
Automatic Generation of Network Invariants
for the Verification of Iterative Sequential

Systems*

June-Kyung Rho Fabio Somenzi

Department of Electrical and Computer Engineering
University of Colorado, Boulder 80309

Abs t r ac t . In this paper we present new results on the verification of
iterative sequential systems. We address bilateral interconnecfions and
circular arrangements of cells, and extend our previous treatment [13]
of unilateral systems. Our approach is based on the new definition of
boundedness, given in terms of regularity of the union of an infinite
number of languages. The definition of boundedness provides sufficient
conditions for the equivalence ofiterafive systems to be decidable. It also
provides network invariants for inductive proofs. This new framework
allows the derivation of some previously known results as well as the
new ones presented here.

1 I n t r o d u c t i o n

In the verification of finite state systems, one of the most difficult problems is
how to avoid the so-called state explosion problem. In general, composit ional
minimizat ion techniques [4, 7, 12] can be used to reduce the size of the problem
or the search space. When a finite system is composed of an arbi t rary number of
instances of the same basic cell, it is interesting to decide whether the verification
can be reduced to a finite problem regardless of the size of the system. I t is well
known tha t this problem is undecidable [9]. We present new techniques to check
whether there exists an invariant and, if so, to generate it automatically. A finite
state system can be characterized by the set of strings it generates or accepts.
We show that the verification of a system with an arbi t rary number of cells can
be done in a finite amount of t ime if the union of the sets of strings generated or
accepted by any cell can be represented by a finite state system. The resulting
finite state system is a network invariant.

Inductive proofs have been proposed for various problems concerning the
properties of finite sets. However, it is difficult to au tomate such proofs. Kur-
shah and McMillan [11] discuss a structural induction procedure that requires
an invariant produced manually. Wolper and Lovinfosse [17] have similar r e -
suits based on process theory. Results also have been obtained in the context of
model-checking [16, 1, 14].

* This work was supported in part by NSF/DARPA grant MIP-9115432 and by SRC
contract 91-DJ-206.

124

In this paper, we mainly concentrate on the problem of verifying sequen-
tial iterative systems. The relation between binary decision diagrams (BDD's)
and finite automata is investigated and exploited for that purpose. In [13], we
studied the properties of unilateral iterative systems, based on the transpose of
the iterative system and on language convergence. We extend our t reatment to
bidirectional and circular systems and provide new results for unilateral systems.

Even if we are interested in the properties of finite iterative networks, we
may want to consider iterative networks with a countably infinite number of
cells to guarantee that the properties hold regardless of the number of cells.
Such properties, network invariants, are interesting to us only if they can be
represented by another finite state system. For instance, the equivalence of two
iterative networks can be decided if the set of strings that can be generated by
any cell of the networks can be represented by a finite automaton.

The language of an iterative system is defined as the union of the countably
infinite languages that are generated or accepted by any cell of the system.
The iterative system is bounded if the language of the system is regular. The
boundedness conditions identify classes of decidable equivalence problems for
iterative systems.

After the preliminaries of Section 2, the relation between BDD's and finite
au tomata is examined in Section 3. In Section 4, we present the concept of lan-
guage boundedness and its application to unilateral systems, followed by the
results for bilateral and circular systems. Section 5 describes how to apply the
proposed techniques to an example. Finally, we present conclusions in Section 6.

2 P r e l i m i n a r i e s

Binary Decision Diagrams (BDD's) [2] provide a convenient representation for
logic functions. A BDD is a directed acyclic graph representing a multiple-output
logic function f . In what follows, a finite state machine (FSM) is a 6-tuple
<I, S, O, 6, ~, so>, where I is an input alphabet, S is a set of states, O is a output
alphabet, 6 and ~ are the next-state and output functions, respectively~ and S o
is the set of initial states. A. finite automaton is a 5-tuple <K, ~ , z~, F, S~ where
K is a finite set of states, E is an alphabet, z~ is a finite subset of K • 2 ~* • K,
S ~ C K is the set of initial states, and F C K is the set of final or acceptihg
states. An automaton is deterministic i f S ~ is a singleton, z~ is right-unique,
and for kl, k2 E K, P1, P2 E 2 "~*, sz E P1, s2 E P2, and s2 a prefix of sl,
(/~1, P~, k2) E A implies that -~3k3 such that (kl, P~., k3) E A. Defining A over
finite strings instead of over elements of the Mphabet does not affect finiteness,
and provides more concise representations.

A state cr is reachable if there exist a sequence of states s l , . . . , s~ and
a sequence of strings i o , . . . , i ~ (possibly repeated), such that 6(s ~ = sl,
6(sj, ij) = sj+l , j - 1 , . . . , k - 1, and 6(s~, i~) = or. The set of reachable states
of a finite state machine or an automaton is of interest in verification and efficient
algorithms have been developed to find it [5, 15, 8, 3].

125

02 On i

I I I I ,
xlx~ x,' x lx. ~ x~ x'.x. x." ~ ' ~

Fig. 1. Iterative Network.

Let ~F(') be the language transfer function of an FSM F. The language
produced by an FSM F when language U is applied to its inputs, ~ r (U) , is
the set of output strings produced by the machine when started in any state of
S ~ When U is a regular language, ~ r (U) is also regular. The language transfer
function of an FSM is monotonic, i.e., for U, V C_ E*, if U C_ V, then ~v (U) C_
�9 r (V) . The language accepted by a finite automaton is the set of all the input
strings that drive the automaton from any initial state to one of the accepting
states.

An itera~ive network is a circuit obtained by interconnecting multiple in-
stances of the same basic cell, ~s in Figure 1. The signals entering the network
from the left and the right are called boundary conditions. The inputs of a cell
coming from an adjacent cell are called communication inputs and the externally
controllable inputs are called local inputs. An iterative network is unilateral if
the communication inputs carry signals in only one direction; otherwise it is bi-
lateral. If the cell is a combinational circuit, then the iterative network is said
to be combinational. An i~erative system is the class of all iterative networks
with the same cell and boundary conditions and different numbers of cells. The
symbol w denotes the first infinite ordinal.

Sequential iterative networks correspond to two-dimensional combinational
arrays. The transpose of a sequential iterative network is another sequential
iterative network that is obtained by interchanging the time and space domains
of the original iterative network [13]. More details on iterative networks can be
found in [9, 10].

3 Finite A u t o m a t a and B D D ' s

It is well known that a BDD can be regarded as a device computing a given
function. The ordering of the variables of a BDD imposes the same constraints
as the t ime constraints of finite automata. The reduce operation [2] on BDD's
can be compared to the state minimization of finite automata. We show formally
that BDD's correspond to a special class of finite au tomata and use this result
for various verification problems. Let M(n) be the class of deterministic finite
au tomata such that for every M E M(n) , M is state-minimal and accepts the

126

language L . (1 + 0)*, where 13 C (1 + 0) '~, and for P E 2 ~ ' , (kl, P, k2) E A only
if P = a t . (1 + 0) k- t , or1 E {0, 1}.

L e m m a 1 . There ezists a bijeetion between BDD's for { f : B n --* B} and M(n).

Proof. The number of possible functions in { f : B '~ --, B} is 2 z ' . So there are 2 z"
different BDD's for f in the set. Similarly, there are 2 '~ strings in L - (1+0) '~, and
the number of the subsets of (1 + 0) '~ is also 2 a~. State-minimized deterministic
finite automaton are unique; hence, there are also 2 2` unique finite au tomata
for 2 L. Since the cardinality of the two finite sets is the same, we can define a
bijection between them. []

One meaningful bijection maps the BDD for f : B '~ ~ B into the finite automa-
ton M which accepts the set of binary strings that satisfy f . Let r be the bijection
such that r = M, where D is the BDD for f : B '~ ~ B and M E M(n) is the
finite automaton that accepts the language {s- (1 + 0)*: s E (1 + O) '~, f (s) = 1}.

Corollary 2. The bijec~ion @ =rid i~s inverse r induce a graph isomorphism
between ~he BDD D and ~he firtite automa~ort M.

Figure 2 shows a BDD and a corresponding finite automaton. It is easily seen
that the transitions, unaccepting states except sink states, the accepting sink
state and the unaccepting sink state of M are isomorphic to the edges, internal
nodes, constant '1' node, and the constant '0' node of the BDD, respectively. M
is a bit serial implementation of the function f , which is optimal in terms of the
number of states. Whether the BDD uses complement arcs is not essential. If
complement arcs are used in the BDD, we can define a class of extended finite
au tomata with complement attributes on the transitions. We show a condition
for a class of functions to have linear-size BDD's in n, the number of variables,
based on Lemma i and Corollary 2.

f

I

Fig. 2. BDD and Finite Automaton.

M

1 - 1 0

127

L e m m a 3. Let {f~ : i > O} be a class of functions, where f~ : B ki+m --* B for
01 some k and m. Let L = ~i=1L~ be the language such that Li = {s E (1+0) ~i+m :

f~(s) = 1). The size of the BDD of f~ grows linearly in i i l l is regular.

Proof. (sketch) Let M be the state-minimal finite automaton that accepts L.
Since L~ is composed of the set of strings of length ki + m in L, the finite
automaton Mi that accepts/~i can be obtained by unrolling M for k i + m times.
The set of states of M~ that are reachable at the same time by breadth first
traversal, and originate from the same state of M, are necessarily equivalent
to each other an d therefore merged in M~. Hence, the increase in the number
of states~ when the depth of breadth first search is increased by 1, is less than
or equal to the number of states of M. The finite automaton that accepts L~ �9
(1 + 0)* is easily obtained by replacing the set Of accepting states and the set of
unaccepting states reached at depth ki + m with an accepting trap state and an
unaccepting trap state, respectively. So the number of nodes of the BDD for fi
increases at most by the number of states of M, owing to Corollary 2. []

4 G e n e r a t i o n o f N e t w o r k I n v a r i a n t s

Network invariants are properties of an iterative system that are satisfied by the
system regardless of the number of cells. Once they are obtained, they can be
used in inductions to prove some properties of interest. A network invariant can
be defined by the set of strings that can be generated by any cell in the network
with an infinite number of cells. We are only interested in the case when such a
network invariant can be represented by a finite automaton.

D e f i n l t i o n 4 . A sequential iterative system S is bounded if[the language L =
U~ L~ is regular, where L~ is the language produced by the n-th cell of S.

The definition of boundedness can be extended to deal with properties that are
related to other class of languages, like w-regular languages [6]. Boundedness
allows us to use a finite state system to model the behavior of the system with
a countably infinite number of cells. Definition 4 generalizes the definition of
stability of [13]. One immediate application is the verification of equivalence of
two sequential iterative systems. The verification model to check the equivalence
of two sequential systems based on cells C and C ~ is shown in Figure 3. Note that
the verification model can be considered as another sequential iterative system.

L e m m a 5. The equivalence of two sequential iterative networks can be veriJ~ed
in constant time if their verification model is bounded.

Proof. Suppose the verification model is bounded. Then there exists a finite
automaton which accepts the language L of Definition 4. The verification prob-
lem is equivalent to checking the occurrence of the symbol which indicates the
nonequivalence of the two systems in any string accepted by the automaton. This
can be done in t ime that is finite and depends only on the size of the automaton
accepting L and not on the number of cells. []

W k . I

w:

Xk.1

128

X k . X k + 1

Fig. S. Verification Model of Iterative System.

Whether a system is bounded is an undecidable problem. If not, the problem
of equivalence of sequential iterative system would be decidable. However, we
have some conditions that can be checked automatically and used to generate
network invariants, if there exists any.

4.1 Unilateral Systems

In this section, we extend the results presented in [13] for unilateral systems to
include more general cases and explain the older ones based on the new definition
of boundedness.

T h e o r e m 6. Given a sequential unilateral iterative system S with cell C, the
BDD's for the sets of reachable states of S have size linear in n, the number of
cells, if the transpose system S T is bounded.

Proof. Let L T = (.J~ L~ be the language that is produced by S T. By definition
of transpose of a sequential unilateral system, L~, the language produced by
k-th cell of the transpose system is the set of the reachable states of S at t ime
k. Hence, L T can he expressed in terms of as LT = L y , where
is the set of reachable states of the instance of S of length n. The class of
functions representing the reachable states of S can be defined according to L T
as {f~: i > 0, f~(s) = 1, Vs 6 L'~T}. Semantically, f~ is the characteristic function
of the set of reachable states of an/ -ce l l system. Since L T is regular, the BDD's
for {f~} are linear by Lemma 3. []

Boundedness of a system guarantees that its transpose system has linear size
BDD's for the sets of reachable states. Also, verification can be done in constant
time if a given system is the verification model of two sequential iterative systems,
thanks to Lemma 5. We now present sufficient conditions for boundedness.

L e m m a 7. < Boundedness i > A unilateral sequential system S is bounded if
I--1 L~ C U~=I Lk for some l, where L~ is the language produced by the k-th cell of

S.

129

Proof. The monotonicity of the FSM language transfer function guarantees that
�9 ~ . ~ ,

the language L~+z for k > 0 is included m the language Uk=lL~, 1.e, L --
U,~=l ~ L,~ = ~n=lHz-1 L,~. Hence, L, which is the union of the finite number of regular
languages, is also regular�9 []

Lemma 7 with following corollary replaces the theorem for stability in [13].

C o r o l l a r y 8 . <Boundedness 2> The unilateral sequential system S is bounded
if L~+~ = L~ for some k, 1, where L~ is the language produced by the k-th cell
orS.

Corollary 8 is a special case of Lemma 7, but it is stated separately because it
has further:reaching implications.

L e m m a 9. <Boundedness 3> The unilateral sequential system S is bounded if
T Lk+ z = L T for some k, l, where L T is the language produced by the k-th cell of

ST.

Proof. Let L be the language that is generated by S, i.e., L = U~=IL~- L
describes the set of reachable states of f i r [13]. We will show that the language
L can be accepted by a finite automaton. For the rest of the proof, the system S'
will be used instead of S T by considering I adjacent cells of ST as a single cell of
S'. The condition L~+ l = L T can be replaced with L~+ 1 = L~. Since the input
languages to the each cell of S' are the same starting from the k-th cell, any m
adjacent cells have the same reachable states as any other m cells for m >__ 1. If
we consider the cases of m - 1 and rn = 2, we see that the set of states of the
(j + 1)-th cell that can be reached at the same time as a state of the j - th cell is
uniquely determined by the k-th and (k + 1)-th cell for j > k. So an automaton
M that accepts L can be defined as follows. M = {go u {S}, Z, A, F, {S}},
where Ko = {n reachable states of the k-th cell}, E = {all the reachable states

2 z~-I of a cell}, A = {up to n transitions C_ {S} • • Ko} U {p transitions
C Ko • E • Ko}, F = Ko, and S is the initial state, p is the number of

n=3
t . ~ : i

I-
C k C k+l p=4 C k+2

Fig. 4. Reachable States of Iterative System of Lemma 9.

130

S 4, S5

Fig. 5. Finite Automaton that Accepts the Reachable States of Lemma 9.

reachable pairs of states of the k-th and (k + 1)-th cells, and n is the number of
reachable states of the k-th cell. Since n and p are finite, L is regular. []

Figure 4 shows a case with n = 3 and p = 4. The arrows in the figure identify
the pairs of states that are reachable at the same time in two adjacent cells. The
corresponding finite automaton that accepts the reachable states of Figure 4
is shown in Figure 5. In Figure 5, sl ,s~, . . . , sT are the strings defined on the
alphabet of reachable states of a cell. S is the initial state, and {A, B, C} are the
accepting states. If every state of Ko has at least two transitions, the number of
reachable states is exponential in the number of cells.

C o r o l l a r y 10. Given the unilateral sequential system S, the transpose system
S T is bounded if L~+t = Lh for some k, l, where Lk is ~he language produced by
the k-th cell of S.

Corollary 10 derives from Lemma 9 by the duality of a unilateral iterative system
and its transpose.

C o r o l l a r y 11. A unilateral sequential itera~ive system can be implemented by
a finite state machine and a unilateral combinational iterative system, if the
condition of Lemma 9 is satisfied and p is equal to n in i~s proof.

Proof. Since every state in Ko has at least one transition in M, then from p -- n
it follows that each state of M has exactly one transition out of it. The present
state of t h e / - t h cell depends only on the present state of the previous cell for
i > k. So the outputs of the cell only depends on the cell inputs. Hence the
function implemented by the cell is combinational. []

Table 1 shows the implications of boundedness on linearity of BDD's for the sets
of reachable states and on the possibility of constant t ime verification for the
original and the transpose systems. For instance, if Boundedness 1 is satisfied,
the transpose system will have linear BDD's and constant time verification is
possible for the original system, thanks to Theorem 6 and Lemma 5, respectively.
Boundedness 2 and Boundedness 3 provide the conditions for the transpose

131

Table 1. Implications of Boundedness Conditions for Unilateral Systems.

Linear BDD's
Constant Time Verification

Boundedness 1 Boundedness 2 Boundedness
T O,T O,T
0 O,T O,T

system to be bounded as well as for the original system thanks to Lemma 9
and Corollary 8, respectively. Hence, they guarantee both the original and the
transpose system to be bounded.

4.2 B i l a t e r a l a n d C i r c u l a r S y s t e m s

A bilateral system is an iterative system which has information flows in both
directions. A circular system is an iterative system whose cells are connected in
a ring. In a bilateral network, the boundary conditions are given at the both
ends. For the analysis of bilateral and circular systems, we define the string
image function which is the transfer function of the cell of the given finite state
system after abstraction of the local inputs. Let r sp) be the string transfer
function of a bilateral cell as shown in Figure 6, where Sb is the input string from
the communication inputs (in both directions) and sp is the string applied to
the local inputs. Let L~ [in] (L~ [o~]) be the language that is ~pplied (produced)
between the left of t h e / - t h cell and the right of the j - th cell, where i < j . We
define the string image function F such that F(sb) : {r sp): sp 6 ~U~}. The
composition | of eb can be defined as in Figure 6. Similarly, the string image
function f ~ for k adjacent cells is defined as f~(sb) : {(|162 sp) : sp 6

`up)*}

L e m m a 12. A bilateral sequential i~era~ive system is bounded if ~here ezists ~.
such ~hat F~(s) = F~+X(s) for all s 6 `U;.

Proof. Suppose we have an n-cell bilateral network with n > 2k. Consider the
i-th cell of the system, where 1 < i < n. As far as the number of cells on the left
and on the right of t he / - th cell is greater than k, the left- and right-most k + 1
cells can be replaced with k cells recursively. Finally, the network can be.reduced
to have at most 2k + 1 cells including t h e / - t h cell of the given system. So the
language produced b y / - t h cell of the system is always included in the regular

2~+x j
language of Lbou~a : Uj=I Lj[out], which is the union of a finite number of
regular languages. []

Lemma 12 defines a homomorphism between (f I [Ep)* and (I-I[+1 ,up)*. Let
r be |162 For U,V C_ (f I [+x`Uv)*, one can verify that f (U + V) = f(U) +
f (V) , f (U . V) : f (U) . f (V) , and f ' (U) = f(U'), where f : (yI~ +1,Up)* --.
(l-I[`up)* and r Lx) = r f(Lx)). We can check the condition given in

132

sb

i i

(~0 sp) "

T T

T

Fig. 6. A Bilateral Cell and the Composition @ of Two Bilateral Cells.

Lemma 12 by abstracting local inputs in r and r and checking the equiva-
lence of the two machines. This entails.checking the equivalence of two nondeter-
ministic finite state machines. To do this, we first convert the nondeterministic
FSM's to deterministic machines with nondeterministic outputs and then the
nondeterministic outputs are encoded with deterministic values. This allows us
to use a conventional finite state machine equivalence checking program to check
the condition of Lemma 12. Lemma 12 is guaranteed to be effective regardless of
the boundary conditions. However, it is sometimes too strong. If the boundary
conditions are known, we have a weaker condition for boundedness.

L e m m a 13. A bilateral itera~ive system is bounded if the communication lan-
guages observed between the i-th and ~he j-Zh cell are the same as the languages
observed between the .(i + 1)-th and the j-~h cell, or between the i-th and ~he
(j - i)-t cell, i .e . , = and = here i < j .

The proof of Lemma 13 is similar to the one of Lemma i2. In a circular system,
there are no boundary conditions. Let L~ be the language generated by the i-th
cell of a circular system and Ifi be the union of the languages generated by all

J L the cells of a j-cell network, i.e., L / = ~i=1 ~. For circular systems, we have
the following results.

L e m m a 14. In a circular network wi~h ~ cells, where all cells star~ from the
same initial staSe, all cells have the same language, i.e., Lk = Lm, for 1 ~_
k ,m< _n .

Proof. By symmetry. []

Note that L ~ is not necessarily the same as / J . The language depends on the
number of cells of the network.

w i L e m m a 15. In a unilateral circular system, the language L -- Ui=l L is in-
cluded in L M, i.e., L C L M, where L M is the greatest fized poin$ language of
the cell.

Proof. L ~ is a fixed point of the cell and always satisfies L i _C L M.

We present a special condition for L and L M to be the same.

[]

133

_1 ea,b

Fig. 7. Circular Iterative Network with Two Initial States and Nondeterministic Model.

L e m m a l 6 . I f L M is a regular language and the number of strings in L M is
countable, the system is bounded and L = L M.

Proof. In a circular system, a set of strings that is transitively closed under
the s~ring image function of the cell, i.e., 3sl , s 2 , . . . , sk such that sl E F(s2 E
F(. . . s~ e f (s l))) , can be observed in the system. Since we consider a countably
infinite number of cells in the iterative system, and L M is a fixed point tha t
has the same closure property as L~, if b M has a countable number of strings,
then for all the strings in L M, k < w and hence they can be observed in the
system. []

However, the number of strings in a regular language can be uncountably infinite.
For instance, we have a bijection between 2 N and the language (1 + 0)* such that
an element of 2 {1'~ k) is mapped onto an element of {s E (1 + 0)* : Isl < ~},
where 2 N is the power set of the natural numbers. Hence, verification with L M
works only in one direction. Now, we consider the case of more than one initial
state.

C o r o l l a r y 17. In a unilateral circular system of cells not having the same initial
states, the language L = U~ L~ is included in L M, where L M is the greatest fized
poin~ language of the nondeterministic cell having a set of initial states as shown
in Figure 7.

Proof. The language of the nondeterministic cell includes the languages of the
deterministic cells. Hence, for an / -ce l l network., if we replace the cells with the
nondeterministic cells, the language L ~ = U~=I L~ is the input language as
well as the output language of a cell. So L ~ is the fixed point language of the
nondeterministic cell and is included in L u which is the greatest fixed point of
the nondeterministic cell due to Lemma 15. []

In case of a bilateral circular system, we can use the same boundedness condition
as for the bilateral system (Lemma 12).

4.3 Computation of Language Fixed Points

Due to its monotonicity, the transfer function of an FSM can be considered as
a predicate t ransformer on an infinite partial order. The partial order is defined

134

by the language inclusion relation. Since the set is not finite, fixed points of the
predicate transformer except the trivial one (the empty string) do not necessarily
exist. (The empty string is the least fixed point of any FSM.) In most cases, we
are interested in the greatest fixed point. We use a simple iterative method
to obtain the greatest fixed point if one exists. The languages of a unilateral
iterative system define a partial order for the greatest fixed point. The greatest
value is given by Lg~ -- {sis E ~(si,~), k/sin E ~,~}. A unique greatest fixed
point can be obtained, if it exists, by applying the greatest value of the partial
order to the boundary of the unilateral iterative system and by checking its
convergence. An FSM produces a regular language when its input language is
regular. So the languages in the series produced from Lg~ are also regular. A
regular language is accepted by a unique finite automaton which is state-minimal.
Hence, convergence can be checked by graph isomorphism on finite automata.
Similarly, the inclusion relation of two regular languages can be checked by
minimizing the number of states of the parallel composition of the two finite
automata.

5 An example

In this section, we present a simple example to show how to apply the proposed
techniques. Before presenting the example, it may be interesting to see when it
is the case that two iterative systems are equivalent while their basic cells are
not equivalent. In the verification of two different implementations, the most
common cases are when states, inputs, or outputs of the basic cells are encoded
differently. However, this case can be dealt with easily if the encodings are known.
The more interesting case is dealt with when two iterative systems with non
equivalent basic cells become equivalent due to don't care sequences. Don't care
sequences form the language of the sequences that are never applied to a cell.
Since the number of languages that can be produced by an FSM can be infinite,
it is not always possible to determine the all the don't care sequences. The
definition of bo~r~ded~es8 identifies whether such don't care sequences form a
regular language or not. If it is regular, the verification can be done by checking
whether a string that violates the equivalence\of two basic cells is included in

1111 . 0 ~ 1
--/0 -0,01/0

-0,01/0 11/1

Fig. 8. Two Different Cells.

135

Fig. 9. Verification Model of Two Implementations.

100,111

Fig. 10. Bounded Language.

that regular language.
Figure 8 shows two simple FSM's that are not equivalent. We want to verify

if two iterative systems with those FSM's as basic cells are equivalent. Figure 9
shows one possible implementation of such iterative systems considering the
first input as a local input and the second input as a communication input. The
boundary condition of the first cells is 0. Note that this is not a case of different
encodings, because we start from two minimized FSM's with different numbers of
states. The transpose of the verification system satisfies condition Boundedness
1. The finite automaton that accepts the language of the reachable states of the
original system is illustrated in Figure 10. The verification is done under those
reachable states by verifying that R < A, where R is the characteristic function
of the reachable states and ~ is the function of the output of the verification
model. The condition is easily seen to be satisfied by observing that y -- z2 in
all reachable states.

6 C o n c l u s i o n s

We have presented techniques to check whether there exist network invariants in
an iterative finite system and, if an invariant exists, to generate it automatically.
We applied our methods to verify properties of circular systems as well as to
check the equivalence of two different implementations of sequential iterative
systems. Compared to previous ones, our method is fully automatic and the
procedure generates network invariants that can be used in inductive proofs.
We introduced the concept of boundedness that applies to infinite networks. To

136

summarize, a property is valid for an iterative system with an arbi t rary finite
number of cells, if it is valid for an infinite iterative system with a countably
infinite number of cells. In some cases the condition is exact, but not always.
We also showed the implications of boundedness on the size of BDD's for the
reachable states of iterative systems. The relation between BDD's and a class of
finite au toma ta was investigated. It allows us to infer properties of BDD's and
to explain some interesting results previously observed in iterative systems.

References

1~. Browne, M. C., Clarke, E. M., and Grumberg, 0.: Reasoning about networks with
many identical finite state processes.. Information and Computation 81, 1 (Apr.
1989), 13-31

2. Bryant, R. E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 8 (Aug. 1986), 677-691

3. Butch, J. R., Clarke, E. M., McMillan, K. L., and Dill, D. L.: Sequential circuit
verification using symbolic model checking. In Proceedings of the Design Automa-
tion Conference (June 1990), pp. 46-51

4. Chiodo, M., Shiple, To R., Sangiovanni-Vincentelli, A., and Brayton, R. K~ Auto-
matic reduction in CTL compositional model checking. In Proceedings of the In-
ternational Conference on Computer-Aided Design (Santa Clara, CA, Nov. 1992),
pp. 172-178

5. Cho, H., Hachtel, G. D., Jeong, S.-W., Plessier, B., Schwarz, E., and Somenzi,
F.: ATPG aspects of FSM verification. In Proceedings of the IEEE International
Conference on Computer Aided Design (Nov. 1990), pp. 134-137

6. Choueka, Y.: Theories of automata on w-tapes: A simplified approach. J. Comput.
Syst. Sei. 8 (1974), 117-141

7. Clarke, E. M., Grunberg, O., and Long, D. E.: Model checking and abstraction. In
Proceedings of the 19th A CM Symposium on Principles of Programming Languages
(Jan. 1992)

8. Coudert, O., and Madre, J. C.: A unified framework for the formal verification of
sequential circuits. In Proceedings of the IEEE International Conference on Com-
puter Aided Design (Nov. 1990), pp. 126-129

9. Hennie, F. C.: Iterative Arrays of Logical Circuits. The M I T . Press and John
Wiley, New York, 1961

10. Hennie, F. C.: Finite-State Models for Logical Machines. John Wiley, New York,
1968

11. Kurshan, R. P., and McMillan, K. L.: A structural induction theorem for processes.
In Proceedings of the Eighth Annual A CM Symposium on Principles of Distributed
Computing (Edmonton, Alberta, Canada, Aug. 1989), pp. 239-247

12. Macfi, E., Plessier, B., and Somenzi, F.: Verification of systems containing counters.
In Proceedings of the International Conference on Computer-Aided Design (Santa
Clara, CA, Nov. 1992), pp. 179-182

13. Rho, 3.-K., and SomenT.i, F.: Inductive verification for iterative systems. In Proceed-
ings of the Design Automation Conference (Anaheim, CA, June 1992), pp. 628-633

14. Sistla, A. P., and German, S. M.: Reasoning with many processes. In Proceedings
of the Symposium on Logic in Computer Science (Ithaca, NY, June 1987), pp. 138-
152

137

15. Touati, H., Savoj, H., Lin, B., Brayton, R. K., and Sangiovanni-Vincentelli, A.:
Implicit enumeration of finite state machines using BDD's. In Proceedings of the
IEEE International Conference on Computer Aided Design (Nov. 1990), pp. 130-
133

16. Wolper, P.: Expressing interesting properties of programs in propositional tem-
poral logic. In Proceedings 13th ACM Symposium on Principles of Programming
Languages (St. Petersburgh, Jan. 1986), pp. 184-199.

17. Wolper, P., and Lovinfosse, V.: Verifying properties of large sets of processes with
network invariants. In Automatic Verification Methods for Finite State Systems,
Lecture Notes in Computer Science ~0Z J. Sifakis, Ed. Springer-Verlag, 1989,
pp. 68-80

