
Automated mapping of conceptual schemas
to relational schemas

J.I. McCormack, T.A. Halpin and P.R. Ritson

Key Centre for Software Technology
Department of Computer Science

University of Queensland. Australia 4072
email: halpin@cs.uq.oz.au; jonmac@cs.uq.oz.au

Abstract: Many CASE tools for information systems engineering can input a
conceptual data model of an application and map this to a logical data model for
implementation. Typically this involves mapping an ER (Entity-Relationship)
conceptual schema to a relational database schema. Since the graphic notation of ER,
or the mapping algorithm itself, fails to capture many constraints and derivation rules,
these additional features must be coded up manually. Object-Role Modelling (ORM)
provides a simpler and richer notation, enabling most of these additional features to
be catered for in the mapping. The most well known version of ORM is NIAM, and
a number of CASE tools now support this method. Recently, an extended ORM
language called FORML has been developed which is even more expressive, and a
complete mapping algorithm has been developed and automated. This paper provides
an overview of the mapping algorithm and the use of role-graphs for automation.

1 Introduction

CASE tools are being increasingly used to support various phases of information
systems development, from requirements analysis through conceptual modelling,
logical, physical and external design and implementation, testing and maintenance
(Ovum 1992). This paper focuses on the phase where a conceptual schema is mapped
to a logical schema. The process and behaviour-odented perspectives (Olle et al. 1991)
are ignored, and for the target logical model we consider only the relational data
model. In spite of some views to the contrary (e.g. Codd 1990), the relational model is
regarded as sub-conceptual, since it is too far removed from natural concepts (ISO
1982). The most popular conceptual approach to data modelling is entity-relationship
modelling (ER), of which several dozen versions exist. The majority of information
systems engineering tools use a version of ER to model the data perspective. For an
overview of such tools see Ovum (1992) and Reiner (1992). A state-of-the-art example
is discussed in Czejdo et al. (1990).

While ER diagrams provide one useful way of summarizing the main features of
an application's data model, they are typically unable to express many constraints and
derivation rules that commonly occur in applications. Hence the ER mappers provided
in CASE tools usually generate an incomplete logical schema for the application. The
features not captured in the ER model are either coded up manually or ignored.

433

Enhanced versions of ER have been proposed to cater for additional constraints
(e.g. Rochfeld et al. 1991, Batini et al. 1992), but their notations cannot be populated
with instances for validation purposes. Many algorithms exist for mapping from ER to
the relational model (e.g. Hohenstein 1990, Markowitz 1990, Batini et al. 1992), but
they ignore constraints such as role-sequence exclusion (e.g. a person cannot referee a
paper s/he authors) and ring-constraints (e.g. parenthood is asymmetric). Some CASE
tools, such as TEMPORA (Papastamatiou 1992) and CADDY (Hohenstein 1990), augment
the ER model with temporal semantics, and map various dynamic constraints. A
treatment of dynamic constraints is beyond the scope of this paper.

An alternative conceptual modelling approach is provided by object-role modelling
(ORM), also known as fact-oriented modelling. Various versions of ORM include NlAM
(Natural-language Information Analysis Method), BRM (Binary-Relationship
Modelling), NORM (Natural Object Relationship Model) and Ps i (Predicator Set
Model). Our version, FORM (Formal Object Role Modelling), is based on extensions to
NIAM (Nijssen & Halpin 1989) and has an associated language FORML in both graphical
and textual forms. An overview of the method is given in Halpin & Orlowska (1992).

Basically, ORM views the world as objects playing roles, either singly (e.g. Person
jogs) or within a relationship (e.g. Person drives Car): it makes no direct use of the
attribute concept. In contrast to ER, ORM is closer to natural language, uses diagrams
that can be populated with fact instances, is simpler (no attribute construct), is more
expressive (e.g. additional static constraints are captured, and semantic domains are
fully revealed) and has a stronger formal basis for performing transformations. Since
oRM captures so much detail, FORM includes several abstraction mechanisms for hiding
information when summary views are required--one of these mechanisms makes use of
attributes, providing a bridge to the ER viewpoint.

Several workbenches for object-role modelling exist, either as academic
prototypes or commercial tools. The best known of these are probably RIDL* (De
Troyer et al. 1988; De Troyer 1989; Nienhuys-Cheng 1990) now marketed by
Intellibase, and lAST (Control Data 1982). GISD (Shoval et al. 1988) includes the ADDS
(Shoval & Even-Chaime 1987) system to perform a relational mapping, but does not
support subtyping. These systems, as well as another (Mark 1987) basically conform to
the binary-only version of object-role modelling, though RIDL* has recently added
support for fact types of higher arity. ITI (Brisbane) markets two NIAM tools known as
SDD and CD. Our approach is adopted in the WISE prototype developed at the
University of Queensland (Halpin 1991b), and in the commercial workbench
InfoViews, marketed by ServerWare (Bellevue, WA, USA).

An "optimal normal form" (ONF) algorithm for mapping from oRM to normalized
relational tables was introduced in NIAM ill the 1970s. This basic algorithm ignored
certain cases, and provided only a very incomplete specification of how constraints
were mapped. Two of the authors have revised and extended this algorithm to provide
a comprehensive relational mapping algorithm (Rmap) which is capable of completely
mapping any conceptual schema expressed in the graphic version of FORML to a
redundancy-free, relational schema (Ritson & Halpin 1992). Our approach differs from
other mappers, such as RIDL-M (InteUibase 1990) by catering for a wider variety of
constraints (e.g. n-ary subset, equality, exclusion, closure, and ring constraints); it also
differs in its treatment of subtyping, though this is not detailed here.

434

The main features of the Rmap algorithm are sketched in this paper, and the
notion of a role-graph is introduced to provide an intermediate data-structure which
can be used to efficiently implement the mapping and to specify arbitrary constraints or
queries on a conceptual schema. Section 2 of this paper uses a simple example to
explain the main notations of ORM and the basic features of Rmap. Section 3
introduces the notion of a role-graph. Section 4 outlines the procedure for mapping
predicates. Section 5 explains how role-graphs are mapped to relational views. Section
6 indicates in more detail how constraints depicted on a conceptual schema are mapped
to constraints on a relational schema. Section 7 illustrates the potential use of role-
graphs for capturing arbitrary conceptual expressions. The conclusion summarizes the
main points and notes some related research under development.

ope~teo from ! hu
\ / olmrafinlr fi'om

Fig. 1 An ORM conceptual schema diagram

2 A n o v e r v i e w o f O R M a n d R m a p

An ORM conceptual schema diagram for a simple application is shown in Figure 1.
Object types are depicted as named ellipses (e.g. Customer). Simple reference schemes
for entity types are parenthesized (e.g. each Customer is identified by his or her
name). SavingsBankBranch has a composite reference scheme, being identified by the
combination of its location (e.g. Paris) and its bank (e.g. National Bank); the symbol
"@" is an external uniqueness constraint indicating that each Location, Bank
combination refers to only one branch. Predicates are shown as named box-sequences
(one box for each role). The unary predicate "is merchant bank" is a single role. All
the other predicates here are binary (two roles). Predicates of any arity (number of
roles) are allowed. Predicates are ordered, with their name starting in or beside their
first role box. Each role is connected by an edge (line segment) to the object type
which plays that role. For example the first role of the binary predicate "operates
from" is played by Customer, and its second role by SavingsBankBranch.

4 3 5

A bar across a sequence of one or more roles is an internal uniqueness constraint
(instantiating object sequences may not be duplicated); arrow tips may be added to the
bar (and must be if the roles are non-contiguous). For example, each branch is at only
one location, but each customer may operate from many branches. Predicates which
are completely spanned by a uniqueness constraint may be objectified; this nesting is
shown as a frame (see Figure 6 later). A dot where n role-arcs connect to an object
type indicates that the disjunction of the n roles is mandatory or total (each object in
the population of that type must play at least one of those roles). For example, each
savings bank branch has either current customers or past customers (or both). An |
symbol connecting role-sequences indicates mutual exclusion between the populations
of these role-sequences (e.g. customers cannot operate from a branch at which they
have ceased operations).

A dotted arrow from one role-sequence to another denotes a subset constraint (i.e.
tile population of the source is a subset of the target). For example, if a bank has
government backing to service a group then it must service that group. A subset
constraint in both directions is an equality constraint, and is shown as a dotted line
with arrow-heads at both ends (no example here). A solid arrow from one object type
to another indicates the former is a proper subtype of the latter (not shown here, but
consider Woman as subtype of Person); subtype definitions are specified at the bottom
of the diagram. Value constraints are shown in braces beside the relevant object type
(not shown here, but consider Sex {'m','f'}). Other graphic constraints such as ring
and closure constraints are not depicted here. For background on ORM see Nijssen &
Haipin (1989) or Halpin & Orlowska (1992).

The Rmap algorithm maps the conceptual schema of Figure 1 to the relational
database schema shown below. Each fact type is grouped into only one table.
Composite keys map to separate tables. Simple keys attached to the same object type
are grouped into the same table, keyed on the object type identifier.

CurrentSavings (bank, location, customer)
I ! I ,,

|

I I I
CeasedSavings (bank, location, customer)

MerchantBank (Bank)

BackedServices (bank, qroup)
I I

Services (bank~ qroup)

Underwritten (bank I, company)

i in CurrentSavings.bank u CeasedSavings.bank u MerchantBank.bank u
Services. bank

All constraints are mapped down. A formal treatment of complete constraint
mapping is one way in which Rmap differs from the old ONF algorithm. Keys are
underlined; the primary key is doubly underlined if an alternate key exists. Subset

436

constraints (e.g. referential integrity) are shown as dotted lines: arrow tips must be
included to show the direction of the subset linkage unless both directions apply
(equality constraint). The qualification index on Underwritten.bank expresses the
disjunctive mandatory role constraint on Bank.

This example has been artificially constructed to demonstrate the main ideas of the
role-graph procedure discussed later. In practice, subtyping of banks would be more
natural, and the operations and services part of the schema would typically be
optimized by conceptual transformations before the mapping (see Halpin 1991a, 1992).

3 Role-Sequences

Most static conceptual constraints can be expressed as an operator over one or more
role-sequences. A role-sequence is an ordered list of roles (predicate-position pairs)
contained in a connected sub-schema. The schema fragment in Figure 1 contains a
subset constraint from the role-sequence rs~ = (r 6, rT) to rs2 = (r4, rs). This means that
each (bank, group) pair instantiating the government backing predicate must also
instantiate the services predicate (i.e. if a bank has government backing to service a
group then it must service that group).

The meaning of constraints containing role-sequences spanning only one predicate
is well defined. Problems start to occur when a role-sequence contains roles from more
than one predicate. Figure 2 contains a schema fragment with a role-sequence rst = r6,
rs. In the context of the constraint, this role-sequence may have a number of meanings:
/A,D) from the natural join of P3, PS, P4; (A,D) from the natural join of P3, P1, P4;
/A,D) from the natural join of P3, P2, P4; or a union or intersection of these. A
further problem occurs when role-sequences involve ring predicates. In Figure 3, the
interpretation of the role-sequence (rl, r3) is ambiguous because predicate P2 can be
joined on either r3 or r4 or both.

P1

1'8

i J
i

P5

Fig. 2 A schema containing an ambiguous constraint

437

P2

Ir31r'l

G

Fig. 3 Both roles of a ring binary are played by the same object type

Such ambiguities can be resolved by indicating in the definition of the role
sequence how the joins are to be made. Apart from ambiguity, there is also the
question of whether it makes sense to allow some role-sequence as an argument within
a given constraint type (e.g. uniqueness or subsethood). Apart from obvious
restrictions (e.g. roles being compared in a subset constraint should be distinct and be
played by compatible object types) this paper makes no special assumptions in this
regard. A separate paper in preparation addresses this question in detail.

The data structure used to represent role-sequences is called a role-graph and has
two parts. The first is a schema graph which is used to specify all of the predicates
involved in the schema and how they will be joined. The second part is the role-
sequence: an ordered list of the relevant roles (this determines the order in which the
which the roles are to appear in the final "selection"). We now consider this notion in
more detail, with the aid of an example. A schema graph is a connected graph G =
(V,E) with the following structure and restrictions:

�9 V is the set of vertices and E is the set of edges.
�9 A vertex is a predicate (P) or an object-type (0).
�9 An edge connects a predicate vertex to an object-type vertex, i.e. E = (P,O).
�9 All object-type vertices must be internal nodes of G.
�9 Each edge E has a role associated with it--this a role of P and denotes the join

role of P for E. The join role of a E must be a role of P which is played by O in
the schema.

�9 An edge from O to P joined on role R denotes the natural join of P with all other
predicates connected to O in the schema-graph based on the population of R.

For simplicity, the following restrictions are made: no predicate may appear in the
schema graph more than once; all nested object-types have been transformed into
equivalent compositely identified object-types. Figure 4 contains a schema fragment,
and Figure 5 shows a schema-graph and role-sequence based on it. A pseudo-SQL
interpretation of the schema-graph in Figure 5 is shown below. The interesting aspects
of this role-graph are: C was joined to B via P2; P5 was joined to B via r9 (not rl0).

select r l , r8, r lO from P1, PS, P2, P4
where (P5.r9 = P l . r2)

and (Pl.r2 = P2.r3)
and (p2.R4 = p4.R7)

P5 P2

Fig. 4 A conceptual schema fragment

Schema Gzaph

z9

z3

438

Role Sequence

z l , z8, zlO

Fig. 5 A role-graph based on selecting roles 1, 8 and 10 from figure 4

4 Mapping predicates during Rmap

During Rmap, predicates are mapped to columns in relational tables. To begin with,
predicates are classified as either reference predicates or fact predicates. A reference
predicate is one that is involved in the identification of an object-type: the reference
scheme might be simple (in which case the predicate is usually displayed implicitly in
parentheses) or compound. All predicates which are not reference predicates are fact

439

predicates. When a predicate is mapped to a table, each of its roles maps to one or
more columns in that table (more than one column is needed if the object type playing
the role has a composite identification scheme). Fact predicates are only mapped once.
Reference predicates however, may be mapped more than once. Figure 6 contains a
meta-sehema fragment for representing predicate mappings.

, e 14~pping

(Roze-ros
\ /

Fig. 6 The data-structure for predicate mappings

For example, the mapping of the predicate (r4,r5) in Figure 1 to the Services
table may be recorded in this data-structure as follows:

roles: r4 r5
table: Services (bank, _qroup)
col#: 1 2

Mapping#I: Predicate "Bank services Group" has Mapping#1.
Mapping#1 is to the Services table.
Mapping#1 has two role-mappings (r4 and r5):
The Mapping#I, r4 role-mapping starts at col# 1; ends at col# 1
The Mapping#I, r5 role-mapping starts at col# 2; ends at col# 2

The basic algorithm for grouping fact types into tables is trivial, as explained
earlier when Figure 1 was mapped. The main steps are clearly explained in Halpin &
Orlowska (1992). Finer points on mapping of 1:I predicates are given by Ritson &
Halpin (1993), and a detailed discussion of subtype mapping is contained in Haipin,
Harding & Oh (1992). As the coding of the algorithm is straightforward, further
details are omitted here to save space.

440

As another example, Figure 4 maps to the relational schema shown below. Square
brackets around a column name indicate that the column is optional (null values are
allowed). In Figure 4, C is compositely identified by means of the reference predicates
P4 and P5; hence c instances are referenced by the combination of d and e in the
relational tables. The qualification on [e] ensures both components of the identifier are
present in any reference of c. Although the algorithm is fully automatic, the generated
names for tables and columns are often awkward, and these can be edited by the
designer.

P1, P3 map to B (b , a , [d], [e] 1)

P5 maps to BB (b,..bl.)

P2 maps to BC (b, d, e)

1 non-null iff d non-null

If R is the number of roles in the schema which are involved in fact predicates
and D is the maximum number of reference predicates involved in the identification of
an object-type, the complexity of the predicate-mapping algorithm is O(RD). Since
most predicates are binary, and compositely identified object types generally constitute
only a small percentage of the object-types in a schema, a practical approximation of
the complexity is O(P log P) where P is the number of predicates in the schema.

5 Mapping role-graphs to relational views

The first step in mapping a role-graph to relational views is re-constructing all of the
predicates involved in terms of relational constructs. This is done by creating a select
statement for each predicate mapping and combining them all using the union operator
to form a view equivalent to the re-constructed predicate. Once all of the predicates
have been re-constructed their views are joined via the join-roles specified in the
schema-graph. Finally the roles specified in the role-sequence are selected out of the
join. For example, the view created for predicate P4 in Figure 4 would be:

create v iew P4view (d, e) as
select d, e from B
where ((d is not null) or (e is not null))

and (d is not null)
union
select d, e from BC
where ((d is not null) or (e is not null))

and (d is not null)

These constructions generate the following select query for the schema-graph in
Figure 5.

Predicate 1: create v iew viewP1 (a, b) as
select a, b from B where (a is not null) and (b is not null)

441

Predicate 2: create v iew v iewP 2 (b,d,e) as
select b,d,e from BC where (b is not null) and (d is not null)

and (e is not null)

Predicate 4: create v iew P4view (d, e) as
select d, e from B where ((d is not null) or (e is not null))

and (d is not null)
union
select d, e from BC where ((d is not null) or (e is not null)|

and (d is not null)

Predicate 5: create v iew v iewP 5 (b,bl) as
select b,b l from BB where (b is not null) and (bl is not null)

The final query is:

select viewP1.A, viewP1.B, viewP=.B, viewP2.D, viewP2.E,
viewP4.D, viewP4.E, viewPs.B, viewPs.B1

from v iewP 1 , v iewP z , v iewP 4 , v iewP 5
where (viewPs.B = viewPl.B)

and (viewP~.B = viewPz.B)
and (viewP2.D = viewP4.D)
and (viewPz.E = viewP4.E)

Obviously there is some redundancy in the algorithm as presented so far. The general
case problem of optimization is difficult. The following four "peep-hole" optimizations
generally result in acceptably efficient queries. These are to be done in order (1 to 4).

1. Eliminating Unions:

If a view contains two or more unioned select statements over the same table and share
them with the same selectors, replace them with a single select statement over the
same selectors and table, with a where clause which is the disjunct of all of the where
clauses in the original statements.

2. Eliminating Views:

I f a view Vp contains no unions it must contain only one table Tp, so replace all
occurrences of V o with Tp in the role-graph's select query and conjoin the where clause
of Vp with the where clause of the role-graph's select query.

3. Optimizing Joins:

If one table appears two or more times in the role-graph's select query and is joined
using the same fields in each case, all of these tables but one may be removed from
the from clause of the query.

4. Eliminating Where-Clauses:

If a conjunct of a where-clause is (col is not null) and col is not a nullable table, this
conjunct may be removed from the where-clause.

442

These optimizations reduce the select query previously developed to:

create v iew P4view (D, E) as
select D, E from B where (D is not null)
union
select D, E from BC

select B.A, B.B, BC.B, BC.D, BC.E,
viewP4.D, viewP4.E, BB.B, BB.B1

from B, BC, BB, viewP 4
where (BB.B = B.B)

and (BB = BC.B)
and (BC.D= viewP4.D)
and (BC.E = viewP4.E)
and (B.A is not null)

The final step in mapping a role-graph is creating a view which selects only the
required columns from the schema-graph's select query. For the example, this gives:

create v iew P4view (D, E) as
select D, E from B where (D is not null)
union
select D, E from BC

create v iew FinalView (A, B, D) as
select B.A, viewP4.D, BB.B1
from B, BC, BB, viewP 4
where (BB.B = B.B)

and (BB = BC.B)
and (BC.D= viewP4.D)
and (BC.E = viewP4.E)
and (B.A is not null)

6 Mapping Conceptual Constraints to Relational Constraints

Currently formalised ORM constraints include subset, equality, exclusion, mandatory
role, disjunctive mandatory role, frequency, uniqueness, ring, closure and value. This
section of the paper discusses how such conceptual constraints are mapped to
equivalent relational constraints expressed in SQL. Before the constraints are mapped,
the schema should be checked using the MSEX validation algorithm (Halpin &
McCormack 1992) to avoid inconsistent, redundant or inefficient constraints. We have
space to discuss only the mapping of subset constraints and mandatory roles. This will
give the general idea. A detailed treatment of mapping all the constraints is given in
Ritson & Halpin (1992).

Role-sequences are sequences of roles and are denoted rsl = ril r~.. If a
constraint contains two or more role-sequences, all of the role-sequences are the same
length, and all roles in the same positions in role-sequences (rak , rbk) are played by
object-types belonging to the same subtype-tree. All role-sequences are assumed to
have role-graphs defined for them.

443

Subset constraints:

A subset constraint is made up of two role-sequences rssu~e t and rss,~rm. Create one
view for each role-sequence (role-graph) Vsu~e t and V,~,n~t. If both views are made up
of single queries which have the same selectors and are over the same tables, they can
be combined into the one query using the construction:

V~b~t = select selectors from tablename where where-clause=~b~t
Vauperset ~-- select selectors from tablename where where-clause~p=~ t

Adding the following check-clause to tablename will prevent invalid data from
being entered into the table.

not where-clause~ubset or where-clausesup~r~ t

For example, consider the relation Employee (e.rnp#, sex, [car], [licence] I): I non-
null only if car non-nail. On the conceptual schema there is a subset constraint that a
licence is recorded only if a car is. In the relational schema, violations of this
constraint can be detected by the query: select * from Employee where licence is not
null and car is null. Or better still, violations can be prevented from entering the
database by adding the following check clause to the create table statement for
Employee: check (licence is null or car is not null). This example can be related to
the above cases by using double negation.

In other cases there are three basic ways of generating the relational constraint:
V,ub,= subset of V,,~,,=t. If the superset is a primary key or unique then a foreign key
clause can be declared (so long as this ANSI SQL feature is supported). With our bank
example for instance, the pair-subset constraint BackedServices[bank,group] _
Services[bank,group] may be declared by adding the following clause to the definition
of BackedServices: foreign key (bank, group) references Services, assuming the
primary key for Services has been declared. The superset columns may be explicitly
included after the target table name, and must be if a unique clause rather than a
primary key clause has been declared for them.

In other cases, we can generate procedural code to check for existing violations or
generate triggers to prevent violations. The following code will detect any existing
violation, using coll..n to denote the n selectors being compared (n > 1):

select * f rom subset-table X
where not exists

(select * from superset-table Y
where Y.col l = X . c o l l and ... Y.col. =)(.col.)

For example, violations of the constraint CeasedSavings.customer
CurrentSavings.customer could be detected in this way (since the target is not a key a
references clause cannot be used). In this trivial case n = 1, and no correlation
variables are actually needed since the source and target tables differ.

Alternatively, triggers can be written to prevent the violation. With our current
example, triggers would be fired on insert or update of CeasedSavings as well as on
delete and update of CurrentSavings. See Ritson & Halpin (1992) for further details.

444

Disjunctive and Non-functional Mandatory Role Constraints:

A role is functional if and only if it has a simple uniqueness constraint. Functional
mandatory roles are trivially enforced by not null columns, and subset constraints from
other tables where needed. Other case are harder. For the purpose of this paper, they
can be viewed as a set of N single role role-sequences -- rs~ rs. where rs~ = r k
and r k is played by the object-type OT. The first step is to find a view Vwhol~ which
contains all of the instances of OT.

If OT plays a role R which has a non-disjunctive mandatory role constraint on it,
V.hot c is the view created from the role-sequence containing only R (preference is given
to attribute roles). Otherwise, OTroles = { r~ r m } = the set of roles played by
OT and subtypes of OT minus the set of roles involved in the disjunctive mandatory
role constraint being mapped. V 1 V m are the views created from the N single role
role-sequences rs~ = rt rsm = r~ . V . ~ is created as the union of V~ , V m .

Exclude from V,,~I e any roles which have implied or explicit subset or equality
constraints to any roles in V~o~ �9 An algorithm for finding implied subset constraints is
presented in Ha)pin & McCormack (1992). Now create V~,~ as the union of the views
created from all of the role-sequences in the disjunctive mandatory role constraint.
Optimize V.hot~ and Vco~ using the same procedures for optimising views and unions
discussed earlier.

If V.hol ~ and V~o~ have the same selectors and are over the same table (i.e. V.hoj ~
= select selectors from tablename where where-clause~,o~, and V~,,~ = select
selectors from tablename where where-clause~o,D the query:

select selectors from tablename
where (where-clausewho~ and not where-clause)

returns all rows in the table which violate the constraint. Adding the following check-
clause to tablename prevents invalid data from being entered into the table:

(not where-clausew,ot o or where-clauseco.s)

In other cases, code can be generated to detect or prevent violations of the condition:
V.m. subset of V~o,~ (eL subset discussion earlier). As a nasty example, consider the
disjunctive mandatory role constraint over r2, r3, r4 in Figure 1 (each Bank is either a
merchant bank or has a savings branch or services a group). Each role has a view
created for it:

Views2 = create View,2 (Bank) as
select Bank from CurrentSavings
union
select Bank from CeasedSavings

View,3 = create View,3 (Bank) as select Bank from MerchantBank

View,4 = create View,4 as (Bank) select Bank from Services.Bank

So Voo.~ becomes:

create Viewco.. (Bank) as
select Bank from CurrentSavings union select Bank from CeasedSavings

445

union
select Bank from MerchantBank union select Bank from Services.Bank

and Vw~e becomes:

create V iew.~ . (Bank) as select Bank from UnderwrittenBank

So the final constraint is: V,~ho~c subset V =~. The $QL implementation of this is similar
to the subset constraint in the previous example.

7 Mapping "Schema Expressions" to Relational Expressions

Role-graphs are not restricted to capturing constraints. They can be used in other areas
of conceptual modelling and mapping as well. One area of particular interest is that of
mapping rules and queries expressed conceptually to relational expressions. For related
work using ER see Hohenstein & Engels (1991) and Markowitz & Shoshani (1990).
While we have no formal results in this area yet, it is evident that role-graphs may be
of significant use here. Consider the following query based on the schema in Figure 1:
"Which banks are both merchant and savings banks and also service the primary
industries group?"

This can be expressed as the following role-graph (r5 is restricted to 'primary
industries').

Schema Graph

r2

Role Sequence

r2

This maps to the SQL query:

create view P1 (bank) a s

select bank from CurrentSavings
union
select bank from CeasedSavings

446

select P1 .bank from P1, MerchantBank, Services
where Pl.bank -- MerchantBank.bank

and MerchantBank.bank = Services.bank
and Services.group = ' p r i m a r y industries'

8 Conclusion

This paper presented algorithms for mapping an ORM conceptual schema to a relational
database schema, including important constraints that are typically ignored by other
mapping algorithms.!Role-graphs were introduced as an intermediate data structure to
enable efficient automation of the mapping without loss of generality. The algorithms
have been implemented in the InfoViews CASE tool, and benchmarks have been
encouraging. A conceptual schema with over 250 object types and several hundred
constraints was completely mapped, including code generation, in 40 seconds on a 33
MHz 386SX PC rmming under Microsoft Windows. While the main features of the
approach have been illustrated in the paper, various eases have been excluded from the
discussion (e.g. subtyping, 1:1 refinements, other constraints). The textual version of
the FORML language enables constraints to be specified which cannot be expressed in
the graphic notation, and in addition allows subtype definitions and derivation rules to
be specified. Research is currently under way to extend the expressive power of this
language and to provide automated support for mapping these additional textual
specifications.

References

Batini, C., Ceri, S. & Navathe, S.B. 1992, Conceptual Database Design: an entity-
relationship approach, Benjamin/Cummings, Redwood City CA.

Codd, E.F. 1990, The Relational Model for Database Management: Version 2,
Addison-Wesley, Reading MA.

Control Data 1982, lAST: Information Analysis Support Tools, Reference Manual
(Control Data Publication no. 60484610).

Czejdo, B., Elmasri, R., Rusinkiewicz, M. & Embley, D.W. 1990, 'A Graphical Data
Manipulation Language for an Extended Entity-Relationship Model', IEEE
Computer, March 1990, pp. 26-37.

De Troyer, O., Meersman, R. & Verlinden, P. 1988, 'RIDL* on the CRIS Case: a
Workbench for NIAM', Computerized Assistance during the Information Systems
Life Cycle: Proc. CRIS88, eds T.W.OIIe, A.A. Verrijn-Stuart & L. Bhabuta,
North-Holland, Amsterdam.

De Troyer, O. 1989, 'RIDL*: A Tool for the Computer-Assisted Engineering of Large
Databases in the Presence of Integrity Constraints', Proc. ACM-SIGMOD Int.
Conf. on Management of Data, Oregon.

De Troyer, O. 1991, 'The OO-Binary Relationship Model: a truly object-oriented
conceptual model', Advanced Information Systems Engineering: Proc. CAiSE-91,
Springer-Vedag Lecture Notes in Computer Science, no. 498, Trondheim.

Elmasri, R. & Navathe, S .B. 1989, Fundamentals of Database Systems,
Benjamin/Cununings, Redwood City CA.

Halpin, T.A. 1989a, 'A Logical Analysis of Information Systems: static aspects of the

447

data-oriented perspective', PhD thesis, University of Queensland.
Halpin, T.A. 1989b, 'Contextual Equivalence of Conceptual Schemas', Proc.

Advanced Database Systems Symposium, Info. Processing Soc. of Japan, Kyoto,
pp. 47-54.

Halpin, T.A. 1991a, 'A fact-oriented approach to schema transformation', Proc.
MFDBS-91, Springer Verlag Lec. Notes in Computer Science, no. 495, Rostock.

Halpin, T.A. 1991b, 'WISE: a Workbench for Information System Engineering',
Proc. 2nd Workshop on Next Generation of CASE Tools, Trondheim (May 1991),
reprinted in Next Generation CASE Tools, eds K. Lyytinen & V.-P. Tahvanainen,
lOS Press, Amsterdam 1992.

Halpin, T.A. 1992, 'Fact-oriented schema optimization', Proc. CISMOD-92,
Bangalore, India, July 1992.

Halpin, T.A., Harding, J. & Oh, C-H. 1992, 'Automated support for Subtyping',
Proc. 3rd Workshop on Next Generation of CASE Tools, eds B. Theodoulidis &
A. Sutcliffe, UMIST, UK.

Halpin, T.A. & McCormack, J. 1992, 'Automated Validation of Conceptual Schema
Constraints', Advanced Inf. Systems Engineering: Proc. CAiSE'92, ed. P.
Loucopoulos, Springer Verlag Lec. Notes in Computer Science, no. 593, pp. 445-
62.

Halpin, T.A. & Orlowska, M.E. 1991, 'Fact-Oriented Modelling for Data Analysis',
Journal oflnformation Systems, vol. 2, no. 2, Blackwell Scientific, Oxford.

Halpin, T.A. & Ritson, P.R. 1992, 'Fact-Oriented Modelling and Null Values',
Research and Practical Issues in Databases: Proc. 3rd Australian Database
Conf., eds B. Srinivasan & J. Zeleznikov, World Scientific, Singapore.

Hohenstein, U. 1990, 'Automatic transformation of an Entity-relationship query
language into SQL', Entity-Relationship Approach to database design and
querying (Proc. 8th ER conf.), ed. F.H. Lochovsky, Elsevier Science Pub.,
Amsterdam.

Hohenstein, U. & Engels, G. 1991, 'Formal semantics of an entity-relationship-based
query language', Entity-Relationship Approach: the core of conceptual modelling
(Proc. 9th ER conf.), ed. H. Kangassalo, Elsevier Science Pub., Amsterdam.

lntellibase, 1990, RIDL-M User's Guide, Intellibase N.V., Belgium.
ISO 1982, Concepts and Terminology for the Conceptual Schema and the Information

Base, ed. J.J. van Griethuysen, ISO TC97/SC5/WG3, Eindhoven.
Mark, L., 1987, 'The Binary Relationship Model - 10th Anniversary', Tech. Report

CS-TR-1933, Uni. of Maryland.
Markowitz, V.M. 1990, 'Referential integrity revisited: an object-oriented

perspective', Proc. 16th VLDB Conf., Brisbane.
Markowitz, V.M. & Shoshani, A. 1990, 'Abbreviated query interpretation in extended

Entity-Relationship oriented databases', Entity-Relationship Approach to database
design and querying, ed. F.H. Lochovsky, Elsevier Science Pub., Amsterdam.

Nienhuys-Cheng, S. 1990, 'Classification and Syntax of Constraints in Binary
Semantical Networks', Inform. Systems, vol. 15, no. 5, pp. 497-513.

Nijssen, G.M. & Halpin, T.A. 1989, Conceptual Schenm and Relational Database
Design, Prentice Hall, Sydney.

Olle, T.W., Hagelstein, J., Macdonald, I.G., Rolland, C., Sol, H.G., Van Assche,

448

F.J.M. & Verrijn-Stuart, A.A. 1991, Information Systems Methodologies - A
Framework for Understanding, 2nd edn., Addison-Wesley, Wokingham, England.

Ovum 1992, Ovum Evaluates: CASE Products, Ovum Ltd, London.
Papastamatiou, G. 1992, 'Transaction semantics in a conceptual rule language', Proc.

3rd workshop on Next Generation CASE Tools, eds B. Theodoulidis & A.
Suteliffe, UMIST, UK.

Reiner, D. 1992, 'Database Design Tools', in Batini, Ceri & Navathe (op. tit.), Ch.
15.

Ritson, P.R. & Halpin, T.A. 1992, 'Mapping conceptual constraints to a relational
schema', Tech. Report 223, Dept of Computer Science, University of Queensland.

Ritson, P.R. & Halpin, T.A. 1993, 'Mapping One-to-One Predicates to a Relational
Schema', Proc. 4th Australian Database Conf., (Brisbane, February 1993),
World-Scientific, Singapore.

Rochfeld, A., Morejon, J. & Negros, P. 1991, 'Inter-Relationship Links in E-R
Model',

Shoval, P. & Even-Chaime, M. 1987, 'ADDS: A system for automatic database
schema design based on the binary-relationship model', Data and Knowledge
Engineering, vol. 2, pp. 123-44.

Shoval, P., Gudes, E. & Goldstein, M. 1988, 'GISD: A Graphical Interactive System
for Conceptual Database Design', Inform. Systems, vol. 13, no. 1, pp. 81-95.

