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Abstract: Many CASE tools for information systems engineering can input a 
conceptual data model of an application and map this to a logical data model for 
implementation. Typically this involves mapping an ER (Entity-Relationship) 
conceptual schema to a relational database schema. Since the graphic notation of ER, 
or the mapping algorithm itself, fails to capture many constraints and derivation rules, 
these additional features must be coded up manually. Object-Role Modelling (ORM) 
provides a simpler and richer notation, enabling most of these additional features to 
be catered for in the mapping. The most well known version of ORM is NIAM, and 
a number of CASE tools now support this method. Recently, an extended ORM 
language called FORML has been developed which is even more expressive, and a 
complete mapping algorithm has been developed and automated. This paper provides 
an overview of the mapping algorithm and the use of role-graphs for automation. 

1 Introduction 

CASE tools are being increasingly used to support various phases of  information 
systems development, from requirements analysis through conceptual modelling, 
logical, physical and external design and implementation, testing and maintenance 
(Ovum 1992). This paper focuses on the phase where a conceptual schema is mapped 
to a logical schema. The process and behaviour-odented perspectives (Olle et al. 1991) 
are ignored, and for the target logical model we consider only the relational data 
model. In spite of  some views to the contrary (e.g. Codd 1990), the relational model is 
regarded as sub-conceptual, since it is too far removed from natural concepts (ISO 
1982). The most popular conceptual approach to data modelling is entity-relationship 
modelling (ER), of  which several dozen versions exist. The majority of  information 
systems engineering tools use a version of ER to model the data perspective. For an 
overview of such tools see Ovum (1992) and Reiner (1992). A state-of-the-art example 
is discussed in Czejdo et al. (1990). 

While ER diagrams provide one useful way of summarizing the main features of  
an application's data model, they are typically unable to express many constraints and 
derivation rules that commonly occur in applications. Hence the ER mappers provided 
in CASE tools usually generate an incomplete logical schema for the application. The 
features not captured in the ER model are either coded up manually or ignored. 
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Enhanced versions of ER have been proposed to cater for additional constraints 
(e.g. Rochfeld et al. 1991, Batini et al. 1992), but their notations cannot be populated 
with instances for validation purposes. Many algorithms exist for mapping from ER to 
the relational model (e.g. Hohenstein 1990, Markowitz 1990, Batini et al. 1992), but 
they ignore constraints such as role-sequence exclusion (e.g. a person cannot referee a 
paper s/he authors) and ring-constraints (e.g. parenthood is asymmetric). Some CASE 
tools, such as TEMPORA (Papastamatiou 1992) and CADDY (Hohenstein 1990), augment 
the ER model with temporal semantics, and map various dynamic constraints. A 
treatment of dynamic constraints is beyond the scope of this paper. 

An alternative conceptual modelling approach is provided by object-role modelling 
(ORM), also known as fact-oriented modelling. Various versions of ORM include NlAM 
(Natural-language Information Analysis Method), BRM (Binary-Relationship 
Modelling), NORM (Natural Object Relationship Model) and Ps i  (Predicator Set 
Model). Our version, FORM (Formal Object Role Modelling), is based on extensions to 
NIAM (Nijssen & Halpin 1989) and has an associated language FORML in both graphical 
and textual forms. An overview of the method is given in Halpin & Orlowska (1992). 

Basically, ORM views the world as objects playing roles, either singly (e.g. Person 
jogs) or within a relationship (e.g. Person drives Car): it makes no direct use of the 
attribute concept. In contrast to ER, ORM is closer to natural language, uses diagrams 
that can be populated with fact instances, is simpler (no attribute construct), is more 
expressive (e.g. additional static constraints are captured, and semantic domains are 
fully revealed) and has a stronger formal basis for performing transformations. Since 
oRM captures so much detail, FORM includes several abstraction mechanisms for hiding 
information when summary views are required--one of these mechanisms makes use of 
attributes, providing a bridge to the ER viewpoint. 

Several workbenches for object-role modelling exist, either as academic 
prototypes or commercial tools. The best known of these are probably RIDL* (De 
Troyer et al. 1988; De Troyer 1989; Nienhuys-Cheng 1990) now marketed by 
Intellibase, and lAST (Control Data 1982). GISD (Shoval et al. 1988) includes the ADDS 
(Shoval & Even-Chaime 1987) system to perform a relational mapping, but does not 
support subtyping. These systems, as well as another (Mark 1987) basically conform to 
the binary-only version of object-role modelling, though RIDL* has recently added 
support for fact types of higher arity. ITI (Brisbane) markets two NIAM tools known as 
SDD and CD. Our approach is adopted in the WISE prototype developed at the 
University of Queensland (Halpin 1991b), and in the commercial workbench 
InfoViews, marketed by ServerWare (Bellevue, WA, USA). 

An "optimal normal form" (ONF) algorithm for mapping from oRM to normalized 
relational tables was introduced in NIAM ill the 1970s. This basic algorithm ignored 
certain cases, and provided only a very incomplete specification of how constraints 
were mapped. Two of the authors have revised and extended this algorithm to provide 
a comprehensive relational mapping algorithm (Rmap) which is capable of completely 
mapping any conceptual schema expressed in the graphic version of FORML to a 
redundancy-free, relational schema (Ritson & Halpin 1992). Our approach differs from 
other mappers, such as RIDL-M (InteUibase 1990) by catering for a wider variety of 
constraints (e.g. n-ary subset, equality, exclusion, closure, and ring constraints); it also 
differs in its treatment of subtyping, though this is not detailed here. 
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The main features of the Rmap algorithm are sketched in this paper, and the 
notion of a role-graph is introduced to provide an intermediate data-structure which 
can be used to efficiently implement the mapping and to specify arbitrary constraints or 
queries on a conceptual schema. Section 2 of this paper uses a simple example to 
explain the main notations of ORM and the basic features of Rmap. Section 3 
introduces the notion of a role-graph. Section 4 outlines the procedure for mapping 
predicates. Section 5 explains how role-graphs are mapped to relational views. Section 
6 indicates in more detail how constraints depicted on a conceptual schema are mapped 
to constraints on a relational schema. Section 7 illustrates the potential use of role- 
graphs for capturing arbitrary conceptual expressions. The conclusion summarizes the 
main points and notes some related research under development. 

ope~teo from ! hu 
\ / olmrafinlr fi'om 

Fig. 1 An ORM conceptual schema diagram 

2 A n  o v e r v i e w  o f  O R M  a n d  R m a p  

An ORM conceptual schema diagram for a simple application is shown in Figure 1. 
Object types are depicted as named ellipses (e.g. Customer). Simple reference schemes 
for entity types are parenthesized (e.g. each Customer is identified by his or her 
name). SavingsBankBranch has a composite reference scheme, being identified by the 
combination of its location (e.g. Paris) and its bank (e.g. National Bank); the symbol 
"@" is an external uniqueness constraint indicating that each Location, Bank 
combination refers to only one branch. Predicates are shown as named box-sequences 
(one box for each role). The unary predicate "is merchant bank" is a single role. All 
the other predicates here are binary (two roles). Predicates of any arity (number of 
roles) are allowed. Predicates are ordered, with their name starting in or beside their 
first role box. Each role is connected by an edge (line segment) to the object type 
which plays that role. For example the first role of the binary predicate "operates 
from" is played by Customer, and its second role by SavingsBankBranch. 
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A bar across a sequence of one or more roles is an internal uniqueness constraint 
(instantiating object sequences may not be duplicated); arrow tips may be added to the 
bar (and must be if the roles are non-contiguous). For example, each branch is at only 
one location, but each customer may operate from many branches. Predicates which 
are completely spanned by a uniqueness constraint may be objectified; this nesting is 
shown as a frame (see Figure 6 later). A dot where n role-arcs connect to an object 
type indicates that the disjunction of the n roles is mandatory or total (each object in 
the population of that type must play at least one of those roles). For example, each 
savings bank branch has either current customers or past customers (or both). An | 
symbol connecting role-sequences indicates mutual exclusion between the populations 
of these role-sequences (e.g. customers cannot operate from a branch at which they 
have ceased operations). 

A dotted arrow from one role-sequence to another denotes a subset constraint (i.e. 
tile population of the source is a subset of the target). For example, if a bank has 
government backing to service a group then it must service that group. A subset 
constraint in both directions is an equality constraint, and is shown as a dotted line 
with arrow-heads at both ends (no example here). A solid arrow from one object type 
to another indicates the former is a proper subtype of the latter (not shown here, but 
consider Woman as subtype of Person); subtype definitions are specified at the bottom 
of the diagram. Value constraints are shown in braces beside the relevant object type 
(not shown here, but consider Sex {'m','f'}). Other graphic constraints such as ring 
and closure constraints are not depicted here. For background on ORM see Nijssen & 
Haipin (1989) or Halpin & Orlowska (1992). 

The Rmap algorithm maps the conceptual schema of Figure 1 to the relational 
database schema shown below. Each fact type is grouped into only one table. 
Composite keys map to separate tables. Simple keys attached to the same object type 
are grouped into the same table, keyed on the object type identifier. 

CurrentSavings ( bank, location, customer ) 
I ! I ,, 

| 

I I I 
CeasedSavings ( bank, location, customer ) 

MerchantBank ( Bank ) 

BackedServices ( bank, qroup ) 
I I 

Services ( bank~ qroup ) 

Underwritten ( bank I, company ) 

i in CurrentSavings.bank u CeasedSavings.bank u MerchantBank.bank u 
Services. bank 

All constraints are mapped down. A formal treatment of complete constraint 
mapping is one way in which Rmap differs from the old ONF algorithm. Keys are 
underlined; the primary key is doubly underlined if an alternate key exists. Subset 
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constraints (e.g. referential integrity) are shown as dotted lines: arrow tips must be 
included to show the direction of the subset linkage unless both directions apply 
(equality constraint). The qualification index on Underwritten.bank expresses the 
disjunctive mandatory role constraint on Bank. 

This example has been artificially constructed to demonstrate the main ideas of the 
role-graph procedure discussed later. In practice, subtyping of banks would be more 
natural, and the operations and services part of the schema would typically be 
optimized by conceptual transformations before the mapping (see Halpin 1991a, 1992). 

3 Role-Sequences 

Most static conceptual constraints can be expressed as an operator over one or more 
role-sequences. A role-sequence is an ordered list of roles (predicate-position pairs) 
contained in a connected sub-schema. The schema fragment in Figure 1 contains a 
subset constraint from the role-sequence rs~ = (r 6, rT) to rs2 = (r4, rs). This means that 
each (bank, group) pair instantiating the government backing predicate must also 
instantiate the services predicate (i.e. if a bank has government backing to service a 
group then it must service that group). 

The meaning of constraints containing role-sequences spanning only one predicate 
is well defined. Problems start to occur when a role-sequence contains roles from more 
than one predicate. Figure 2 contains a schema fragment with a role-sequence rst = r6, 
rs. In the context of the constraint, this role-sequence may have a number of meanings: 
/A,D) from the natural join of P3, PS, P4; (A,D) from the natural join of P3, P1, P4; 
/A,D) from the natural join of P3, P2, P4; or a union or intersection of these. A 
further problem occurs when role-sequences involve ring predicates. In Figure 3, the 
interpretation of the role-sequence (rl, r3) is ambiguous because predicate P2 can be 
joined on either r3 or r4 or both. 

P1 

1'8 

i J 
i 

P5 

Fig. 2 A schema containing an ambiguous constraint 
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P2 

Ir31r'l 

G 

Fig. 3 Both roles of a ring binary are played by the same object type 

Such ambiguities can be resolved by indicating in the definition of the role 
sequence how the joins are to be made. Apart from ambiguity, there is also the 
question of whether it makes sense to allow some role-sequence as an argument within 
a given constraint type (e.g. uniqueness or subsethood). Apart from obvious 
restrictions (e.g. roles being compared in a subset constraint should be distinct and be 
played by compatible object types) this paper makes no special assumptions in this 
regard. A separate paper in preparation addresses this question in detail. 

The data structure used to represent role-sequences is called a role-graph and has 
two parts. The first is a schema graph which is used to specify all of the predicates 
involved in the schema and how they will be joined. The second part is the role- 
sequence: an ordered list of the relevant roles (this determines the order in which the 
which the roles are to appear in the final "selection"). We now consider this notion in 
more detail, with the aid of an example. A schema graph is a connected graph G = 
(V,E) with the following structure and restrictions: 

�9 V is the set of vertices and E is the set of edges. 
�9 A vertex is a predicate (P) or an object-type (0). 
�9 An edge connects a predicate vertex to an object-type vertex, i.e. E = (P,O). 
�9 All object-type vertices must be internal nodes of G. 
�9 Each edge E has a role associated with it--this a role of P and denotes the join 

role of P for E. The join role of a E must be a role of P which is played by O in 
the schema. 

�9 An edge from O to P joined on role R denotes the natural join of P with all other 
predicates connected to O in the schema-graph based on the population of R. 

For simplicity, the following restrictions are made: no predicate may appear in the 
schema graph more than once; all nested object-types have been transformed into 
equivalent compositely identified object-types. Figure 4 contains a schema fragment, 
and Figure 5 shows a schema-graph and role-sequence based on it. A pseudo-SQL 
interpretation of the schema-graph in Figure 5 is shown below. The interesting aspects 
of this role-graph are: C was joined to B via P2; P5 was joined to B via r9 (not rl0). 

select r l ,  r8, r lO from P1, PS, P2, P4 
where (P5.r9 = P l . r2 )  

and (Pl.r2 = P2.r3) 
and (p2.R4 = p4.R7) 



P5 P2 

Fig. 4 A conceptual schema fragment 

Schema Gzaph 

z9 

z3 
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Role Sequence 

z l ,  z8, zlO 

Fig. 5 A role-graph based on selecting roles 1, 8 and 10 from figure 4 

4 Mapping predicates during Rmap 

During Rmap, predicates are mapped to columns in relational tables. To begin with, 
predicates are classified as either reference predicates or fact predicates. A reference 
predicate is one that is involved in the identification of an object-type: the reference 
scheme might be simple (in which case the predicate is usually displayed implicitly in 
parentheses) or compound. All predicates which are not reference predicates are fact 
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predicates. When a predicate is mapped to a table, each of its roles maps to one or 
more columns in that table (more than one column is needed if the object type playing 
the role has a composite identification scheme). Fact predicates are only mapped once. 
Reference predicates however, may be mapped more than once. Figure 6 contains a 
meta-sehema fragment for representing predicate mappings. 

, e 14~pping  

( Roze-ros 
\ / 

Fig. 6 The data-structure for predicate mappings 

For example, the mapping of the predicate (r4,r5) in Figure 1 to the Services 
table may be recorded in this data-structure as follows: 

roles: r4 r5 
table: Services (bank, _qroup) 
col#: 1 2 

Mapping#I: Predicate "Bank services Group" has Mapping#1. 
Mapping#1 is to the Services table. 
Mapping#1 has two role-mappings (r4 and r5): 
The Mapping#I, r4 role-mapping starts at col# 1; ends at col# 1 
The Mapping#I, r5 role-mapping starts at col# 2; ends at col# 2 

The basic algorithm for grouping fact types into tables is trivial, as explained 
earlier when Figure 1 was mapped. The main steps are clearly explained in Halpin & 
Orlowska (1992). Finer points on mapping of 1:I predicates are given by Ritson & 
Halpin (1993), and a detailed discussion of subtype mapping is contained in Haipin, 
Harding & Oh (1992). As the coding of the algorithm is straightforward, further 
details are omitted here to save space. 
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As another example, Figure 4 maps to the relational schema shown below. Square 
brackets around a column name indicate that the column is optional (null values are 
allowed). In Figure 4, C is compositely identified by means of the reference predicates 
P4 and P5; hence c instances are referenced by the combination of d and e in the 
relational tables. The qualification on [e] ensures both components of the identifier are 
present in any reference of c. Although the algorithm is fully automatic, the generated 
names for tables and columns are often awkward, and these can be edited by the 
designer. 

P1, P3 map to B ( b , a ,  [d], [e] 1) 

P5 maps to BB ( b,..bl. ) 

P2 maps to BC ( b, d, e ) 

1 non-null iff d non-null 

If R is the number of roles in the schema which are involved in fact predicates 
and D is the maximum number of reference predicates involved in the identification of 
an object-type, the complexity of the predicate-mapping algorithm is O(RD). Since 
most predicates are binary, and compositely identified object types generally constitute 
only a small percentage of the object-types in a schema, a practical approximation of 
the complexity is O(P log P) where P is the number of predicates in the schema. 

5 Mapping role-graphs to relational views 

The first step in mapping a role-graph to relational views is re-constructing all of the 
predicates involved in terms of relational constructs. This is done by creating a select 
statement for each predicate mapping and combining them all using the union operator 
to form a view equivalent to the re-constructed predicate. Once all of the predicates 
have been re-constructed their views are joined via the join-roles specified in the 
schema-graph. Finally the roles specified in the role-sequence are selected out of the 
join. For example, the view created for predicate P4 in Figure 4 would be: 

create v iew P4view ( d, e ) as 
select d, e from B 
where (( d is not null ) or ( e is not null )) 

and (d is not null ) 
union 
select d, e from BC 
where (( d is not null ) or ( e is not null )) 

and (d is not null ) 

These constructions generate the following select query for the schema-graph in 
Figure 5. 

Predicate 1: create v iew viewP1 (a, b) as 
select a, b from B where (a is not null) and (b is not null) 
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Predicate 2: create v iew v iewP 2 (b,d,e) as 
select b,d,e from BC where (b is not null) and (d is not null) 

and (e is not null) 

Predicate 4: create v iew P4view ( d, e ) as 
select d, e from B where (( d is not null ) or ( e is not null )) 

and (d is not null ) 
union 
select d, e from BC where (( d is not null ) or ( e is not null )| 

and (d is not null ) 

Predicate 5: create v iew v iewP 5 (b,bl )  as 
select b,b l  from BB where (b is not null) and (bl is not null) 

The final query is: 

select viewP1.A, viewP1.B, viewP=.B, viewP2.D, viewP2.E, 
viewP4.D, viewP4.E, viewPs.B, viewPs.B1 

from v iewP 1 , v iewP z , v iewP 4 , v iewP 5 
where (viewPs.B = viewPl.B) 

and (viewP~.B = viewPz.B) 
and (viewP2.D = viewP4.D) 
and (viewPz.E = viewP4.E) 

Obviously there is some redundancy in the algorithm as presented so far. The general 
case problem of optimization is difficult. The following four "peep-hole" optimizations 
generally result in acceptably efficient queries. These are to be done in order (1 to 4). 

1. Eliminating Unions: 

If  a view contains two or more unioned select statements over the same table and share 
them with the same selectors, replace them with a single select statement over the 
same selectors and table, with a where clause which is the disjunct of  all of  the where 
clauses in the original statements. 

2. Eliminating Views: 

I f  a view Vp contains no unions it must contain only one table Tp, so replace all 
occurrences of  V o with Tp in the role-graph's select query and conjoin the where clause 
of  Vp with the where clause of  the role-graph's select query. 

3. Optimizing Joins: 

If  one table appears two or more times in the role-graph's select query and is joined 
using the same fields in each case, all of  these tables but one may be removed from 
the from clause of  the query. 

4. Eliminating Where-Clauses: 

If  a conjunct of  a where-clause is ( col is not null ) and col is not a nullable table, this 
conjunct may be removed from the where-clause. 
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These optimizations reduce the select query previously developed to: 

create v iew P4view ( D, E ) as 
select D, E from B where (D is not null ) 
union 
select D, E from BC 

select B.A, B.B, BC.B, BC.D, BC.E, 
viewP4.D, viewP4.E, BB.B, BB.B1 

from B, BC, BB, viewP 4 
where (BB.B = B.B) 

and (BB = BC.B) 
and (BC.D= viewP4.D) 
and (BC.E = viewP4.E) 
and (B.A is not null) 

The final step in mapping a role-graph is creating a view which selects only the 
required columns from the schema-graph's select query. For the example, this gives: 

create v iew P4view ( D, E ) as 
select D, E from B where (D is not null ) 
union 
select D, E from BC 

create v iew FinalView ( A, B, D ) as 
select B.A, viewP4.D, BB.B1 
from B, BC, BB, viewP 4 
where (BB.B = B.B) 

and (BB = BC.B) 
and (BC.D= viewP4.D) 
and (BC.E = viewP4.E) 
and (B.A is not null) 

6 Mapping Conceptual Constraints to Relational Constraints 

Currently formalised ORM constraints include subset, equality, exclusion, mandatory 
role, disjunctive mandatory role, frequency, uniqueness, ring, closure and value. This 
section of the paper discusses how such conceptual constraints are mapped to 
equivalent relational constraints expressed in SQL. Before the constraints are mapped, 
the schema should be checked using the MSEX validation algorithm (Halpin & 
McCormack 1992) to avoid inconsistent, redundant or inefficient constraints. We have 
space to discuss only the mapping of subset constraints and mandatory roles. This will 
give the general idea. A detailed treatment of mapping all the constraints is given in 
Ritson & Halpin (1992). 

Role-sequences are sequences of roles and are denoted rsl = ril . . . . .  r~.. If a 
constraint contains two or more role-sequences, all of the role-sequences are the same 
length, and all roles in the same positions in role-sequences ( rak , rbk ) are played by 
object-types belonging to the same subtype-tree. All role-sequences are assumed to 
have role-graphs defined for them. 
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Subset constraints: 

A subset constraint is made up of two role-sequences rssu~e t and rss,~rm. Create one 
view for each role-sequence (role-graph) Vsu~e t and V,~,n~t. If both views are made up 
of single queries which have the same selectors and are over the same tables, they can 
be combined into the one query using the construction: 

V~b~t = select selectors from tablename where where-clause=~b~t 
Vauperset ~-- select selectors from tablename where where-clause~p=~ t 

Adding the following check-clause to tablename will prevent invalid data from 
being entered into the table. 

not where-clause~ubset or where-clausesup~r~ t 

For example, consider the relation Employee ( e.rnp#, sex, [car], [licence] I ): I non- 
null only if car non-nail. On the conceptual schema there is a subset constraint that a 
licence is recorded only if a car is. In the relational schema, violations of this 
constraint can be detected by the query: select * from Employee where licence is not 
null and car is null. Or better still, violations can be prevented from entering the 
database by adding the following check clause to the create table statement for 
Employee: check (licence is null or car is not null). This example can be related to 
the above cases by using double negation. 

In other cases there are three basic ways of generating the relational constraint: 
V,ub,= subset of V,,~,,=t. If the superset is a primary key or unique then a foreign key 
clause can be declared (so long as this ANSI SQL feature is supported). With our bank 
example for instance, the pair-subset constraint BackedServices[bank,group] _ 
Services[bank,group] may be declared by adding the following clause to the definition 
of BackedServices: foreign key (bank, group) references Services, assuming the 
primary key for Services has been declared. The superset columns may be explicitly 
included after the target table name, and must be if a unique clause rather than a 
primary key clause has been declared for them. 

In other cases, we can generate procedural code to check for existing violations or 
generate triggers to prevent violations. The following code will detect any existing 
violation, using coll..n to denote the n selectors being compared (n > 1): 

select  * f rom subset-table X 
where  not exists 

(select * from superset-table Y 
where  Y.col l  = X . c o l l  and ... Y.col. = )(.col.) 

For example, violations of the constraint CeasedSavings.customer 
CurrentSavings.customer could be detected in this way (since the target is not a key a 
references clause cannot be used). In this trivial case n = 1, and no correlation 
variables are actually needed since the source and target tables differ. 

Alternatively, triggers can be written to prevent the violation. With our current 
example, triggers would be fired on insert or update of CeasedSavings as well as on 
delete and update of CurrentSavings. See Ritson & Halpin (1992) for further details. 



444 

Disjunctive and Non-functional Mandatory Role Constraints: 

A role is functional if and only if it has a simple uniqueness constraint. Functional 
mandatory roles are trivially enforced by not null columns, and subset constraints from 
other tables where needed. Other case are harder. For the purpose of this paper, they 
can be viewed as a set of  N single role role-sequences -- rs~ . . . . .  rs. where rs~ = r k 
and r k is played by the object-type OT. The first step is to find a view Vwhol~ which 
contains all of the instances of  OT. 

If  OT plays a role R which has a non-disjunctive mandatory role constraint on it, 
V.hot c is the view created from the role-sequence containing only R (preference is given 
to attribute roles ). Otherwise, OTroles = { r~ . . . . .  r m } = the set of roles played by 
OT and subtypes of  OT minus the set of roles involved in the disjunctive mandatory 
role constraint being mapped. V 1 . . . . .  V m are the views created from the N single role 
role-sequences rs~ = rt . . . . .  rsm = r~ .  V . ~  is created as the union of V~ .... , V m . 

Exclude from V,,~I e any roles which have implied or explicit subset or equality 
constraints to any roles in V~o~ �9 An algorithm for finding implied subset constraints is 
presented in Ha)pin & McCormack (1992). Now create V~,~ as the union of the views 
created from all of  the role-sequences in the disjunctive mandatory role constraint. 
Optimize V.hot~ and Vco~ using the same procedures for optimising views and unions 
discussed earlier. 

If  V.hol ~ and V~o~ have the same selectors and are over the same table (i.e. V.hoj ~ 
= select selectors from tablename where where-clause~,o~, and V~,,~ = select 
selectors from tablename where where-clause~o,D the query: 

select selectors from tablename 
where (where-clausewho~ and not where-clause .... ) 

returns all rows in the table which violate the constraint. Adding the following check- 
clause to tablename prevents invalid data from being entered into the table: 

(not where-clausew,ot o or where-clauseco.s) 

In other cases, code can be generated to detect or prevent violations of  the condition: 
V.m.  subset of  V~o,~ (eL subset discussion earlier). As a nasty example, consider the 
disjunctive mandatory role constraint over r2, r3, r4 in Figure 1 (each Bank is either a 
merchant bank or has a savings branch or services a group). Each role has a view 
created for it: 

Views2 = create View,2 (Bank) as 
select Bank from CurrentSavings 
union 
select Bank from CeasedSavings 

View,3 = create View,3 (Bank) as select Bank from MerchantBank 

View,4 = create View,4 as (Bank) select Bank from Services.Bank 

So Voo.~ becomes: 

create Viewco.. (Bank) as 
select Bank from CurrentSavings union select Bank from CeasedSavings 
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union 
select Bank from MerchantBank union select Bank from Services.Bank 

and Vw~e becomes: 

create V iew.~ .  (Bank) as select Bank from UnderwrittenBank 

So the final constraint is: V,~ho~c subset V =~. The $QL implementation of this is similar 
to the subset constraint in the previous example. 

7 Mapping "Schema Expressions" to Relational Expressions 

Role-graphs are not restricted to capturing constraints. They can be used in other areas 
of conceptual modelling and mapping as well. One area of particular interest is that of 
mapping rules and queries expressed conceptually to relational expressions. For related 
work using ER see Hohenstein & Engels (1991) and Markowitz & Shoshani (1990). 
While we have no formal results in this area yet, it is evident that role-graphs may be 
of significant use here. Consider the following query based on the schema in Figure 1: 
"Which banks are both merchant and savings banks and also service the primary 
industries group?" 

This can be expressed as the following role-graph (r5 is restricted to 'primary 
industries'). 

Schema Graph 

r2 

Role Sequence 

r2 

This maps to the SQL query: 

create view P1 (bank) a s  

select bank from CurrentSavings 
union 
select bank from CeasedSavings 
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select P1 .bank from P1, MerchantBank, Services 
where Pl.bank -- MerchantBank.bank 

and MerchantBank.bank = Services.bank 
and Services.group = ' p r i m a r y  industries' 

8 Conclusion 

This paper presented algorithms for mapping an ORM conceptual schema to a relational 
database schema, including important constraints that are typically ignored by other 
mapping algorithms.!Role-graphs were introduced as an intermediate data structure to 
enable efficient automation of the mapping without loss of generality. The algorithms 
have been implemented in the InfoViews CASE tool, and benchmarks have been 
encouraging. A conceptual schema with over 250 object types and several hundred 
constraints was completely mapped, including code generation, in 40 seconds on a 33 
MHz 386SX PC rmming under Microsoft Windows. While the main features of the 
approach have been illustrated in the paper, various eases have been excluded from the 
discussion (e.g. subtyping, 1:1 refinements, other constraints). The textual version of 
the FORML language enables constraints to be specified which cannot be expressed in 
the graphic notation, and in addition allows subtype definitions and derivation rules to 
be specified. Research is currently under way to extend the expressive power of this 
language and to provide automated support for mapping these additional textual 
specifications. 
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