherwise it is bi- 
lateral. If the cell is a combinational circuit, then the iterative network is said 
to be combinational. An i~erative system is the class of all iterative networks 
with the same cell and boundary conditions and different numbers of cells. The 
symbol w denotes the first infinite ordinal. 

Sequential iterative networks correspond to two-dimensional combinational 
arrays. The transpose of a sequential iterative network is another sequential 
iterative network that  is obtained by interchanging the time and space domains 
of the original iterative network [13]. More details on iterative networks can be 
found in [9, 10]. 

3 Finite  A u t o m a t a  and B D D ' s  

It is well known that  a BDD can be regarded as a device computing a given 
function. The ordering of the variables of a BDD imposes the same constraints 
as the t ime constraints of finite automata.  The reduce operation [2] on BDD's 
can be compared to the state minimization of finite automata.  We show formally 
that  BDD's correspond to a special class of finite au tomata  and use this result 
for various verification problems. Let M(n) be the class of deterministic finite 
au tomata  such that  for every M E M(n) ,  M is state-minimal and accepts the 
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language L .  (1 + 0)*, where 13 C (1 + 0) '~, and for P E 2 ~ ' ,  (kl, P, k2) E A only 
if P = a t .  (1 + 0) k- t ,  or1 E {0, 1}. 

L e m m a  1 .  There ezists a bijeetion between BDD's for { f :  B n --* B} and M(n).  

Proof. The number of possible functions in { f  : B '~ --, B} is 2 z ' .  So there are 2 z" 
different BDD's for f in the set. Similarly, there are 2 '~ strings in L - (1+0) '~, and 
the number of the subsets of (1 + 0) '~ is also 2 a~. State-minimized deterministic 
finite automaton are unique; hence, there are also 2 2` unique finite au tomata  
for 2 L. Since the cardinality of the two finite sets is the same, we can define a 
bijection between them. [] 

One meaningful bijection maps the BDD for f : B '~ ~ B into the finite automa- 
ton M which accepts the set of binary strings that  satisfy f .  Let r be the bijection 
such that  r  = M, where D is the BDD for f :  B '~ ~ B and M E M(n)  is the 
finite automaton that  accepts the language {s- (1 + 0)*: s E (1 + O) '~, f ( s )  = 1}. 

Corollary 2. The bijec~ion @ =rid i~s inverse r  induce a graph isomorphism 
between ~he BDD D and ~he firtite automa~ort M.  

Figure 2 shows a BDD and a corresponding finite automaton.  It is easily seen 
that  the transitions, unaccepting states except sink states, the accepting sink 
state and the unaccepting sink state of M are isomorphic to the edges, internal 
nodes, constant '1' node, and the constant '0' node of the BDD, respectively. M 
is a bit serial implementation of the function f ,  which is optimal in terms of the 
number of states. Whether the BDD uses complement arcs is not essential. If 
complement arcs are used in the BDD, we can define a class of extended finite 
au tomata  with complement attributes on the transitions. We show a condition 
for a class of functions to have linear-size BDD's in n, the number of variables, 
based on Lemma i and Corollary 2. 

f 

I 

Fig. 2. BDD and Finite Automaton. 

M 

1 -  1 0 
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L e m m a  3. Let {f~ : i > O} be a class of functions, where f~ : B ki+m --* B for 
01 some k and m. Let L = ~i=1L~ be the language such that Li = {s E (1+0)  ~i+m : 

f~(s) = 1). The size of the BDD of f~ grows linearly in i i l l  is regular. 

Proof. (sketch) Let M be the state-minimal finite automaton that  accepts L. 
Since L~ is composed of the set of strings of length ki + m in L, the finite 
automaton Mi that  accepts/~i can be obtained by unrolling M for k i + m  times. 
The set of states of M~ that  are reachable at the same time by breadth first 
traversal, and originate from the same state of M, are necessarily equivalent 
to each other an d therefore merged in M~. Hence, the increase in the number 
of states~ when the depth of breadth first search is increased by 1, is less than 
or equal to the number of states of M. The finite automaton that  accepts L~ �9 
(1 + 0)* is easily obtained by replacing the set Of accepting states and the set of 
unaccepting states reached at depth ki + m with an accepting trap state and an 
unaccepting trap state, respectively. So the number of nodes of the BDD for fi  
increases at most by the number of states of M, owing to Corollary 2. [] 

4 G e n e r a t i o n  o f  N e t w o r k  I n v a r i a n t s  

Network invariants are properties of an iterative system that  are satisfied by the 
system regardless of the number of cells. Once they are obtained, they can be 
used in inductions to prove some properties of interest. A network invariant can 
be defined by the set of strings that  can be generated by any cell in the network 
with an infinite number of cells. We are only interested in the case when such a 
network invariant can be represented by a finite automaton.  

D e f i n l t i o n 4 .  A sequential iterative system S is bounded if[ the language L = 
U~ L~ is regular, where L~ is the language produced by the n-th cell of S. 

The definition of boundedness can be extended to deal with properties that  are 
related to other class of languages, like w-regular languages [6]. Boundedness 
allows us to use a finite state system to model the behavior of the system with 
a countably infinite number of cells. Definition 4 generalizes the definition of 
stability of [13]. One immediate application is the verification of equivalence of 
two sequential iterative systems. The verification model to check the equivalence 
of two sequential systems based on cells C and C ~ is shown in Figure 3. Note that  
the verification model can be considered as another sequential iterative system. 

L e m m a  5. The equivalence of two sequential iterative networks can be veriJ~ed 
in constant time if  their verification model is bounded. 

Proof. Suppose the verification model is bounded. Then there exists a finite 
automaton which accepts the language L of Definition 4. The verification prob- 
lem is equivalent to checking the occurrence of the symbol which indicates the 
nonequivalence of the two systems in any string accepted by the automaton.  This 
can be done in t ime that  is finite and depends only on the size of the automaton 
accepting L and not on the number of cells. [] 
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Fig. S. Verification Model of Iterative System. 

Whether a system is bounded is an undecidable problem. If not, the problem 
of equivalence of sequential iterative system would be decidable. However, we 
have some conditions that  can be checked automatically and used to generate 
network invariants, if there exists any. 

4.1 Unilateral Systems 

In this section, we extend the results presented in [13] for unilateral systems to 
include more general cases and explain the older ones based on the new definition 
of boundedness. 

T h e o r e m  6. Given a sequential unilateral iterative system S with cell C, the 
BDD's for the sets of reachable states of S have size linear in n, the number of 
cells, if  the transpose system S T is bounded. 

Proof. Let L T = (.J~ L~ be the language that  is produced by S T. By definition 
of transpose of a sequential unilateral system, L~, the language produced by 
k-th cell of the transpose system is the set of the reachable states of S at t ime 
k. Hence, L T can he expressed in terms of as LT = L y ,  where 
is the set of reachable states of the instance of S of length n. The class of 
functions representing the reachable states of S can be defined according to L T 
as {f~: i > 0, f~(s) = 1, Vs 6 L'~T}. Semantically, f~ is the characteristic function 
of the set of reachable states of an/ -ce l l  system. Since L T is regular, the BDD's 
for {f~} are linear by Lemma 3. [] 

Boundedness of a system guarantees that  its transpose system has linear size 
BDD's for the sets of reachable states. Also, verification can be done in constant 
time if a given system is the verification model of two sequential iterative systems, 
thanks to Lemma 5. We now present sufficient conditions for boundedness. 

L e m m a  7. < Boundedness i > A unilateral sequential system S is bounded if 
I--1 L~ C U~=I Lk for some l, where L~ is the language produced by the k-th cell of 

S. 
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Proof. The monotonicity of the FSM language transfer function guarantees that  
�9 ~ . ~ , 

the language L~+z for k > 0 is included m the language Uk=lL~, 1.e, L -- 
U,~=l ~ L,~ = ~n=lHz-1 L,~. Hence, L, which is the union of the finite number of regular 
languages, is also regular�9 [] 

Lemma 7 with following corollary replaces the theorem for stability in [13]. 

C o r o l l a r y 8 .  <Boundedness 2> The unilateral sequential system S is bounded 
if  L~+~ = L~ for some k, 1, where L~ is the language produced by the k-th cell 
orS. 

Corollary 8 is a special case of Lemma 7, but it is stated separately because it 
has further:reaching implications. 

L e m m a  9. <Boundedness 3> The unilateral sequential system S is bounded if  
T Lk+ z = L T for some k, l, where L T is the language produced by the k-th cell of 

ST. 

Proof. Let L be the language that is generated by S, i.e., L = U~=IL~- L 
describes the set of reachable states of f i r  [13]. We will show that  the language 
L can be accepted by a finite automaton.  For the rest of the proof, the system S' 
will be used instead of S T by considering I adjacent cells of ST as a single cell of 
S'. The condition L~+ l = L T can be replaced with L~+ 1 = L~. Since the input 
languages to the each cell of S' are the same starting from the k-th cell, any m 
adjacent cells have the same reachable states as any other m cells for m >__ 1. If 
we consider the cases of m - 1 and rn = 2, we see that  the set of states of the 
(j + 1)-th cell that  can be reached at the same time as a state of the j - th  cell is 
uniquely determined by the k-th and (k + 1)-th cell for j > k. So an automaton 
M that  accepts L can be defined as follows. M = {go u {S}, Z,  A, F, {S}}, 
where Ko = {n  reachable states of the k-th cell}, E = {all the reachable states 

2 z~-I of a cell}, A = {up to n transitions C_ {S} • • Ko} U {p transitions 
C Ko • E • Ko}, F = Ko, and S is the initial state, p is the number of 

n=3 
t . ~  : . . . . . . . . .  i 

I- 
C k C k+l p=4 C k+2 

Fig. 4. Reachable States of Iterative System of Lemma 9. 
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Fig. 5. Finite Automaton that Accepts the Reachable States of Lemma 9. 

reachable pairs of states of the k-th and (k + 1)-th cells, and n is the number of 
reachable states of the k-th cell. Since n and p are finite, L is regular. [] 

Figure 4 shows a case with n = 3 and p = 4. The arrows in the figure identify 
the pairs of states that  are reachable at the same time in two adjacent cells. The 
corresponding finite automaton that  accepts the reachable states of Figure 4 
is shown in Figure 5. In Figure 5, sl ,s~, . . . , sT are the strings defined on the 
alphabet of reachable states of a cell. S is the initial state, and {A, B, C} are the 
accepting states. If every state of Ko has at least two transitions, the number of 
reachable states is exponential in the number of cells. 

C o r o l l a r y  10. Given the unilateral sequential system S, the transpose system 
S T is bounded if L~+t = Lh for some k, l, where Lk is ~he language produced by 
the k-th cell of S. 

Corollary 10 derives from Lemma 9 by the duality of a unilateral iterative system 
and its transpose. 

C o r o l l a r y  11. A unilateral sequential itera~ive system can be implemented by 
a finite state machine and a unilateral combinational iterative system, if the 
condition of Lemma 9 is satisfied and p is equal to n in i~s proof. 

Proof. Since every state in Ko has at least one transition in M, then from p -- n 
it follows that  each state of M has exactly one transition out of it. The present 
state of t h e / - t h  cell depends only on the present state of the previous cell for 
i > k. So the outputs of the cell only depends on the cell inputs. Hence the 
function implemented by the cell is combinational. [] 

Table 1 shows the implications of boundedness on linearity of BDD's for the sets 
of reachable states and on the possibility of constant t ime verification for the 
original and the transpose systems. For instance, if Boundedness 1 is satisfied, 
the transpose system will have linear BDD's and constant time verification is 
possible for the original system, thanks to Theorem 6 and Lemma 5, respectively. 
Boundedness 2 and Boundedness 3 provide the conditions for the transpose 
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Table 1. Implications of Boundedness Conditions for Unilateral Systems. 

Linear BDD's 
Constant Time Verification 

Boundedness 1 Boundedness 2 Boundedness 
T O,T O,T 
0 O,T O,T 

system to be bounded as well as for the original system thanks to Lemma 9 
and Corollary 8, respectively. Hence, they guarantee both the original and the 
transpose system to be bounded. 

4.2 B i l a t e r a l  a n d  C i r c u l a r  S y s t e m s  

A bilateral system is an iterative system which has information flows in both 
directions. A circular system is an iterative system whose cells are connected in 
a ring. In a bilateral network, the boundary conditions are given at the both 
ends. For the analysis of bilateral and circular systems, we define the string 
image function which is the transfer function of the cell of the given finite state 
system after abstraction of the local inputs. Let r sp) be the string transfer 
function of a bilateral cell as shown in Figure 6, where Sb is the input string from 
the communication inputs (in both directions) and sp is the string applied to 
the local inputs. Let L~ [in] (L~ [o~]) be the language that is ~pplied (produced) 
between the left of t h e / - t h  cell and the right of the j - th  cell, where i < j .  We 
define the string image function F such that F(sb) : {r sp):  sp 6 ~U~}. The 
composition | of eb can be defined as in Figure 6. Similarly, the string image 
function f ~ for k adjacent cells is defined as f~(sb) : {(|162 sp) : sp 6 

`up)*} 

L e m m a  12. A bilateral sequential i~era~ive system is bounded if ~here ezists ~. 
such ~hat F~(s) = F~+X(s) for all s 6 `U;. 

Proof. Suppose we have an n-cell bilateral network with n > 2k. Consider the 
i-th cell of the system, where 1 < i < n. As far as the number of cells on the left 
and on the right of t he / - th  cell is greater than k, the left- and right-most k + 1 
cells can be replaced with k cells recursively. Finally, the network can be.reduced 
to have at most 2k + 1 cells including t h e / - t h  cell of the given system. So the 
language produced b y / - t h  cell of the system is always included in the regular 

2~+x j 
language of Lbou~a : Uj=I  Lj[out], which is the union of a finite number of 
regular languages. [] 

Lemma 12 defines a homomorphism between ( f I [  Ep)* and (I-I[ +1 ,up)*. Let 
r be |162 For U,V C_ ( f I [  +x`Uv)*, one can verify that  f (U + V) = f(U) + 
f (V) ,  f ( U .  V) : f ( U ) .  f (V) ,  and f ' ( U )  = f(U'), where f : (yI~ +1,Up)* --. 
(l-I[ `up)* and r Lx) = r f(Lx)). We can check the condition given in 
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(~0 sp) " 

T T 

T 

Fig. 6. A Bilateral Cell and the Composition @ of Two Bilateral Cells. 

Lemma 12 by abstracting local inputs in r and r and checking the equiva- 
lence of the two machines. This entails.checking the equivalence of two nondeter- 
ministic finite state machines. To do this, we first convert the nondeterministic 
FSM's to deterministic machines with nondeterministic outputs and then the 
nondeterministic outputs are encoded with deterministic values. This allows us 
to use a conventional finite state machine equivalence checking program to check 
the condition of Lemma 12. Lemma 12 is guaranteed to be effective regardless of 
the boundary conditions. However, it is sometimes too strong. If the boundary 
conditions are known, we have a weaker condition for boundedness. 

L e m m a  13. A bilateral itera~ive system is bounded if  the communication lan- 
guages observed between the i-th and ~he j-Zh cell are the same as the languages 
observed between the .(i + 1)-th and the j-~h cell, or between the i-th and ~he 
( j  - i)-t  cell, i .e . ,  = and =  here i < j .  

The proof of Lemma 13 is similar to the one of Lemma i2. In a circular system, 
there are no boundary conditions. Let L~ be the language generated by the i-th 
cell of a circular system and Ifi be the union of the languages generated by all 

J L the cells of a j-cell network, i.e., L / = ~i=1 ~. For circular systems, we have 
the following results. 

L e m m a  14. In a circular network wi~h ~ cells, where all cells star~ from the 
same initial staSe, all cells have the same language, i.e., Lk = Lm, for 1 ~_ 
k ,m< _n .  

Proof. By symmetry. [] 

Note that  L ~ is not necessarily the same as / J .  The language depends on the 
number of cells of the network. 

w i L e m m a  15. In a unilateral circular system, the language L -- Ui=l L is in- 
cluded in L M, i.e., L C L M, where L M is the greatest fized poin$ language of 
the cell. 

Proof. L ~ is a fixed point of the cell and always satisfies L i _C L M. 

We present a special condition for L and L M to be the same. 

[] 
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Fig. 7. Circular Iterative Network with Two Initial States and Nondeterministic Model. 

L e m m a l 6 .  I f  L M is a regular language and the number of strings in L M is 
countable, the system is bounded and L = L M. 

Proof. In a circular system, a set of strings that  is transitively closed under 
the s~ring image function of the cell, i.e., 3sl ,  s 2 , . . . ,  sk such that  sl E F(s2 E 
F( . . . s~  e f ( s l ) ) ) ,  can be observed in the system. Since we consider a countably 
infinite number  of cells in the iterative system, and L M is a fixed point tha t  
has the same closure property as L~, if b M has a countable number  of strings, 
then for all the strings in L M, k < w and hence they can be observed in the 
system. [] 

However, the number  of strings in a regular language can be uncountably infinite. 
For instance, we have a bijection between 2 N and the language (1 + 0)* such that  
an element of 2 {1'~ ..... k) is mapped  onto an element of {s E (1 + 0)* : Isl < ~}, 
where 2 N is the power set of the natural  numbers. Hence, verification with L M 
works only in one direction. Now, we consider the case of more than one initial 
state. 

C o r o l l a r y  17. In a unilateral circular system of cells not having the same initial 
states, the language L = U~ L~ is included in L M, where L M is the greatest fized 
poin~ language of the nondeterministic cell having a set of initial states as shown 
in Figure 7. 

Proof. The language of the nondeterministic cell includes the languages of the 
deterministic cells. Hence, for an / -ce l l  network., if we replace the cells with the 
nondeterministic cells, the language L ~ = U~=I L~ is the input language as 
well as the output  language of a cell. So L ~ is the fixed point language of the 
nondeterministic cell and is included in L u which is the greatest fixed point of 
the nondeterministic cell due to Lemma  15. [] 

In case of a bilateral circular system, we can use the same boundedness condition 
as for the bilateral system (Lemma 12). 

4.3 Computation of  Language Fixed Points 

Due to its monotonicity, the transfer function of an FSM can be considered as 
a predicate t ransformer on an infinite partial  order. The partial  order is defined 
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by the language inclusion relation. Since the set is not finite, fixed points of the 
predicate transformer except the trivial one (the empty string) do not necessarily 
exist. (The empty string is the least fixed point of any FSM.) In most cases, we 
are interested in the greatest fixed point. We use a simple iterative method 
to obtain the greatest fixed point if one exists. The languages of a unilateral 
iterative system define a partial order for the greatest fixed point. The greatest 
value is given by Lg~ -- {sis E ~(si,~), k/sin E ~,~}. A unique greatest fixed 
point can be obtained, if it exists, by applying the greatest value of the partial 
order to the boundary of the unilateral iterative system and by checking its 
convergence. An FSM produces a regular language when its input language is 
regular. So the languages in the series produced from Lg~ are also regular. A 
regular language is accepted by a unique finite automaton which is state-minimal. 
Hence, convergence can be checked by graph isomorphism on finite automata. 
Similarly, the inclusion relation of two regular languages can be checked by 
minimizing the number of states of the parallel composition of the two finite 
automata. 

5 An example 

In this section, we present a simple example to show how to apply the proposed 
techniques. Before presenting the example, it may be interesting to see when it 
is the case that two iterative systems are equivalent while their basic cells are 
not equivalent. In the verification of two different implementations, the most 
common cases are when states, inputs, or outputs of the basic cells are encoded 
differently. However, this case can be dealt with easily if the encodings are known. 
The more interesting case is dealt with when two iterative systems with non 
equivalent basic cells become equivalent due to don't care sequences. Don't care 
sequences form the language of the sequences that are never applied to a cell. 
Since the number of languages that can be produced by an FSM can be infinite, 
it is not always possible to determine the all the don't care sequences. The 
definition of bo~r~ded~es8 identifies whether such don't care sequences form a 
regular language or not. If it is regular, the verification can be done by checking 
whether a string that violates the equivalence\of two basic cells is included in 

1111 . 0 ~ 1  
--/0 -0,01/0 

-0,01/0 11/1 

Fig. 8. Two Different Cells. 
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Fig. 9. Verification Model of Two Implementations. 

100,111 

Fig. 10. Bounded Language. 

that  regular language. 
Figure 8 shows two simple FSM's that  are not equivalent. We want to verify 

if two iterative systems with those FSM's as basic cells are equivalent. Figure 9 
shows one possible implementation of such iterative systems considering the 
first input as a local input and the second input as a communication input. The 
boundary condition of the first cells is 0. Note that  this is not a case of different 
encodings, because we start from two minimized FSM's with different numbers of 
states. The transpose of the verification system satisfies condition Boundedness 
1. The finite automaton that  accepts the language of the reachable states of the 
original system is illustrated in Figure 10. The verification is done under those 
reachable states by verifying that  R < A, where R is the characteristic function 
of the reachable states and ~ is the function of the output  of the verification 
model. The condition is easily seen to be satisfied by observing that  y -- z2 in 
all reachable states. 

6 C o n c l u s i o n s  

We have presented techniques to check whether there exist network invariants in 
an iterative finite system and, if an invariant exists, to generate it automatically. 
We applied our methods to verify properties of circular systems as well as to 
check the equivalence of two different implementations of sequential iterative 
systems. Compared to previous ones, our method is fully automatic and the 
procedure generates network invariants that  can be used in inductive proofs. 
We introduced the concept of boundedness that  applies to infinite networks. To 
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summarize,  a property is valid for an iterative system with an arbi t rary  finite 
number  of cells, if it is valid for an infinite iterative system with a countably 
infinite number  of cells. In some cases the condition is exact, but  not always. 
We also showed the implications of boundedness on the size of BDD's  for the 
reachable states of iterative systems. The relation between BDD's  and a class of 
finite au toma ta  was investigated. It  allows us to infer properties of BDD's  and 
to explain some interesting results previously observed in iterative systems. 
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