
Perspectives on Software Development 
Environments 

Vassilis Prevelakis 
Dennis Tsiehritzis 

Centre Universitaire d'Informatique (CUI) 
Universite de Geneve 

24 rue du General-Dufour, Geneva 1211, 
Switzerland. 

Abstract. Using graph-like structures to store and organise ideas, con- 
cepts and programs in a Software Development Environment is not 
new. This approach, however, has two drawbacks: the rigidity and 
large size of the resulting graph. Users have difficulty managing 
change in the network and as the information piles up, they have trou- 
ble finding their way in the graph. In this paper we describe an organi- 
sation based on perspect ives  that attempts to alleviate these problems. 
Perspectives provide a uniform model for views, versions and contexts 
- and can be composed via perspect ive  operations.  After a brief intro- 
duction where we examine the problem, we give a more rigorous 
description of the model behind perspectives and the operations that 
can be performed on them. Finally, we outline a prototype implementa- 
tion built to demonstrate the power and flexibility of our model. 

1 Introduction 
Over the past two decades, rapid advances in the capabilities of computer hard- 
ware have resulted in the construction of software systems of ever increasing 
complexity. This in turn has resulted in a need for sophisticated Software Devel- 
opment Environments (SDEs). Such environments support the design team as it 
progresses along the various stagcs of the product development process. This 
activity is characterized by the generation of a multitude of project products 
which include specifications, documentation, source code, messages between 
members of the team, discussions on various aspects of the design, tradeoffs, etc 
[1]. The great difficulty is in keeping all this information together in a single 
integrated structure while allowing for the flexible investigation of alternative 
designs. By having a SDE that manages the generation, maintenance and control 
of these products we reduce duplication of effort and lack of coordination [2]. 
The alternative is systems where the documentation does not keep up with the 
programming, eventually becoming irrelevant and leading to situations where the 
function of various modules or subsystems can only be determined by examining 
the code [3]. 

The heart of a SDE is the Objeett Management System (OMS). This is 
responsible for the administration of all the artifacts stored in the system. The 
OMS can be simply a front-end to the standard file system (e.g the SCCS [4] and 
RCS [5]), or a DBMS. Most systems have their own custom-built DBMS (Adele 
[6], Cactis [7], etc.) although there are also systems based on commercially 

"[" The term object is used in a generic sense; the precise definition depends on the oMS 
used and possibly the schema selected by the programmer. 



587 

available DMBSs (e.g. VBASE [8]). Finally, a third category consists of systems 
that alter the appearence of the file system according to the request issued by the 
user (e.g. the SUN NSE [9], the 3-D File System [10], Gypsy [11] etc.). 

Regardless of the actual implementation, all OMSs must satisfy a number of 
requirements in order to be effective as part of a SDE. These are the management 
of composite objects, versioning, configuration management and support for par- 
allel activities. 

It is often necessary [12] to view objects in an OMS as composite, i.e. com- 
prising a number of interrelated objects, or to decompose an object into its con- 
stituent parts. Composite objects allow the user of the OMS to maintain an unclut- 
tered global view of the objects in a given application by grouping them in com- 
posite objects, thus reducing the total number of artifacts visible at one time. An 
example of such aggregation hierarchies may be found in Rigi [13]. 

Since, the primary activity in a SDE is editing and refining of ideas, the sys- 
tem must provide adequate support for versioning. Versions can be used to track 
change in the system; thus, in cases where modifications introduce bugs or inter- 
fere with other parts of the software it is important to be able to know exactly 
what has changed and at what stage in the development process. Users should be 
able to use the versioning facilities to reverse the effects of actions such as delet- 
ing or modifying an object. 

Another requirement is configuration management, that is the ability to 
work on variants  of a basic design. For example, when dealing with a large soft- 
ware product the system must be able to manage variants customized for differ- 
ent target environments (such as different operating system, hardware etc.). In 
this way we keep only one copy of the common code and related information, 
while the parts dealing with the customization and the platform specific details 
(i.e. the variants) are stored separately. Given a specific configuration, the OMS 
can extract the required information (both common and variant) thus constructing 
one complete system. 

Current software development projects are more often than not relying on 
teams of people rather than a single individual [14]. Therefore, the OMS must 
provide the facilities that enable all members of the team to work without inter- 
fering with each other. This implies the ability to create private workspaces and 
work in isolation while retaining the option of merging this work with that of the 
other members of the team. Individuals should be able to create their own cus- 
tomized views of the system [15] and thus experiment with alternative designs. 

Another aspect of the OMS is the schema used to represent the objects and 
their attributes. Here we will work within the framework of an entity-relationship 
(ER) model as it is quite popular (e.g. used in PCTE [16], Rigi [13], etc.) and 
because relationships can be used to depict inter-object references. 

In this paper we present a model for organising ER networks that attempts 
to comply with the above mentioned requirements. The model is based on per-  
spect ives  - graph structures which can be combined and operated on in various 
ways. In the next section we provide formal definitions for perspectives and per- 
spective operations such as addition, selection, and projection. Section 3 dis- 
cusses the role of perspectives in an OMS. Finally, section 4 outlines the architec- 
ture and implementation of an OMS based on perspectives. 



588 

2 Pe r spec t ives  

Consider a universal name space {n} of node identifiers. A node in our model 
consists of a pair [n, C,],  where: 

�9 n is a node identifier from In}, and 

�9 C n denotes the contents of the node with identifier n. 

We do not make any assumptions about the particular structure of the contents of 
a node, except that it can include pointers to other nodes (in the form of node 
identifiers). The rest of its contents can be strings, bitmaps, attribute values, etc. 

A perspective Pi is a set of nodes over [n] with the links attached to the 
nodes as presented by the node pointers. Within a given perspective node identi- 
tiers are unique (i.e. there can be no two nodes with the same node identifier). A 
perspective usually defines a semantic context, for instance, a version, view, etc. 
Note that the links are anchored inside the originating node but point to the out- 
side of the destination node. Pointers can be dangling, pointing to nodes absent 
from the perspective; in this case we say that the link points to a missing node. A 
node may also exist but may be completely empty. We will denote by In, z] a 
missing node and by [n, 0 ]  an empty node. The difference between the two will 
become clear in the following section. 

Perspectives can share node identifiers. For example In, C~] can be a node 
in perspective Pl and [n, C 2] can be a node in perspective P2. Nodes in different 
perspectives which share a common identifier will be called compatible. We 
expect, of course, that there should be a good reason for selecting the same iden- 
tifier for the nodes. For example, In, C~] can be the source code of a program 
and In, C 2] the documentation of the same program. In many cases compatible 
nodes with the same identifiers would refer to the same real world "entity". In 
terms of notation we will use C / to denote the contents of the node n in perspec- 
tive Pi. We will drop the superscript if there is no ambiguity about the perspec- 
tive. 

2.1 Operations on perspectives 

What differentiates our model from existing ones (like the Intermedia webs [17]) 
is the ability to combine perspectives by means of operations. Consider any 
operation (unary, binary, etc.) which is defined in terms of node contents. For 
example: 

C 

r(C , C.h C 

We do not make any assumption about the operations except that they are 
well defined and give as a result something which can be interpreted as node con- 
tents. Unary operations are intended for modeling updates on the contents of a 
node such as adding pointers, altering time-stamps, changing attribute values, etc. 
Binary operations are useful When operating on compatible nodes of different 
perspectives, for instance, to concatenate or merge the contents of two nodes. 
That is, operations do not relate nodes from the same perspective but compatible 
nodes from across perspectives. In the rest of this paper we concentrate mainly 
on binary operations (r) although our discussion can be expanded to cover other 



589 

types of operations as well. 

For each operation r on node contents there exists a corresponding opera- 
tion R on compatible nodes, such that: 

R(In, C/nl, In, CJl) is defined as In, r(C~. C{)I 

When defining an operation, special care should be taken for the special 
cases involving missing or empty nodes. For example, r(z, C j) and r(I~, C j)  
should he defined. 

We can now proceed to define an operation on two perspectives. Let PI 
and P2 be two perspectives defined on the same node identifier space. Any oper- 
ation r on node contents has a corresponding operation R on the two perspectives 
defined as follows: 

Let N 1 and N2 be the sets of node identifiers present in Pl and Pi  respec- 
tively. The operation R(P 1, P2) is defined as a perspective with the following 
nodes: 

�9 For a node n in N l n N  2 the node in the resulting perspective is 
1 2 [n, r(C., C.)]. 

�9 For a node n in N 1- (NIf3N2) the node in the resulting perspective is 
In, r(cl., ~)l. 

�9 For a node n in N 2- (NI•N2)  the node in the resulting perspective is 
In, r(s C~)]. 

To understand operations on two perspectives it is helpful to think of them in 
terms of two steps, even if the algorithms to perform them may work in a differ- 
ent way: 

Step 1: We align the nodes of the perspectives according to their node iden- 
tifiers. 

Step 2: We perform the operation on each pair of aligned nodes separately. 

As examples consider three perspective operations: an additive operation, a 
selective operation and a projection operation. An additive operation accumu- 
lates the contents of  the aligned nodes. A selective operation isolates the con- 
tents of a particular perspective for each node. Finally, a projection operation 
concentrates on only a subset of  the nodes. 

Consider two perspectives Pl  and P2. The addition of two perspectives, 
called an additive overlay, is represented by Pl + P2 and defined as: 

�9 for the nodes in NlC~N 2 (common nodes) the contents of both the Pl node 
and the P2 node are retained. 

�9 for the nodes in Nl -  ( N i n N 2 )  the contents of  the Pl  node arc retained 
along with an indication that P2 had a missing node. 

�9 for the nodes in N 2- (NINN2)  the contents of  the P2 node are retained 
along with an indication that PI had a missing node. 

Notice that the operation of additive overlay is commutative and associative. 

As a selective operation consider an operation called a masking overlay of a 
perspective P2 on a perspective P1- A masking overlay is represented by Plo  P2 
and defined as: 

�9 for the nodes in N I n N  2 only the contents of the P2 node are retained. 



590 

�9 the nodes in N1- (N1nN2) and in N 2- ( N j n N 2 )  are left unchanged. 

Note that if P2 has a node which is empty it may potentially erase information, 
not only substitute it on Pl .  In this way we can completely erase pointers or 
attribute values from PI .  However, even if the contents of a node on Pl are 
deleted, the node itself will still be present. The existence of empty nodes is 
quite significant because they act like "black holes": they exist but cannot be 
seen by the user. Thus, an empty node in the topmost perspective in a masking 
overlay will make all the instances of that node in the other perspectives invisible 
to the user. In this way we can remove nodes from the user view. 

Notice that the operation of the masking overlay is associative, but not 
commutative. Notice also that we can distribute the operations, for example: 

((Pl + P2) o Ps) = (P l oP s )  + (P2oP3) 

There are two special perspectives: the first is 0 which is like a completely 
clear transparency (all nodes are missing), and the other is 1, where all possible 
nodes are empty. The perspective 1 s has S nodes empty, where S is a set of node 
names. The 1 perspectives are like opaque transparencies that mask everything. 

A projection operation IPI s can be defined as retaining in a perspective P 
only a subset of its nodes S. The projection operation is very handy when we 
need to concentrate on a few nodes of  a perspective. The projection operation 
can be expressed by masking overlays in the following manner: 

Let perspective Prnask be defined as: 

Praask = { [n, O] where n~ (N l- (Nit3 S)) } 

Then, 

IPI s = Po Pmask 

In a similar manner we can express a masking overlay through projections 
and additive overlays. Note, finally, that an additive overlay cannot be expressed 
through projections and masking overlays because an additive overlay is the only 
operation which retains all information in the nodes. 

Additive and masking overlays are examples of a much more general form 
of the binary operation Pl �9 P2 where r is some kind of rule for selecting or 
combining the node contents. For example, we can choose the most  recent con- 
tents according to a time-stamp or the most relevant contents according to their 
source. 

2.2 Perspect ive  expressions 

Consider a set of independent perspectives Pl . . . . .  Pk. By using the operations 
+, o or any other operation we can obtain expressions of  these perspectives. An 
expression defines a perspective which combines the contents of the compatible 
nodes of  the different perspectives. 

An expression can be evaluated by carrying out the operations on each set 
of compatible nodes separately. Perspective operations and expressions. 
although they are defined as set operations, can be implemented as a sequence of 
operations on individual nodes. In addition, the evaluation of an expression on 
perspectives can be performed in parallel for each set of compatible nodes. 



591 

Any expression E ( P  l . . . . .  Pk) can be evaluated as an operation on the con- 
tents of the nodes. The additive expression Pl + "'" + Pk keeps all the node con- 
tents properly aligned. Since the additive operation does not lose information, it 
follows that from P1 + "'" + Pk any arbitrary expression can be computed with- 
out the need to retain any additional information. 

The notion of change in such an environment is rather analogous to updates 
in base and derived relations in relational database systems. We can thus have 
two kinds of perspectives: base perspectives which usually contain entire net- 
works and can thus stand on their own, and differential perspectives that contain 
only changes (see figure 1). 

/ 

/ 

/•••U ser View 

l" A Perspective 

B~ase Perspeotive 
Figure 1: An overlay of perspectives. 

Consider a perspective defined by an expression on a set of base perspec- 
tives: 

P = E(PI  . . . . .  Pk) 

Suppose a user viewing P performs a single change u, or for that matter a 
group of changes in one or more nodes. There are many possible interpretations 
of such a change. 

�9 The change u may be temporary and associated only with the current ses- 
sion. 

�9 The change u should be part of a newly defined differential perspective P '  
which is kept and can be viewed either separately or in combination with 
other perspectives. 

�9 The change u redefines the perspective P. P overrides its definition in 
terms of the expression and in this manner becomes a base perspective. 

We also have to investigate how changes can possibly propagate forward or 
backward. A change in a base perspective can be defined as propagating forward 
to any expression involving the perspective. A change in a derived perspective P 
can also (if possible) be defined to propagate backwards to the base perspectives. 
Note that for such an operation to be feasible we must assume that the change 
can be attributed in a unique way to the base perspectives. To illustrate the last 
point consider a program which has been derived by mixing designs, or objects, 



592 

coming from two different persons. A change in this program may be well 
defined but there may not be a way, or a unique way, to map the changes to the 
original pieces. 

3 T h e  Ro le  of  P e r s p e c t i v e s  in an  O b j e c t  M a n a g e m e n t  S y s t e m  

Given the definition of perspectives we can see that they can be used as a means 
of organising the data in an OMS. Users can have their own, private, views of the 
system, while being able to request different organisations by selecting appropri- 
ate perspectives. Users can remove perspectives that contain information that is 
of no interest to them and concentrate on the perspectives that they need. 

Similarly, we can restrict access to certain parts of the system by either 
refusing access to the perspective containing the information or by forcing the 
user to use a masking perspective that effectively removes the privileged infor- 
mation from the user view. 

We can have a system where all the changes made during a long transaction 
are stored in one perspective. In this way users can 'back out'  changes by simply 
removing the corresponding perspectives from their overlays. 

Another advantage of a perspective-based organisation is that there is no 
need for locking of nodes or any kind of write protection. Read protection can be 
implemented via special masking overlays that the users must use to access the 
system. 

In the rest of this section we will present four examples demostrating how 
perspectives can be used to satisfy the key requirements we identified in the 
introduction: composite objects, versioning, configuration management  and par- 
allel activities. 

3.1 Composi te  Objects  

Let us consider a typical C++ class; this consists of at least two parts: the class 
declaration and the definitions of the class methods (the .h and .e files respec- 
tively). So to store this class in an OMS we would need to keep at least these two 
elements. However, for the class to be useful, more information must be sup- 
plied. For example, documentation, specifications, and in many cases a test suite 
to verify the correct operation of the class after modifications. If  the class is 
under development, we will also need to know the person working on it and the 
various milestones associated with this task. 

Links between the various elements may be used to represent an inheritance 
hierarchy for the class definitions and cross-references between documentation 
pages. There may also be other links, for example, from comments within the 
source code or from the inclusion of definition files that are outside the inheri- 
tance hierarchy. 



593 

-"0 

Figure 2: Detail  increases as more perspect ives are added.  

We can either view all these elements as distinct objects and try to deal with 
them independently or we can construct a composite object with all these ele- 
ments as attributes. We can then assign each type of element to a different per- 
spective and then use the additive operation to gather only the attributes we want. 
The advantage of this approach is that the selection is performed on all the 
classes of our project. 

To avoid getting too many nodes we can restrict our view to only the 
classes we need. For example: 

(Pspecs + Pmilestones + Pdocs) o Pmyview 

gathers the specifications, the milestones and documentation of all the objects in 
the project and filters them through the Preview perspective. Isolating the compo- 
nents of a single class can be carried out by a projection operation. For example, 

IP spec~ + Pmile.~tones -I" P docslmycla~ 

3.2 Versioning 

Perspectives are rarely completely independent. We expect that users start with a 
base perspective Pl  and then do a series of changes and enhancements all of 
which can be expressed by another perspective Pf.  They can then view only the 
changes they have made (PI'), the result of the changes on P! (Plo  PI"), or both 
P] and the changes they have made to it (Pl + PloP]'). For example, if PI is a 
software version, P{ represents the changes, P lo  P]" is the new version and 
P] + PloPl" is  the base version plus all the changes to get to the new version. 

We can, thus, establish a chain of  perspectives and versions like those 
defined in figure 3. 



594 

Note that each time we only need to keep track of the changes Pl', P 2 " " .  
The rest can be computed, including arbitrary expressions on the perspectives. 

The same idea can be extended when the resulting perspectives start devel- 
oping in a different, somehow independent context. Consider, for instance, a 
base perspective Pz of application concepts. These concepts can be enhanced, 
clarified and modified according to source code, documentation, multimedia rep- 
resentation, etc. 

? 
? 
�9 

PI 

p�9 
P2 = PI ~ 1 

P3 = p2 ~  2 = pl  ~  l oP'2 

Figure 3: For new versions we need only differential perspectives. 

We can provide a hierarchy of perspectives where each branch in the tree 
from the root defines a series of differential perspectives which can be used to 
obtain versions. Note that in this way we only store the minimum of information 
(the differentials). We also have two other advantages. All base information 
(closer to the root) can become available if needed at all. All information, both 
old and new, is retained by the system without necessarily cluttering up the 
graph. Contexts [18] can be viewed individually or in combinations, by obtain- 
ing expressions on the available perspectives. The same idea can be extended to 
lattices of perspectives where the minimum points are independent base perspec- 
tives and the rest differential perspectives. 

Consider, for instance, the representation of application frameworks. In 
[19] we see that in developing a software component we start from a template 
and proceed to fill in the missing information (requirements, design choices etc.) 
until we end up with a complete framework for our particular application. By 
keeping copies of the framework during its evolution, we create a tree structure. 
In this way a developer working on a similar application can follow the evolution 
of this framework until the point where it diverges from the requirements of  the 
new application. At this stage the developer will create a new branch in the evo- 
lution tree. In this way, the reuse of existing frameworks becomes easier. 

3.3 Configuration Management 
In a similar manner, configuration management  operations can be performed with 
the help of perspectives. We can envisage a situation where there is a base per- 
spective containing the platform-independent parts of the system, while the plat- 
form-dependent parts are placed in individual perspectives. So starting from ver- 
sion 3.0 we can construct the version 3 release 2 system for the VAX architecture 
using the expression Pv3.0o P patchl o P patch2O PVAX. 



595 

3.4 Parallel Activities 

Let us take a small workgroup as an example. This team consists of analysts, 
programmers, technical writers etc. All these people have to work on the same 
objects and make alterations as they go about their work. The objective of the 
system is to create a stable environment so that work done by one person is not 
immediately visible to the others. In this way, changes can bc tested before they 
arc released to the rest of the group. When the various members of  the team are 
ready to share their code or other work, the process of integrating the new ele- 
ments with the existing data should be as painless as possible. 

Since perspective construction is based on long transactions, we will have a 
new perspective only when the programmer is satified with the changes. Even 
then, the other members of the team may not chose to include this new perspec- 
tive in their view of the system, thus ignoring the new changes. When everybody 
is happy with the modification they can all include it in their views. If  later-on, 
there is suspision that the change introduced some bug, the perspective can bc 
removed and the system tested without the offending code. 

On the other hand, discussions and comments on various hot topics must be 
made public immediately so that decisions can be reached and arguments settled. 
This can be achieved by keeping the transactions short and having the system 
automatically update all the user 's views with the new transactions. Clearly this 
environment cannot rival a conferencing system, but it can support electronic 
mail discussions that normally take place within groups. 

4 P r o t o t y p e  s y s t e m  

We have implemented a prototype system supporting perspectives with the fol- 
lowing objectives: 

�9 demonstrate the power and flexibility of perspectives. 

�9 test algorithms for the construction and storage of perspectives. 

�9 provide a test-bed where we can evaluate the existing operations on per- 
spectives and experiment with new ones. 

In order to satisfy these requirements we separated our prototype into two parts: 
one responsible for the data management operations (Object Management Sys- 
tem) and another for the interaction with the user (front-end). The two parts com- 
municate with each other via a special communication protocol called the appli- 
cation interface. 

The OMs holds all the perspectives known to the system and is able to pro- 
vide information about them. It also handles the constxuction of new perspec- 
tives by executing requests containing perspective expressions. 

The front-end is an application (e.g. software development environment, 
hypertext etc.) that acts as a client to the OMS. The front-end then converts appli- 
cation-oriented operations into requests that can bc handled by the OMS. For 
example, in the case of a configuration management system, the front-end will 
construct a perspective corresponding to the desired system configuration. 



596 

OMS 
,C 

APPLICATION 
INTERFACE 

FRONT-END 

Figure 4: Major components of the prototype system. 

The application interface handles the interaction between the two system 
components. The key requirement of the application interface is to allow appli- 
cation-independent manipulation of data. In this way information from different 
front-ends may be kept in the OMS. 

The communication between the front-end and the OMS may be viewed as a 
long transaction involving three stages: 

�9 establish a perspec t ive :  the front-end has to issue a request that contains an 
expression yielding a perspective that will be the basis of all future opera- 
tions. Possible perspective expressions range from the trivial Pk that sim- 
ply sclects perspective k, to full expressions like the ones described in sec- 
tion 2. 

�9 node  operat ions:  during this stage the front-end issues requests for the 
retrieval or storage of entire nodes chosen from the set of nodes defined in 
the current working perspective defined above. The front-end may also ask 
for directory type information on nodes (e.g. size, owner, type etc.). 

�9 terminat ion  s tage:  if changes have been made during the previous stage, the 
front-end either commits the transaction by creating a new perspective, or 
throws away all the modifications by aborting the transaction. 

The design of the OMS was geared towards the support of perspectives in read- 
only media (e.g. write protected Unix filcsystems, perspectives stored on CD- 
ROM, etc.). Another requirement was that we wanted to associate application- 
specific data with each node. The application interface provides the OMS with 
information about the application so that the OMS can retrieve the data specific to 
that application. For example, if a perspective is used by many applications, 
there will be different application-specific data attached to it. The application 
interface gives the OMS the application identifier so that the OMS can send only 
the data relevant to the current application. The same procedure applies to user 
customisations since the application interface supplies the user name as well. 

To be able to satisfy these requirements we chose an organisation where 
nodes and perspectives are kept separate and each node may exist in more than 
one file. Each file contains a v o l u m e  table o f  con ten t s  (VTOC) structure in the 
beginning identifying what perspectives or nodes are stored in the file. The 



597 

system need only read the VTOCs to construct its in-memory list of existing per- 
spectives. The in-memory list also contains entries for each available node with 
information about the files where the various versions of the node contents are 
stored. It is at this stage that the OMS learns about any application-specific struc- 
tures that are attached to the node. In this way when a retrieval request is made 
for a given node, the OMS first checks to see if the application expects some cus- 
tom information along with the main node data. If this is so and the particular 
version of the node has this data, then the system sends it, otherwise the system 
has the option of either sending default values, or a code indicating that applica- 
tion-specific data is not available for that version of the node. In either case it is 
up to the front-end to sort things out. 

Operations on perspectives can be performed by carrying out the operation 
on the nodes of the perspectives involved in the operation. It is, therefore, clear 
that to define a new operation on perspectives we only need to specify what hap- 
pens when the operation is applied to the nodes. 

The general form of the procedure defining the new operation takes the 
contents of two aligned nodes as arguments and returns a third node which is the 
result of the operation. The procedure is responsible for creating the new node 
(if necessary) and copying the information from the other two nodes. Unary 
operations can be defined in a similar manner. The system has a special node 
identifier that is given to missing nodes in the corresponding perspective. Again, 
it is up to the user-supplied procedure to determine what happens in this case. 

The front-end is just an application that acts as a client to the OMS. It uses 
transactions involving application interface requests for its communication with 
the OMS. For this prototype we have chosen a hypertext application as a front- 
end. The emphasis for this particular hypertext front-end is version management.  
This choice of application domain is particularly suitable as a demonstration of 
the power of  perspectives as it combines an application (hypertext) where the 
network of the nodes is clearly visible to the user and a versioning system where 
the version layers (or planes) can easily be expressed as perspectives. Our choice 
of version management for hypertext was also influenced by the fact that current 
hypertext systems lack effective versioning support [20]. We thus provide both 
a demonstration of our system while alleviating a well known problem. Work is 
also under way in the integration of perspectives in the XOS object server cur- 
rently under development at the CUl [21]. 

5 Conclusion, future p l a n s  

In this paper we have presented perspectives as a mechanism for organising and 
manipulating groups of nodes and links in a hypertext network. The description 
was in three stages: presentation of the model, a discussion on how the model 
copes with the OMS requirements, and a prototype system that is used as a testbed 
for the evaluation of perspectives. 

We have outlined the use of perspectives: 

* to provide alternative configurations for an ER network, 

�9 to serve as a container of  changes in a versioning system, 

�9 to provide different levels of detail or different aspects of the same node. 

Given these features we believe that perspectives can alleviate some of the 
problems associated with versioning, user views of the OMS contents and the 
management of composite objects. 



598 

An important area where further work is needed is the evaluation of the per- 
spective expressions. Since the evaluation of each node can proceed indepen- 
dently of the other nodes, there is clear potential for both parallel processing and 
"lazy evaluation" (i.e. calculating only the nodes that are required by the front- 
end). In the current prototype, however, a request for the available nodes in a 
perspective will result in the complete evaluation of the perspective expression so 
that the list of the nodes present in the resulting perspective can be returned. In 
the cases where the front-end does not issue this request, the OMS is able to eval- 
uate the nodes as they are requested. 

Another issue is the "alignment" of the nodes. Given a perspective expres- 
sion Pj | there are many ways that the system can select how the nodes from 
Pl will be matched (or aligned) with the nodes o f / ' 2  so that the operation can be 
carried out. In our system we have chosen the conservative approach of using 
the node identifiers as a criterion for the alignment. A more user-oriented 
method of alignment may use the position in the graph, which is closer to the real 
world analogy of transparencies. The latter approach however must rely heavily 
on various heuristics that allow the system to make "intelligent" decisions (e.g. 
how close should two nodes be to be considered aligned). 

Although allowing users to reeonfigure their network is quite useful the 
trend is to allow the system to do the reconfiguration on its own. On some sys- 
tems the reconfiguration is carried out as a response to a query by the user [22], 
while on others the user supplies (or selects) the criterion and the system con- 
streets a new perspective that arranges the nodes accordingly [23]. 

Our current plans include the addition of extra services to our prototype 
system and the implementation of multiple front-ends so that we can demonstrate 
the flexibility of perspectives in a number of application domains. We also hope 
that our experience with this prototype will help us refine our model. 

R e f e r e n c e s  

[1] Ira P. Goldstein and Daniel B. Bobrow, "Descriptions for a Program- 
ming Environment," Proceedings of the 1st Annual Conference of 
the National Association on A rtiflcial Inteligence, pp. 187-194, Stan- 
ford, CA (Aug 1980). 

[2] Maria H. Penedo and Don E. Stuckle, "PMDB - A Project Master 
Database for Software Engineering Environments," Proceedings 
ICSE, pp. 150-157 (1985). 

[3] Robert N. Britcher and James J. Craig, "Using Modem Design Prac- 
tices to Upgrade Aging Software Systems," IEEE Software, pp. 
16-24 (May 1986). 

[4] M . J .  Roehkind, "The Source Code Control System," IEEE Trans- 
actions on Software Engineering, 1, 4, pp. 364-370 (Dec 1975). 

[5] Walter E Tiehy, "RCS: A System for Version Control," SP&E, 15 
(1985). 

[6] N. Belkhatir and J. Estublier, "Experience with a Database of Pro- 
grams," Proceedings of the ACM SIGSOFTISIGPLAN Software 
Engineering Symposium on Practical Software Development Envi- 
ronments, ACM SIGPLANNotices, 22, 1, pp. 84-91 (Jan 1987). 

[7] Scott E. Hudson and Roger King, "Objeet Oriented Database Sup- 
port for Software Environments," Proceedings of the ACM 



[81 

[91 

[101 

[11] 

[12] 

[131 

[14] 

[151 

[16] 

[171 

[18] 

[191 

[20] 

[211 

599 

SIGMOD Annual Conference on Management of Data, pp. 491-503, 
San Francisco, CA (May 1987). 

Timothy Andrews and Craig Harris, "Combining Language and 
Database Advances in an Object-Oriented Development Environ- 
ment," Proceedings OOPSLA'87, pp. 430-440 (Oct 1987). 

Terrenee C. Miller, "A Schema for Configuration Management," 
Proceedings of the 2nd International Workshop on Software Configu- 
ration Management, pp. 26-29, Princeton, New Jersey (Oct 1989). 

David G. Kom and Eduardo Krell, "The 3-D File System," USENIX 
Summer'89, pp. 147-156 (1989). 

Ellis S. Cohen, Dilip A. Soni, Raimund Gluecker, William M. 
Hasling, Robert W. Sehwanke, and Michael E. Wagner, "Version 
Management in Gypsy," Proceedings of the Symposium on Practical 
Software Development Environments, ACM Software Engineering 
Notes, 13, 5, pp. 201-215 (Nov 1988). 

Commission of the European Community, "Requirements for Soft- 
ware Engineering Databases" (June 1983). 

Hausi A. Mailer and Karl Klashinski, "Rigi: A System for Program- 
ming-in-the-large," Proceedings of the lOth International Confer- 
ence on Software Engineering, pp. 80-86, Singapore (April 1988). 
S.J. Gibbs, "CSCW and Software Engineering" in Object Oriented 
Development, ed. Dennis Tsichritzis, pp. 31-40, Centre Universitaire 
d'Informatique (CUI), Geneva, Switzerland (July 1989). 

Ira P. Goldstein and Daniel B. Bobrow, "Browsing in a Program- 
ming Environment," Proceedings of the 14th Hawaii International 
Conference on System Science (Jan 1981). 

Gerard Boudier, Ferdinando Gallo, Regis Minot, and Ian Thomas, 
"An Overview of PCTE and PCTE+," Proceedings of the Sympo- 
sium on Practical Software Development Environments, ACM Soft- 
ware Engineering Notes, 13, 5, pp. 248-257 (Nov 1988). 

Nancy Garrett, Karen Smith, and Norman Meyrowitz, "Intermedia: 
Issues Stategies and Tactics in the Design of a Hypermedia Docu- 
ment System," Proceedings of the Conference on Computer Sup- 
ported Cooperative Work (CSCW), pp. 163-174, Austin, Texas (Dec 
1986). 

Simon Gibbs, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz, 
and Xavier Pintado, "Class Management for Software Communi- 
ties," Communications oftheACM, 33, 9, pp. 90-103 (Sep 1990). 

Rebecca J. Wirfs-Brock and Ralph Johnson, "Surveying Current 
Research in Object-Oriented Design," Communications of the A CM, 
33, 9, pp. 104-124 (Sep 1990). 

Jeff Conklin, "Issues in the Design and Application of Hypermedia 
Systems," Conference on Human Factors in Computing Systems 
(CHI'90), Seattle, Washington (April 1990). 

Simon Gibbs and Vassilis Prevelakis, "Xos: An Overview" in 
Object Management, ed. Dennis Tsiehritzis, pp. 37-61, Centre Uni- 
versitaire d'Informatique (CUI), Geneva, Switzerland (July 1990). 



600 

[22] 

[23] 

Carolyn Watters and Michael A. Shepherd, "A Transient Hyper- 
graph-Based Model for Data Access," A CM Transactions on Infor- 
mation Systems, 8, 2, pp. 77-102 (April 90). 

Xavier Pintado and Dennis Tsichritzis, "Satellite: Hypermedia Navi- 
gation by Affinity," Proceedings 1st European Conference on 
Hypertext (ECHT'90), pp. 274-287, Paris, France (Nov 1990). 


