
A Procedural Approach to Schema Evolut ion

Catherine A. Ewald and Maria E. Orlowska

Key Centre for Software Technology
The University of Queensland, Qld 4072, Australia

Abstract. Like data, conceptual schemata change and need to be up-
dated. If not performed with caxe, updates can cause problems. In this
paper, we present a procedure which safely adds a fact type to a con-
ceptual schema. This procedure, as well as being used for simple schema
updates, may be applied to design and integration problems. We also
present procedures for the safe removal of a fact type, and the safe elim-
ination of redundant information from the conceptual schema.

1 I n t r o d u c t i o n

Conceptual schemata cannot be regarded as static. A schema should be able to
evolve in response to changes in user requirements. Design faults, once discov-
ered, should be easily corrected. Conceptual schema updates include the addition
and removal of fact types and constraints, and modifications to information and
constraints. Constraints may also be added and removed. The design process
may be seen as an evolution process~ in which the schema is built up by adding
information units or pieces of information one at a time, starting with a single
piece of information. We call such elementary, irreduceable pieces of informa-
tion fact types. Schema integration (and view integration) are also evolutionary
processes. Starting from two or more source schemata 1 , an integrated schema
is constructed. This is done by choosing one schema as the target schema, and
adding the others to it (one piece of information at a time).

Conceptual schema design, and schema integration may be seen as special
cases of a more general problem. We call this problem the schema evolution
problem. Another case is the ad hoc modification of a schema to meet changing
requirements or fix errors. Clearly, any solution to the schema evolution prob-
lem may be applied to the classical design and integration problems. The design
problem is a special cases, requiring more decisions on the part of the human
designer. However, the interactive procedures presented here may be applied to
conceptual schema design. In this paper, we propose an interactive, procedural
solution, in which some automatic support is provided to the designer during
checking. We present a procedure which adds a single elementary unit of in-
formation to a conceptual schema. This procedure, as well as being used for
simple schema updates, may be applied to design and integration problems. The
addition of an information unit is the most important operation of conceptual

1 These may range from simple, small user views to large ~local schemas" which de-
scribe the sites of a distributed database.

23

schema design and integration. Since such an addition may lead to redundancy
on the conceptual schema level, other redundant information may need to be
removed after the addition, ttowever~ more information may have to be added
after the redundancy is removed. Obviously, care has to be taken not to intro-
duce a cyclic problem here~ For this reason, we introduce a special procedure
for the replacement of a fact type which never requires addition of another fact
type. This is possible because we assume that the fact type to be replaced is
redundant (some other representation of the fact type exists). We also present
a procedure for the removal of a fact type, to be used when the designer wishes
to delete a non-redundant fact type~

Most previous research in the area of schema integration is based on the rela-
tional, and Entity Relationship (ER) models. Constraint integration in a global
relational database is discussed by Tanaka and Kambayashi [17]. The UNIBASE
system [14] uses the relational model as a common data model to handle dif-
ferent database structures. An augmented relational model using connectors to
impose conditions on attributes has been developed by Czejdo,Rusinkiewicz,and
Embley [2]. A large number of papers focus on aspects of the integration of ER
schemas. Attribute integration, view integration, and a scheme for the compar-
ison of relationships have been examined by Larson, Navathe, and Elmasri and
by Navathe et. al. in [6, 8, 9]. A set of incremental, reversible schema opera-
tors using a calculus oriented ER schema notation was presented by Markowitz
and Makowsky [7]. Other relevant issues include the resolution of semantic con-
flicts, which is examined in a paper by Siegal and Madnick [16], and a version
model designed to handle schema changes, presented by Andany et. al. in [1]
. An object- oriented database programming language has been applied to the
domain and schema mismatch problems by Kent [5]. The binary relationship
and NIAM methodologies both use a fact based approach to database design. In
fact, the binary relationship approach is based on an early version of NIAM (Ni-
jssen's Information Analysis Methodology). One advantage of fact-based design
methodologies is that they represent a rich variety of constraints, and therefore
are semantically expressive. Fact-based schemata are usually easier to integrate
than ER, or relational schemata. This is because relationships are represented
by fact types. Therefore the problem of structural (entity/relationship) conflict
is greatly reduced in fact-based models. A view integration methodology using
the binary relationship data model has been developed by Shoval and Zohn [15].
Other research uses a version of NIAM which is not restricted to binary relation-
ships. Updates to conceptual schemata, in particular the addition and removal
of fact types are examined by Orlowska and Ewald in [12, 11].

NIAM was originally developed as an information analysis methodology to
assist humans in designing a conceptual schema for the universe of discourse
which they wish to model. As such, its focus is on representation of application
semantics, rather than formal methods for design and analysis. In fact, it is dif-
ficult to formalize some concepts and techniques used in fact-based modelling
since they have been designed specifically for ease of use by humans. The con-
ceptual schema design procedure [10] relies to a large extent on the expertise of

24

the human designer. Development of formal algorithms for such a data model
is difficult and, even if successful, would place many restrictions on the human
desinger. For this reason, we present interactive procedures designed to exploit
the benefits of fact-based modelling,rather than formal algorithms.

This paper is organized as follows~ Section 2 gives an overview of the NIAM
methodology, Section 3 deals with the addition of a fact type , and Section 4
with the removal of a fact type. Both addition and removal of a fact type are
operations which take a well formed conceptual schema and correct fact type
as input and produce a well formed conceptual schema. Interactive checking
ensures that problems with constraints are not introduced, and that (apart from
the change desired-by the human designer) the semantics of the old schema are
preserved. Conclusions and directions for further research will be discussed in
Section 5.

2 T h e N I A M m e t h o d o l o g y

A conceptual schema consists of elementary fact types, and constraints on the
facts. Entities are graphically represented by circles or ellipses. A graphical rep-
resentation of all constraints exits. Relationships are represented by rectangles,
divided into "role boxes". The familiar concepts of generalization and aggre-
gation are represented by subtypes. Nesting allows a role (relationship) to be
treated as an entity.

Figures 1-3 show the most common constraints expressed on conceptual
schema diagrams. For simplicity, only binary fact types are shown although fact
types of higher arity are allowed. Only the relevant constraints are shown on each
diagram. In particular, most uniqueness constraints are omitted. For this reason~
the diagrams of Figures 1-3 should be regarded as constraint patterns, rather
than complete schema diagrams. Although our main focus in this paper will be
on interfact constraints, we also include intrafact constraints for completeness.

Using the conceptual schema design procedure (CSDP) [10, 4] the designer
produces a schema diagram which represents the universe of discourse(UoD). The
procedure, if followed correctly, ensures that the schema is correct. This means
that the ONF algorithm may be applied to produce a normalized relational
schema.

The ONF algorithm [10, 4] transforms the conceptual schema into a set
of relational tables. For this reason, there is a very close relationship between
the relational schema and the conceptual schema. In fact, a conceptual schema
could be produced from a relational schema by means of a reverse engineer-
ing process, which will not be discussed in this paper. This process cannot be
carried out entirely automatically, due to semantic problems. Interaction with
the human designer is required. Assuming that the conceptual schema exists
and is well formed, most of the automatic checking required during integration
can be performed on the relational schema, rather than the conceptual schema.
One or more populated databases may be involved in the integration process.
Evolution of populated databases will be considered in depth as part of our con-

2 5

INTRAFACT CONSTRAINTS

Conceptual

conslr~nr

A-~B

Relational

[~B]

[A , B]

Fig, 1o Intrafact uniqueness constraints

Mandsto~y Rde

Q m Q
S rnu~ be recorded for A

[TI-I

objer Type

{v~,v2.v s}
Vl, V2, V 3 b the range of dowable v~ues for A

(~ocanee or enumer=~ ~ype)

Frequency Comlralm

A mu~ be recorded n ~TJee

�9 card (~(S))
- card (A)

~r - {V 1 , V 2, V 3}

card (o^ - a(R))

- n o r O

Fig. 2o Other intrafact constraints

26

INTEFIFACT CONSTRAINTS

Conceptual

Ufliquene~ Constraint

= -~) -~ ,,J ,~

F_xdudon Coret~aint

A cannot be mconJed as playing both F(and S

Equr Constraint

If A plays either R or S, it must play both

Subset Cor~traint

@
Th= Ix~l~alion of R (sot of ,~ idayin 9 R) i= =

of the population of S.

Relational

[A , S , C]

,~ JR)- ,c (S) =,~ (R)
and

s,(S) - ~JR) = s {,$)

7r = ~,~S)

,~ (s) =,=(R) ,~ (,s)

Fig. 3, Interfact Constraints

tinued research. However, an incorrect conceptual schema produces an incorrect
relational schema. Failure to identify and remove derivable fact types, for exam-
ple, could lead to unnormalized relations due to hidden transitive dependencies.
Uniqueness constraints in NIAM represent functional dependencies. We have de-
veloped relational algebra expressions equivalent to the most frequently used of
the other constraints at the conceptuM level. Subset, equality and exclusion con-
straints are more expressive versions of the familiar referential integrity (foreign

27

key) constraint. A brief review of the most commonly used constraints, on both
conceptual and relational schemata~ is presented in Figures 1-3. We now present
procedures for the addition and removal of fact types from the schema. The close
relationship between conceptual and relational schemata is used in an interac-
tive approach to schema evolution. The human designer deals with the semantic
aspects~ which require creativity and does so mainly on the conceptual schema.
It is easier for humans to reason at the conceptual level, while automatic or
interactive processes are easier if relational concepts are used. Interactive check-
ing is performed on the relational schema, or on an FD graph formed from the
conceptual schema. Since conversion from a relational to a conceptual schemata
cannot be totally automatic, most checking is done on the FD graph. From this
graph, both conceptual and normalized relational representations can be cre-
ated. However, certain constraint checks are best performed on the relational
schema for efficiency reasons.

3 A procedure for the addition of a fact type

If the following procedure is used to add a fact type to a well-formed conceptual
schema, the new schema will also be well formed. It may be used for the design of
a new schema, starting with a single fact type or integration of existing schemata.
It is also useful for ad hoc modifications to schemata. There may be many correct,
equivalent designs. Any conceptual (or relational) schema design is only one
representative of its equivalence class, which may contain many other schemata.
Some of these are naturally "better" than others. We do not examine the problem
of schema evaluation [3] here. However, we aim to produce a design with as few
relational tables as possible. It must be noted that design is a special, simpler case
of the general integration problem. In many cases, the addition of a fact type is
easy and causes no "side effects". However, certain checks must be performed to
ensure correctness, since there are cases in which things may go wrong. Structural
conflict [15] may occur during integration. In the worst case an entire subschema
may conflict, representing the same information in two different ways on the
integrated schema. The derivation checking process detects such conflicts.

We now present an informal outline of the procedure, before examining each
step in detail. The procedure will then be applied to a simple example schema.
A P r o c e d u r e for t he add i t i on of a fact t y p e

1. Produce a conceptual schema including the new fact type, and all intrafact
constraints which apply to it.
Check that the new fact type doe8 not conflict with any global semantic in-
tegrity constraint.

2. Add any interfact constraints or global semantic integrity constraints related
to the new information.

~,. Check for intrafact constraint conflict and fact type redundancy. Update the
derivation paths of existing fact types where required.

2 8

4. Check mandatory role constraints and other intrafact and interfact con-
straints. All constraints represented on the schema before the addition of
the fact type should be represented on the new schema, Some mandatory role
constraints which were previously implied may need to be explicitly added.

The procedure must be performed in the given order for the following
r e & s o n s ;

- Redundancy checking must be performed after the addition of interfact con-
straints, since the addition of an interfact constraint may cause a fact type
to become derivable.

- Constraint checking should be performed after all other changes to the
schema, since some changes may affect constraints.

3.1 S tep One

P r o d u c e a concep tua l s chema inc luding t he new fact type~ and all
in t ra fac t cons t r a in t s which a p p l y to ito
First the information to be added should be formulated as an elementary fact
type. An elementary fact type is one which cannot be split into two or more fact
types. The fact type to be added should be related to (have a common entity
with) a fact type that is already on the schema.]ntrafact constraints should be
added to the fact type. Every n'ary fact type must have a uniqueness constraint
spanning at least n-1 roles. If a new fact type involving a primitive entity 2
type which previously played only one role is added a mandatory role constraint
needs to be added. The constraint may be on the original role, the new role or a
disjunction of the two. This choice should be based on the designer's knowledge
of the UoD. If the fact type conflicts with a global semantic integrity constraint,
either alter or remove the constraint, or alter the fact type. We do not present any
formal specification of Step One, since it is to be performed entirely by the human
designer. He/she should be free to use creativity and intelligence to produce the
most suitable design for the application. A large degree of responsibility comes
with this freedom. Later steps include interactive checking procedures which
reduce the burden on the designer. Step One involves using the CSDP (Steps 1
to 7) to produce a subschema consisting only of the fact type to be added. This
fact is then added to the conceptual schema diagram.

3.2 S tep Two

A d d any in te r fac t cons t ra in t s or global semant ic in tegr i ty cons t r a in t s
r e l a t ed to t h e n e w informat ion~ Once again, this step must be performed
entirely by the human designer. This basically involves performing Step 8 of the
CSDP.

2 A primitive entity type is any entity type that is not composite or nested

29

3.3 Step Three

Check for intrafact constraint conflict and fact type redundancy.
An added fact type may be derivable~ Also, the addition of a fact type (or an
interfact uniqueness constraint) may make it possible to derive another fact type

or
constraint. 3 The addition of a fact type may, in turn, lead to the addition
of an interfact uniqueness constraint, which could then affect the derivability
of existing fact types. Figures 4-6 show an example in which this occurs. The
derivation paths of fact types already known to be derivable may be affected by
the addition of a fact type, in which case they must be updated. If the human
designer has not detected and resolved constraint conflicts at an earlier stage,
the schema will include multiple fact types representing the same information,
but each having a different constraint pattern.

Orlowska and Zhang [13] have developed an algorithm to detect derivable
fact types on a schema. An FD graph (G-(V,E) where E is a non-empty set of
edges, and V a non-empty set of nodes) is formed from the NIAM schema and is
searched for redundant FDs. We extend the conversion step to handle the case
where an interfact uniqueness constraint forms (part of) the derivation path.

The conversion is clone as follows :
(1) For every simple entity type A, there is a simple node labeled A.
(2) For every nested entity type X(A1, A2..An), there is a compound node labeled
X and dotted arcs from X to A1, A2, An
(3) For every n'ary fact type Y (A1,A2,An) whose uniqueness constraint cov-
ers whole roles, there is a compound node labeled Y, and dotted arcs from Y to
A1,A2,An and a full arc from Y to 0 (0 is a new attribute)
(4) For every n'ary fact type whose uniqueness constraint covers n- I roles
(A1,A~..An-1), there is a compound node (simple node if n = 2) labeled X
= A1 ,A2 ,A , -1 , and a full arc from X t o An
(5) For every set of entities A1,A2..A, where each Ai plays a role in a fact
type with a particular entity E, if the roles played by A1, A2..An are linked by an
interfact uniqueness constraint, there is a compound node labeled X, a full arc
from X to E and dotted arcs from X to A1, A2..An

The DFT algorithm [13] then uses the synthesis approach to identify redun-
dant FDs in the graph, which may correspond to derivable fact types on the
NIAM schema. Since the fact types carry more semantic information than the
FDs, the algorithm presents the suspected derivation path to the designer, and
asks for confirmation that the fact type is derivable. For example, in our uni-
versity database the functional dependency P ---. U may mean Person studies at
university or Person received their first degree from university. If this FD is re-
peated, it appears to be redundant (on the FD graph). However, both the above
fact types may need to be recorded. In addition, the algorithm may be enhanced

z Other changes to constraints may also lead (directly or indirectly) to the appearance
of derivable fact types . ConstrMnt updates themselves lead to new problems and
axe the topic of further research. They will not be discussed in detail here.

30

to support other constraint checking processes~ To simplify interactive checking
of constraints, we store the FD graph at the end of each run (before returning
the conceptual schema)~ Constraint checking procedures can then access both
this previous graph and the current FD graph~ and compare them. However~
some derivable fact types are not detectable by this method, since they do not
involve redundant FDs. This problem occurs when a relationship that exists in
the real world is not represented on the schema. The designer should check for
such relationships [4], and include them on the schema. DFT will then locate any
redundancy. Detection and resolution of such problems is the subject of further
research.

Identify and resolve any constraint conflicts. Nodes on the FD graph which
have multiple outgoing arcs, each going to the same node are likely to have been
added because of constraint conflict. The algorithm should report these to the
designer and allow him/her to resolve the conflict (and remove the unneeded
fact types). We propose a four dimensional representation of constraints. This
constraint table should be added to the target schema. Any constraints on "new"
fact types which conflict with those on the target schema are added to the con-
straint table. Thus, no user will have to accept changes in constraints as a result
of integration. In case of uniqueness constraint conflict, the weakest constraint
should always be recorded on the target schema itself. Any stronger conflicting
constraints should be entered in the table. It is relatively easy to enforce these
additional FDs for transactions which access the particular schema involved. The
constraint may be visualized as a relation with four columns - Schema Identifi-
cation,Role or Roles,Constraint, Value~ The schema identification consists of a
number or name for the schema. This could be a character string. The role or
roles involved must then be listed. The value varies with the type of constraint.
The following should be recorded :

- uniqueness constraint conflict
Assuming that the weakest of the conflicting constraints is shown on the
schema, the relational design will not reflect the other constraint patterns.
The additional FDs which should be enforced in all cases which conflict must
be recorded, so that they can be enforced at the local schema level. These
should be determined by interaction with the human designer.

- occurrence frequency constraint conflict
The cardinality or range of cardinalities must be specified.

- mandatory role constraint conflict
Specify if the role is to be mandatory. If no value is entered, it is assumed
to be optional.

- object type constraint
The range of values allowable for this schema must be specified.

Derivable fact types should then be eliminated. We describe such fact types as
"replaced fact types" since they are replaced by an alternative representation of
the same information. We present a procedure for the replacement of a fact type

31

1. Decide which r ep re sen ta t i on of the fact t ype to keep on the schema
The choice should take into account design objectives, and user requirements.
Replace all other representations and update any derivation paths affected.
The replacement of a fact type does not cause any problems with the deriva-
tion paths of other fact types, as long as derivation paths are correctly up-
dated. Informally, a correct update may be defined as one which replaces the
old (replaced) fact type in the derivation path with the new representation
of the information. If a fact type or constraint is marked as derivable by the
DFT algorithm, some FD path by which the fact type may be derived must
exist. Unless this condition holds, a fact type (or constraint) will never be
replaced by DFT. If the replaced fact type does not form part of the deriva-
tion path of any other derived fact type , problems cannot occur. If the fact
type is involved in the derivation path of some other derived fact type , the
derivation path is no longer valid. However, as discussed earlier, some other
representation of the information must be stored. It may take the form of
a fact type, or an interfact uniqueness constraint. Since each fact type or
interfact uniqueness constraint corresponds to an FD, there is no practical
difference between the case where the new representation is a fact type, and
the case where it is an interfact uniqueness constraint. Thus, no additional
fact types need to be added to the schema. The derivation path must be
updated, replacing the old representation with the new one. In no case can
a cycle arise.

2. Check that all entities can be identified

We need to ensure that every entity recorded as playing a role in the database
can be identified. For reasons of query response time and entity integrity en-
forcement, we do not permit the primary identifier of an entity to be derived.
The exception to this rule is compound identifiers, where an entity is is iden-
tified by some combination of roles, are permitted. The only identifier of an
entity which still plays some role must not be removed or replaced. On the
relational schema no component of the primary key of a relation which has
other attributes should be removed. However, what is originally a primary
key may be removed if an alternate key exists and is first made the primary
key . A primary key may also "shrink". If a n'ary p.k becomes an n-1 ary
p.k the nth attribute may then be removed. Changes to intrafact uniqueness
constraints are not examined in detail here, since the case discussed above
is the only one that directly affects the addition and removal of fact types.
This rule could be enforced by the system.

3. Check in te r fac t and in t ra fac t constraints
Generally, constraints which involve replaced fact types need to be modified
and shifted. However, there is a special case in which the constraint is no
longer needed, and must be removed completely. This occurs when the in-
terfact constraint in question runs between the role played by an entity E
in a fact type replaced by an interfact uniqueness constraint, and the only
other role played by E on the schema.

32

These problems are probably best dealt with by an interactive checking
process performed on the relational schema since automated checks at the
conceptual level are not feasible~ Alternatively, the human designer could be
expected to detect the problems at the conceptual level. Cases of interfact
constraints involving replaced fact types should be reported to the designer,
who should then decide where to place the constraint. Such constraints will
be obvious to the system since the relational expressions which represent
them will contain attributes which no longer exist in the table in which the
constraint was to be enforced~ Once again, information in the FD graphs may
be used to give the designer some assistance. The derivation path could be
presented, since~he constraint must be represented on this path. Problems
with intrafact constraints may also occur. Alternate methods of representing
occurrence frequencies and other intrafact constraints on replaced fact types
may be required.

4. Check for lazy 4 entity types and impl ied m a n d a t o r y roles
A check should be made for entities which play no roles other than those
which identify them (relational tables containing only the identifying at-
tributes of an entity). These represent lazy entity types which the designer
may choose to remove. Some mandatory role constraints may have become
implied. Although this is not a serious problem, they should be removed
to avoid a cluttered conceptual schema diagram and unnecessary computa-
tional overheads. Information from the current and previous FD graphs may
be used to help the designer locate any such entities. This process is very
similar to the mandatory role checking procedure described below. Nodes on
the FD graph, which previously had outgoing arcs (apart from those which
represent identifiers) but now do not, are likely to represent lazy entity types.
These should be reported to the designer for checking.

3.4 Check m a n d a t o r y roles and o t h e r in t ra fac t and in te r fac t
constraints

Ensure that all constraints represented on the source schema are represented on
the target schema. In particular, search for previously implied mandatory role
constraints which need to be shown on the schema. These occur when a fact type
involving a primitive entity type which previously played only one role (apart
from those which identify it) is added. Comparison between the previous and
current states of the FD graph is used to draw the attention of the designer to
possible cases. Nodes which corresponded to entities with implied mandatory
role constraints on the previous FD graph 5 and which now have an additional
outgoing, full arc should be reported. The mandatory role constraint can then
be added where required, since it is no longer implied. Intcrfact constraints that
were between a fact type replaced by a constraint and the only remaining role
played by the entity involved are no longer required. These should be removed.

4 A lazy entity type plays no roles apart from those which identify it
5 had only one outgoing full arc apart from those which represent their identifiers

33

All other cases of interfact constraints involving replaced fact types should be
reported to the designer for checking~ Such constraints can easily be detected, as
the corresponding relational expression contains attributes that no longer exist
in the table on which the expression was to be enforced. Update the conceptual
and relational schemata to reflect the changes made.

Steps 3 and 4 perform a similar function to Step 9 of the CSDP. However, in
schema integration this function is crucial - many of the problems detected in
these steps cannot arise in the simpler, special case of conceptual schema design.

Figures 4-6 illustrate the process of adding a fact type to a schema which
deals with timetabling of university classes. We need to record the rooms in
which subjects are held, and the times at which they are held. We add a fact
type Subject is held at Time to the original schema. Note that the derivation
checking procedure would not find the redundant fact type if performed before
the addition of the interfact constraints. The intermediate schema produced by
steps one and two of the procedure has different semantics to the final schema.
Formally, the two schemata are equivalent, since the same FDs are represented
by each. It is the responsibility of the human designer to decide if a fact type
highlighted by DFT as potentially redundant is actually required because of
semantic considerations~ For the purpose of this example, we assume that the
designer decides to regard them as equivalent.

Schema be(ore AddllOn of Fac~

Is heldin

Is used a t , . . f u r . . .

Rolational Schema

[Subject, Room|

[Room, ~ Subject]

Fig. 4. The schema before addition

4 A P r o c e d u r e f o r R e m o v a l o f a F a c t T y p e

We present a procedure which, when used to remove a fact type from a well-
formed conceptual schema, ensures that the resulting schema is well-formed.
This procedure should only be used when the human designer has decided to
delete a fact type permanently from the schema. Thus, it is more useful for ad
hoc modifications to schemata than for design or integration. The procedure for
replacement of a fact type is similar, but handles the case where a fact type is

Steps 1 and 2

34

is held in

is used a t . . . fo r . . .

Step 3

The ternary fact is found to be derivable and is replaced by the interfact

uniqueness constraint.

Step 4

No changes required

Fig. 5. The addition process

deleted because it is derivable and replaced by some other representation of the
information. Therefore when a fact type is removed, some previously derivable
fact types may need to be stored. The removal of a fact type which is one of
two participating in an interfact uniqueness constraint may also cause this to
occur. Once the fact type is removed, the interfact uniqueness constraint must
be removed. Then, a new representation of the formerly derivable fact type has
to be added. The procedure is as follows :

1. P r o d u c e a conceptua l schema w i t h o u t t he fact t ype (and any in-
t r a fac t cons t ra in t s which were on it)
Apart from the fact type in question, this schema should be semantically
equivalent to the original schema. This step should be performed by the
human designer.

2. Remove any in te r fac t cons t ra in t s t h a t are no longer needed .
An interfact constraint between the deleted fact type and the only other
role played by the entity concerned must be removed. In all other cases, the
designer must use knowledge of the UoD to decide if the constraint is needed.
A major difference from replacement of fact types is that constraints never
need to be relocated.

35

Final Schema

is held in

Relational Schema

[Subiect, Time=__=.~, Room I

Room is used for subject at time
iff subject is held in room and
subject is held at time.

Fig. 6. The final schema - after addition

. Check the derivation paths of other derivable fact types.
There are two cases in which a previously derived fact type may need to be
stored :

- Removal of a fact type that is directly part of the derivation chain of
another derived fact type

- Removal of a fact type which takes part in an interfact uniqueness con-
straint (u.c), where the constraint involves only two facts. In this case
the constraint itself must be removed. As with a fact type , the interfact
u.c may form part of one or more derivation chains. Similar observations
apply to the removal of an interfact u.c without any related changes to
fact types.

In either case, the designer must add one or more fact types or interfact
uniqueness constraints to represent the information that was previously
derivable. This task clearly requires creativity and knowledge of the UoD.
However, an enhanced version of the DFT algorithm may be used to locate
possible problems and report them to the designer. A simple comparison
determines if all FDs in the previous FD graph are also in the current graph.
Of course, FDs corresponding to fact types removed by the human designer
should be ignored, since they are not intended to appear.
Before returning the NIAM schema, the DFT algorithm could do the follow-
ing :

Compare the current FD graph with the one stored from the previous run :
For every FD (full arc <X, Y>) found in the stored graph that is not in the
current graph, and which does not correspond to a fact type actually removed
by the designer, warn the designer of possible missing information and give
him/her the chance to add any fact types or constraints needed.

Once again, the order in which the steps of the procedure are performed is
important. As discussed above, constraints should be altered before derivation

Schema Before Remova~

checking, and final constraint checking should be performed after derivation
checking.

Figure 7 shows a simple example~ in which the fact types added in the pre-
vious example (Subject is held at Time) is removed~ The ternary fact type then
has to be added to represent perviously derivable information. Note that the
schema produced is exactly the same as the schema before the fact type was
added (Figure 4). ~

is held in

Room is used for subject at time iff subject is held in room

and subject is held at time,

Schema After RemovaJ

is held in

36

is used a t . . . f o r ~ ~

Fig. 7. RemovaJ of a fact type

5 Conclus ion

We have presented procedures for the safe addition and removal of information
(fact types). These are intended as tools for the design, integration and evolution

37

of fact-based conceptual schemata. In fact, the procedure for addition of a fact
type may be seen as a procedure for schema integration. As we have mentioned
earlier, the design and integration problems may be viewed as speciM cases of
the general schema evolution problem~

Directions for further research include the development of other evolution
operators. In particular, procedures for the update of fact types, and update,
addition and removal of various types of constraints need to be developed. The
ultimate goal of this reserach is to develop a schema algebra, and an interac-
tive integration operation catering for constraint integration as well as fact type
integration. Futher improvements to the ONF mapping algorithm are also cur-
rently underway, as is work on formal methods for the detection of derivable fact
types. Schema evaluation, and how to produce a "good" design should also be
examined.

6 Acknowledgements

The authors would like to thank Dr. Yanchun Zhang for his helpful comments and
suggestions. We have had many fruitful discussions with him while preparing this
paper. We would also like to thank Prof. Robert Meersman and some anonymous
referees for their comments, which have helped to improve the quality of this
paper.

References

1. Michel Andany~ Jos6 L~onard and Carole Palisser. Management of schema evo-
lution in databases. In Proco 17th International Conference on Very Large Data
Bases (VLDB), pages 161-170, 19910

2. Bogdan Czejdo, Marek Rusinkiewicz, and David Embley. An approach to schema
integration and query formulation in federated database systems. Proceedings of
the Third International Conference on Data Engineering, pages 477-484, 1987.

3. Christoph Eick. Methodology for the design and transformation of conceptual
schemas. In Proc. 17th International Conference on Very Large Data Bases
(VLDB), pages 25-34, 1991.

4. Terence A. Halpin and Maria E. Orlowska. Fact-oriented modelling for data anal-
ysis. Information Systems, 2(2):97-119, April 1992.

5. William Kent. Solving domain mismatch and schema mismatch problems with
an object-oriented database programming language. In Proc. 17th International
Conference on Very Large Data Bases (VLDB), pages 147-160, 1991.

6. J. Larson, S. Navathe, and R. Elmasri. A theory of attribute equivalence in
databases with application to schema integration. IEEE Transactions on Soft-
ware Engineering, 15(4):449-463, 1989.

7. Victor M. Markowitz and Johann A. Makowsky. Incremental reorganization of
relational databases. In Proco 13th VLDB Conference, pages 127-135, 1987.

8. S.B Navathe and S.G Gadgil. A methodology for view integration in logical
database design. In Proceedings of the Eighth International Conference on Very
Large Data Bases, Mexico City, pages 142-155, 1982.

38

9. S.B. Navathe, T. Sashidhar, and Ro ElmasrL Relationship merging in schema inte-
gration. In Proceedings of the Tenth International Conference on Very Large Data
Bases, Singapore, pages 78-90~ 1984o

10o G.M. Nijssen and T.Ao Halpin~ Conceptual Schema and Relational Database De-
sign~ Prentice Hall, Englewood Cliffs,New Jersey, 1989o

11. Maria Eo Orlowska and C.A Ewaldo Meta-level updates : The evolution of
fact-based schemata. Technical Report 211, Key Centre for Software Technol-
ogy, Department of Computer Science, University of Queensland, 1991.

12. Maria E. Orlowska and C.A Ewaldo Schema evolution - the design and integration
of fact-based schemata. In Proc. Databases ~9~ : Australian Database Conference,
1992.

13, Maria E. Orlowska and Yanchun Zhang. On enhancements of semantic method-
giggles for relational database design, In Databases in the 1990s : Proceedings of
the Australian Database Research Conference, pages 97-108, 1990.

14. J. Rybnik, Z. Brzezifiski, J. Getta, and W. St~pniewskio UNIBASE- an integrated
access to databases. In Proceedings of the Tenth International Conference on Very
Large Data Bases, Singapore, pages 388-396, 1984.

15o Peretz Shoval and Sara Zohn. Binary-relationship integration methodolgy. Data
and Knowledge Engineering, pages 225-250, 1991.

16. Michad Siegel and Stuart E. Madnicko A metadata approach to resolving seman-
tic conflicts. In Proc. 17th International Conference on Very Large Data Bases
(VLDB), pages 133-145, 1991.

17o K. Tanaka and Y. Kambayashi~ Logical integration of locally independent rda-
tional databases into a distributed database. In Proceedings of the Seventh Inter-
national Conference on Very Large Data Bases, pages 131-141, 1981.

